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Abstract: This article describes the analyses of modeling the wear process of
lithium-nickel-manganese-cobalt cells operating cyclically under constant load conditions. The main
aging processes taking place in cells and the methodology of the modeling are discussed. The process
of cell wear is examined, taking into account the influence of cyclic operating parameters (temperature,
discharge current, and discharge depth). On the basis of the analyses carried out, a new function
reflecting the influence of ambient temperature on the durability of the cell is proposed. A new fuzzy
model of the wear process of the NMC 18650 type cell, depending on the parameters of the discharge
half cycle, has been developed. The results of the model have been verified by experimental research.
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1. Introduction

The first electrochemical cells were designed, built and described more than 200 years ago, but it
was only in the last three decades that the emergence of lithium-ion cells contributed to the dynamic
growth of their popularity. The areas of their application are constantly expanding, and the most
common are currently mobile electronic devices, various types of e-mobility solutions (especially
electric vehicles), uninterruptible power supply systems, and systems cooperating with renewable
sources of electricity [1]. Where the cost of cell purchase is significant and the load is characterized by
high dynamics of change, the analysis of cell behaviour, both in electrical and thermal aspects, is very
important [2,3]. For this purpose, various types of cell models are being developed all over the world,
the most popular of which are electrochemical [4,5] and circular [6–8] models. At their core, all kinds
of battery management systems are functioning, which allows the prediction of currents and voltages
at cell terminals and the state of charge, while they control the charging process in a way that ensures
safety. Without such systems, the cells could wear out excessively.

Another very important aspect of cell modeling is determining the state of health (SOH) of cells,
both for economic and ecological reasons. Up-to-date research on this issue is important, because
knowledge of the cell wear process can be used to design systems powered by electrochemical energy
storage to optimize their operation, extend the time of proper battery operation, and thus reduce
the consumption of rare earth elements. For this reason, many papers on modeling the process of
lithium-ion battery consumption are found in the literature [9–12].

In this work, we focused on the issue of modeling the SOH of lithium-ion NMC cells. Due to the
fact that for most types of cells, ageing models during storage are already developed [13,14], this paper
deals with the issue of modeling the process of lithium-ion cell wear resulting from cyclic operation.
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The analysis of cell wear resulting from cyclic operation should take into account many factors that
have a significant impact on its SOH, related to temperature, electric field strength and current density
in the electrolyte, double layers, and electrodes [15]. The issue is also hampered by the fact that the
nature of this impact is strongly nonlinear. Therefore, in some works, numerous simplifications of
the models were made, for example, [16] reported that during SOH modeling it is mainly the amount
of electric charge exchanged by the cell that must be taken into account. In [17,18], models of cell
SOH were proposed for cells operating at a constant temperature or under a constant load. Many
sources suggest taking into account different operating parameters, but assume only their averaged
values during the cycle. In [9], it was assumed that the effect of temperature on SOH is a polynomial
of the third order, whereas discharge currents, charging currents, and depth of discharge (DOD) are
exponential or power [11,19]. For the average state of charge (SOCavg), linear or polynomial functions
of the second order are assumed [16,20]. In [20], it was indicated that when the cell is operating with a
dynamically changing load, the DOD changes should be considered separately for the charging and
discharging processes. In [21], the nonlinear influence of the value of the charging current was also
proved. The aforementioned works either lack consideration of important parameters of cell cyclic
operation or address them too narrowly. It is against this background that we undertook to develop a
model of cell wear process depending on ambient temperature, the value of discharge current, and the
depth of discharge.

Taking all these parameters into account makes the identification of model coefficients difficult
and time-consuming. A certain solution to the problem of creating complex mathematical functions,
enabling the analysis of cell ageing, and determining the coefficients of these functions is the use of
fuzzy logic. For this reason, we proposed the use of a fuzzy Mamdani system to analyze the state
of consumption, which is a new approach to issues related to the modeling of the consumption of
lithium-ion cells.

2. Aging Processes in Lithium-Ion Cells

Aging processes take place throughout the life cycle of lithium-ion cells, both in cyclic operation
mode and in the storage state. These processes take place in the whole of the cell area, i.e., on
the electrodes, in the electrolyte, and in the contact area between the phases of the electrodes
and the electrolyte. According to many research papers, at least a dozen aging processes may be
indicated, and their causes may have different physical characters (e.g., thermal, chemical, and
electrochemical) [22,23]. Table 1 presents the dominating aging processes occurring in lithium-ion cells
as a result of electrochemical processes.

Table 1. Main aging processes taking place in lithium-ion cells (Adapted from [24]).

No. Name of Process

1 Formation, build-up, fracture and reformation of the solid electrolyte interphase (SEI)
2 Corrosion of the current collector
3 Decomposition and fracture reaction of the electrolyte and binder
4 Viscoelastic creep of the separator
5 Lithium plating
6 Gassing of the particles

The processes listed in Table 1 occur as a result of the electric charge flow during cyclic cell
operation (charging and discharging processes). The speed of these processes is affected by the
following cyclic operating parameters: cell temperature (T), charging current (Ich), discharge current
(Id), discharge depth, and average state of charge of the cell. The aging processes responsible for
the formation and subsequent evolution of the SEI layer are caused, among other things, by the use
of the cell in the wrong voltage range (the high value of the final charging voltage is particularly
unfavourable), the cell temperature, and the high current values during charging and discharging.
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Corrosion of the current collector is caused by deep discharge of the cell (below the final discharge
voltage), overcharging of the cell (above the final charging voltage), and storing the cell in an elevated
ambient temperature. Conversely, the process of lithium plating of the cell is mainly caused by cyclic
work in low temperatures. This process can be intensified if the charging current is high in these
conditions. In the decomposition and fracture reactions of the electrolyte and binder, high temperatures
and pressures in the cell, operating with a high state of charge of the cell (SOC), and overcharging of
the cell can be triggers. Gassing occurs especially in the final phase of cell charging. The higher the
temperature of the cell and the higher the charging current, the more intensively this process occurs.
Aging processes can also be caused by various types of mechanical damage to the cell structure, for
example, vibration or high pressure [25]. They can lead to viscoelastic creep of the separator. The use
of mechanically damaged cells is particularly dangerous. In addition to the unstable operation of the
cell in these situations, there is also a high risk of fire. Without interfering with the structure of the cell,
the effects of these processes can only be analyzed by parameters such as internal resistance (growth)
and capacity (atrophy).

3. Modeling the Wear Process of Lithium-Ion Cells

The following parameters can be taken as measures of the wear of cells (SOH, state of health):

• loss of cell capacity (as a result of gradual loss of capacity to accumulate electric charge);
• increase of internal resistance [26] (in some applications it is assumed that the cell is worn out

when internal resistance doubles in relation to the resistance of the new cell);
• number of complete charge and discharge cycles (N) the cell can complete before cell capacity loss

reaches 20% (criterion used for electric vehicles according to ISO 124052);
• exploitation time (applies to aging resulting from storage time).

Modeling of the wear process of lithium-ion cells is divided into two stages, during storage and
during cyclic operation. In the first case, the charging state and ambient temperature are factors that
have a particular impact on the wear of the cells. In the case of cyclic operation, the factors to be taken
into account in the model are cell temperature, and discharge and charging currents (DOD).

In order to model the process of cell wear, the current international literature often uses
mathematical multiplication models expressed in general form by means of the following
equation [11,19,20,27]:

SOH(T, Id, Ich, DOD) = f (T) · f (Id) · f (Ich) · f (DOD) (1)

where SOH is the state of health of the cell, f(T) is the function describing the impact of temperature,
f(Id) is the function describing the impact of discharging current, f(Ich) is the function describing the
impact of charging current, and f(DOD) is the function describing the impact of depth of discharge.

A model which allows for the estimation of the number of performed full equivalent cycles and
useful capacity as the function of the depth of discharge, temperature, and load was developed in [9].
In this model, the impact of cycling on the useful capacity of the cell is described by the following
equation [9]:

Q(n) = QBOL − ε(n) · (QBOL −QEOL) (2)

where n is the cycle number, QBOL is the capacity at beginning of life (new cell) (Ah), ε is the aging
factor (-), and QEOL is the capacity at end of cell life (Ah).

The cell aging factor ε(n) is determined according to the following formula [9]:

ε(n) = ε(n− 1) +
0.5

N(n− 1)

(
2−

DOD(n− 2) + DOD(n)
DOD(n− 1)

)
(3)

where N is the maximum number of cycles (-).
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The maximum number of cycles can be calculated from the following relationship [9]:

N(n) = H
(

DOD(n)
100

)−ξ
exp

(
−ψ

(
1

Tre f
−

1
Ta(n)

))
·

(
Id_avg(n)

)−γ1
(
Ich_avg(n)

)−γ2 (4)

where H is the cycle number constant (-), ξ is the constant related to DOD (-), ψ is the Arrhenius
rate for cycle number (-), Id_avg is the average discharge current in half-cycle duration (A), Ich_avg is
the average charge current in half-cycle duration (A), γ1 is the constant related to discharge current
(-), γ2 is the constant related to charge current (-), Tref is the nominal temperature (◦C), and Ta is the
ambient temperature (◦C).

The above model assumes that the DOD for the discharge process is the same as for the charging
process. Cui et al. [19] developed a model of capacity atrophy for LiCoO2 cells depending on
temperature (T), discharge current (C), DOD, upper cut-off voltage (Vt), and number of cycles. This
model is only suitable for shallow discharges and low load currents. Capacity loss is determined on
the basis of equations [19]:

Qloss(T, C, DOD, Vt, n) = A(DOD, C, Vt) · exp
(
−

Ea(C)
8.314 · T

)
· n0.74 (5)

A(DOD, C, Vt) = −157.671 + 3.624 ·DOD + 14.19 ·C + 2.721 · exp(0.938 ·Vt) (6)

where Ea is the activation energy (J), n is the number of cycles (-), A is the pre-exponential factor
(-). Where the cell is dynamically loaded with a variable load, DOD changes should be considered
separately for the charging and discharging processes. Then, the analytical formula can be very
complex, as in [20], in which the number of cycles that a lithium-ion cell can perform is determined by
the relation:

N(ICH, ID, ∆DOD, SOC, T) = N0

2 :

 1

aCH exp
(
−bCH ·ICH

Cn

) + 1

aD exp
(
−bD ·ID

Cn

)

·

·
a∆DOD

∆DOD
b∆DOD
D +∆DOD

b∆DOD
CH

·

(
cSOCSOC2

avg + bSOCSOCavg + aSOC
)
·

(
dTT3 + cTT2 + bTT + aT

) (7)

where N0 is the constant depending on the analyzed cell, adjusting the obtained result to the number
of cycles at rated conditions; ∆DODCH is the change in the discharge depth (relative amount of electric
charge delivered) during charging; ∆DODD is the change in the discharge depth (relative amount of
electric charge taken out) during discharge; a, b, c, d are the coefficients depending on the analyzed cell,
with indexes related to cyclic model parameters; and Cn is the rated capacity of the cell.

4. Analysis of the Impact of the Cycle Operation Parameters on the Wear-Out of the NMC Cell

Developing an aging model of a lithium-ion cell operating cyclically requires knowledge of
the influence of individual operating parameters (temperature, charging and discharging currents,
depth of discharge, and average state of charge) on the process of cell wear. A commercial 18650
lithium-nickel-manganese-cobalt (NMC) cylindrical cell with a nominal capacity of 2600 mAh was
selected for the capacity consumption analysis. Taking into account that aging tests are time-consuming
(especially the variants with reduced DOD may last up to several months), it was decided to carry
them out under accelerated aging conditions. This means that for cyclic operating parameters, the
cell was selected with values exceeding its ratings. The values of cyclic operating parameters selected
during the tests are presented in Table 2. The variants related to the influence of SOCavg and charging
current values have been omitted. In the implemented variants, the cells were charged with a constant
current of a constant average value of 0.85 C.
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Table 2. Values of cyclic operating parameters of tested cell selected during aging tests.

No. Temperature [◦C] Discharging Current [A] Depth of Discharge [%] Performed Cycle Number [-]

1 25 2.6 100 1800
2 25 5.2 100 1070
3 25 7.8 100 580
4 25 10.5 100 410
5 15 2.6 100 595
6 15 5.2 100 180
7 15 5.2 50 1075
8 15 7.8 100 1300
9 40 2.6 100 1170

10 40 5.2 100 678
11 40 7.8 100 395
12 40 7.8 77 776
13 40 7.8 50 1321
14 40 7.8 27 2473

The state of health of the cell is defined as the ratio of the current capacity of the Cact cell
(determined in control conditions on the basis of relation 8) to the capacity of the new Cnew cell. The
condition for the completion of each aging test was a cell wear of 20%, which corresponds to a cell
SOH = 80%. After the cell reached SOH = 80%, the number of complete charging cycles was noted.
Capacity control measurements for each variant were performed every several dozen cycles. The
control conditions are set out in Table 3.

SOH =
Cact

Cnew
· 100% (8)

Table 3. The test conditions for measuring cell capacity.

Parameter Value

Ambient temperature 25 ◦C
Discharge current 2.6 A

Initial charging current 1.3A (CC-CV mode, at CV cell was charging till
current reach 0.05% initial value)

Discharge depth 100%
Upper/lower cut-off voltage 4.2 V/2.75 V

4.1. Impact of Ambient Temperature on Cycle Life

Test results from 15 ◦C, 25 ◦C, 40 ◦C, 2.6A discharge current and 100% discharge depth were used
to investigate the effect of ambient temperature on the cell’s SOH. In these tests, the cell performed 595,
1800, and 1170 complete cycles (nos 1, 5, 9, Table 2) respectively before reaching SOH = 80%. On the
basis of the obtained results, it was found that the cell is characterized by higher wear at temperatures
below 20 ◦C and above 35 ◦C. For this reason, we proposed to use the Gauss function (Equation 9) as a
function of temperature impact (with other cyclic parameters remaining constant) on the number of
cell cycles. The course of the Gauss function is shown in Figure 1.

N(T) = a · e(−(
T−b

c )
2
) (9)

where N is the number of cycles; T is the ambient temperature; and a, b, c are coefficients.
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Figure 1. Impact of ambient temperature on cell cycle number.

4.2. Impact of Discharging Current on Cycle Life

Test results obtained at 25 ◦C were used to investigate the effect of the discharge current on the
number of cell cycles after which the cell is considered to be worn out. In these tests, for discharge
currents of 2.6, 5.2, 7.8, and 10.5 A, the cell made 1800, 1070, 580, and 410 cycles respectively (nos 1–4,
Table 2). On the basis of the tests performed, the power function described in Relation 10 was selected
for the discharge current because it best represented the influence of this factor on the number of cell
cycles (Figure 2).

N(Id) = d · (Id)
e + f (10)

where N is the number of cycles; Id is the discharging current; and d, e, f are model coefficients.
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4.3. Impact of Depth of Discharge on Cycle Life

For the analysis of the influence of DOD on the number of cell cycles, variants nos 11–14 from
Table 2 were used. The ambient temperature during these tests was 40 ◦C and the discharge current
was 7.8 A. For DOD equal to 27%, 50%, 77%, and 100%, the cell made 2473, 1321, 776, and 395 complete
cycles respectively. As in the case of the discharge current, the function that best represents the
influence of DOD is the power function, Equation 11, Figure 3.

N(DOD) = g · (DOD)h + i (11)

where N is the number of cycles; DOD is the depth of discharge; and g, h, i are coefficients.
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4.4. Estimation of Model Coefficients

The function coefficients, 9–11, were estimated using the method of least squares. The total
square error between the measured value and the value determined by the model was minimized
(Equation (12)). For the obtained coefficients (Equations 9–11) this was, respectively: 8.5737e-22, 6105,
and 3038, which corresponds to a determination factor of 1, 0.9948, and 0.9988. The estimated values
of the coefficients are presented in Table 4.

SSE = min
{∑(

y2
meas − y2

model

)}
(12)

where SSE is the sum of squares errors, ymeas is the measured value, and ymodel is the value calculated
from Equations 9–11.

Table 4. Results of estimation of function coefficients in eqs. 9–11.

Coefficient Value Coefficient Value

a 2061 f −2758
b 29.93 g 21180
c 13.39 h −0.475
d 5897 i −1959
e −0.2683

5. NMC Cells Wear Process Modeling Using Fuzzy Logic

Fuzzy logic is an approach belonging to multivalent logic. It assumes that there are many
intermediate values between the logical zero and the logical one, which determine the degree of
belonging of the element to the set. Fuzzy systems are characterized by the fact that they are
knowledge-based models, which is their greatest advantage. At the same time, their implementation
does not require knowedge of the details of the chemical aging reactions taking place in the cell or
prior determination of function coefficients defining the impact of cyclic operating parameters on the
process of cell wear, which is often very difficult. Two classes of fuzzy systems can be distinguished,
the Mamdani type and the Takagi–Sugeno–Kang type [28].

5.1. Methodology of Fuzzy Modeling

The classic fuzzy system scheme consists of the following four blocks: fuzzification, inference,
base of rules, and defuzzification. Its structure is presented in Figure 4.

In the fuzzification block, for each real value of input parameter, xi, of the model, the degree
of membership to individual sets of fuzzy input, Ai, is calculated. A fuzzy set in a certain space of
considerations, X, is a set of pairs:
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Ai =
{(
µ∗A(xi), xi

)}
, ∀xi ∈ X (13)
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Membership functions assign to each input parameter, xi∈X, the degree of its belonging, µ*A(xi),
to a fuzzy set, assuming that µA(xi)∈[0,1].

In a block of inferences on the basis of input degrees of membership µ*A(xi), the resultant function
of belonging is calculated µres(yi) for each output of the yi model. The character of the resultant function
of membership is most frequently complex. Its calculation is done through reasoning, which can be
mathematically realized in many ways. In order to carry out the inference operation, the inference
block must contain a database of defined rules, the inference mechanism and the membership functions
(Bi) of the output of the model (y). The base of rules contains logical rules that define cause and effect
dependencies existing in the system between sets of fuzzy inputs and outputs. It takes the form of
conditional sentences of the type:

If xi is Ai And . . . And xn is An Then yi is Bj And . . . And ym is Bm (14)

where xi is the value of i-th input parameter, Ai is the i-th fuzzy set of conditions, Bj is the j-th fuzzy set of
conclusions, yi is the value of i-th output parameter, and n/m is the number of input/output parameters.

In the defuzzification block, a mechanism of defuzzification is implemented which, on the basis
of the resulting function of belonging µ(yi), determines the crisp value of each output of the yi model.
There are many methods of defuzzification, the most popular of which include the following: middle
of maxima, centre of gravity, centre of sums, and the height method. For example, in the centre of gravity
method, the sharp output value of model y is determined as the centre of gravity of the surface under the
curve defined by this function (Figure 5), and is calculated as the quotient of the momentum of the area
under the curve µres(y) relative to the vertical axis µ(y)and the size of that area. The relationship is as follows:

y =

∫
y · µres(y)dy∫
µres(y)dy

(15)
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5.2. A Fuzzy Model of the NMC Cell Wear Process

In order to model the wear process of NMC cells (with the parameters given in Section 4) under
constant load conditions, it is proposed to use a fuzzy Mamdani system. The input parameters of the
model are the operating parameters of the cyclic cell (half-cycle discharge), i.e., ambient temperature,
value of discharge current, and depth of discharge. The model assumes that in each half-cycle of
charging, cells are charged with a constant current with a mean value of 0.85 C up to a final voltage of
4.2 V. The output parameter of the model is the number of full N cycles of charging that the cell can
perform before it reaches the wear indicator equal to SOH = 80%. For each input parameter of the
model, three triangular membership functions were defined (Figure 6 a–c), while for the number of N
cell cycles, using the results of tests presented in Section 4, nine triangular membership functions were
defined (Figure 6d).
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The function of minimum (Equation 16) was assumed as t-norm operators in the inference process,
whereas the function of maximum (Equation 17) was assumed as s-norm operators in the aggregation
process. The centre of gravity method was used as a method of defuzzification [28].

µA∩B(x) = min
{
µA(x),µB(x)

}
(16)

µA∪B(x) = max
{
µA(x),µB(x)

}
(17)

The base of rule of model contains 27 linguistic rules, based on which the number of cycles
is inferred. This takes into account the measurement results (Table 2) and contains all possible
combinations of functions belonging to the input parameters of the model.

An illustration of the process of applying a fuzzy model of cell wear is presented in Figure 7a–c.
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Figure 7. Illustration of the inference process of the model: (a) number of cycles vs depth of discharge
and temperature, (b) number of cycles vs discharging current and temperature, and (c) number of
cycles vs depth of discharge and discharging current.

The developed model has been verified for six different combinations of cyclic cell operating
parameters. The accuracy of the model was determined by a relative error derived from:

RE =

(
ymeas − ymodel

ymeas

)
· 100 (18)

The verification results are summarized in Table 5.

Table 5. Verification results of NMC cell wear from fuzzy model

No. Temperature
[◦C]

Discharging
Current [A]

Depth of
Discharge

[%]

Simulated
Number of
Cycles [-]

Real
Number of
Cycles [-]

Relative
Error [%]

1 25 2.6 100 1705 1800 5.60
2 40 7.8 27 2152 2473 14.89
3 40 7.8 100 433 395 8.84
4 40 7.8 50 1374 1321 3.84
5 15 2.6 100 559 595 6.37
6 15 7.8 100 1385 1300 6.13

For most of the verified variants, the relative model error is below 10%. This proves the correct
operation of the fuzzy algorithm and its usefulness for predicting the aging process of cells. For the
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variant Id = 7.8 A, T = 40 ◦C, DOD = 27%, and the relative error was 14. 89%. It seems that this is a big
inaccuracy, but the number of cycles performed by cells operating with reduced DOD is always many
times greater than during full discharge and is often characterized by a large spread (in the case of
DOD below 20%, the difference in the number of cycles performed can reach up to several thousand
cycles). For this reason, all the results obtained should be considered satisfactory.

6. Conclusions

This paper describes the analyses of modeling the process of wear of 18650 lithium-ion NMC cells
during cyclic operation under constant load conditions. Modeling the process of wear of NMC cells
is a complex issue due to the need to take into account a large number of cyclic parameters and the
correct representation of the degree of their impact. For this reason, determining the structure of the
model is complex and often requires simplifying assumptions. On the basis of accelerated aging tests,
the influence of discharging parameters on the process of cell capacity atrophy was investigated. In
addition, functions were developed to characterize the impact of these parameters on the number of
cell cycles before it reaches wear level. For ambient temperature, a new type of function reflecting the
Gauss function was proposed (Equation 9), from the obtained results, the highest number of cycles a
cell can perform (assuming other cyclic parameters remain constant) at a temperature close to 30 ◦C. In
the case of discharge current and DOD values, the number of cycles depends on the power function
on these parameters. The use of a fuzzy Mamdani system to reproduce the wear process of a cyclic
operating cell yielded satisfactory results. For the verified variants (Table 5), in most cases the relative
model error was less than 10%. In our opinion, bearing in mind the complexity of modeling the process
of cell wear, this is an acceptable value.

Future research should focus on reducing model error by including charging current, SOCavg, and
upper cut-off voltage in the model.
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