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Abstract: Parameter estimation is an important part in the modeling of a hydro-turbine regulation
system (HTRS), and the results determine the final accuracy of a model. A hydro-turbine is normally
a non-minimum phase system with strong nonlinearity and time-varying parameters. For the
parameter estimation of such a nonlinear system, heuristic algorithms are more advantageous than
traditional mathematical methods. However, most heuristics based algorithms and their improved
versions are not adaptive, which means that the appropriate parameters of an algorithm need to be
manually found to keep the algorithm performing optimally in solving similar problems. To solve
this problem, an adaptive fuzzy particle swarm optimization (AFPSO) algorithm that dynamically
tunes the parameters according to model error is proposed and applied to the parameter estimation
of the HTRS. The simulation studies show that the proposed AFPSO contributes to lower model error
and higher identification accuracy compared with some traditional heuristic algorithms. Importantly,
it avoids a possible deterioration in the performance of an algorithm caused by inappropriate
parameter selection.

Keywords: hydro-turbine regulating system; parameter estimation; particle swarm optimization;
fuzzy inference; variable neighborhood search

1. Introduction

System identification is an important branch of modern control theory. The principle is to find a
mathematical model that best fits the dynamic characteristics of a real system in a specified model set
according to the input and output data of the system [1]. When the structure of a model is known
but its parameters are unknown, system identification can be simplified to a parameter estimation
problem. Hydro-turbine regulation system (HTRS) is a common energy conversion system in the
field of renewable energy. It consists of governor, turbine, water diversion system, generator and
load [2,3]. HTRS is a complex nonlinear system of hydraulic-mechanical-electrical coupling. The basic
structure of its mathematical model has been theoretically studied and experimentally verified [4–7].
Therefore, the key to establishing its precise mathematical model is to design an effective parameter
estimation method.

Energies 2019, 12, 3903; doi:10.3390/en12203903 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-1486-3793
http://dx.doi.org/10.3390/en12203903
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/12/20/3903?type=check_update&version=2


Energies 2019, 12, 3903 2 of 21

The heuristic optimization algorithm is a mature and widely used model parameter estimation
method in engineering [8,9]. Compared with the traditional deterministic optimization methods, it is
not limited by the complexity of models, and can efficiently solve high-dimensional single-objective or
multi-objective optimization problems. The core idea of the method is to use a certain evolutionary
strategy and a predefined objective function to estimate a set of optimal parameters to minimize
the error between the predicted and ideal values of the output of the system studied. The heuristic
algorithm, known as particle swarm optimization (PSO), was developed a number of years back and
has been successfully used to solve various practical problems faced by renewable energy systems,
such as parameter estimation, optimization control and energy management [10–16]. In order to
improve the convergence speed of traditional algorithms and reduce the risk of premature convergence,
the advantages of PSO and genetic algorithms (GA) have been combined, and an optimal energy demand
estimation model based on PSO-GA is proposed in the literature [17]. An improved gravitational
search algorithm (GSA) with the update mechanism of particle position of PSO and a weighted
fitness function is proposed in [18] to realize accurate identification of HTRS. To further improve the
convergence speed and accuracy of GSA, chaotic local search and elastic ball theory are added in the
iterative process of the algorithm in [19] to obtain an ideal identification result.

However, similar to most heuristic algorithms, basic PSO may also suffer from the problems of
premature convergence and trapping into local optima [20,21]. At the same time, the parameter
selection of the algorithm depends largely on experiments and experience, and unreasonable
parameters will greatly reduce the performance of the algorithm [22]. The improvement of PSO mainly
focuses on strengthening its ability to jump out of local optimum in solving multi-modal complex
optimization problems.

There are two main categories of improvement strategies. The first category is the improvement
of the algorithm itself, such as the extension of the scope of algorithm [23,24], the optimization of
algorithm parameters and neighborhood structure [25–27], and the improvement of the evolutionary
strategy [28]. Authors of [24] proposed a binary discrete PSO for solving discrete space optimization
problems, but local convergence and computational redundancy are the main problems faced by the
algorithm. The introduction of dynamic niche technology into PSO in [29] significantly improved the
search efficiency and accuracy of the algorithm. The second category is the fusion of PSO with other
intelligent algorithms or operators, such as simulated annealing [30], mutation operator [31], and local
search strategy [19]. Cooperative particle swarm optimization is successfully proposed in [32–34]
and quantum particle swarm optimization is proposed in [35–37]. It should be noted that although
these improved algorithms have their own advantages, new structures and parameters are inevitably
introduced, which increases the complexity of the algorithms and limits their application.

As pointed out in [38,39], the automatic design and selection of evolutionary algorithms is an
effective way to improve the performance of the algorithm. It is also a research hotspot and development
trend in this field. To avoid parameter selection and overcome the premature convergence problem,
an adaptive fuzzy particle swarm optimization (AFPSO) based on a fuzzy inference system, variable
neighborhood search strategy and hybrid evolution is proposed in this paper and applied to the
parameter estimation of nonlinear HTRS. The main contributions of this work are: (1) Provide an
adaptive parameter tuning strategy to overcome the difficulty in algorithm parameter selection;
(2) Adopt a comprehensive objective function that considers output error and correlation coefficient to
make the parameter estimation more reliable; (3) In order to reflect the dynamic characteristics of a real
system, a general simulation model of nonlinear HTRS is established. Compared to linear systems,
the parameter estimation of nonlinear systems is more difficult because activated nonlinear parts are
not sensitive to signal changes. For example, when a saturated nonlinear part is activated, the output
of the system remains constant regardless of how the input changes. Therefore, it is importantly
meaningful to study the parameter estimation of nonlinear systems.

The rest of this paper is organized as follows. In Section 2, the modeling method of each subsystem
of HTRS is introduced, and a nonlinear simulation model is built. In Section 3, the principles of the
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basic PSO are briefly described and three specific improvements are proposed. The definition of
objective function and the implementation of parameter estimation strategy are stated in detail in the
next section. Performance of the new algorithm is evaluated in Section 5 by comparative studies on
the parameter estimation of HTRS under two operating conditions, and conclusions are drawn in the
final section.

2. Mathematical Model of HTRS

As shown in Figure 1, HTRS is a complex nonlinear system consisting of controller, servo-system,
hydro-turbine and water diversion system, generator and load. There is a hydraulic-mechanical-
electrical coupling effect in the system, in which the nonlinear factors of the governor have an important
influence on the dynamic characteristics of the system. For example, factors such as the dead zone,
saturation, and delay may change the behavior of the servomotor. The research object in this paper is a
nonlinear HTRS including the nonlinear factors of a servo-system. The mathematical model of each
part of the system is presented below.
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1. Controller

At present, governors with a PID control law are widely used in hydropower plants. Although
many advanced control strategies or intelligent controllers for HTRS have been proposed, these
methods are still in the simulation stage and have not been verified. The general mathematical
expression of a parallel PID governor is shown in Equations (1) and (2).
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where xc and x are the given and measured values of generator speed respectively, while yc and y are
the given and measured values of guide vane opening (GVO) respectively; e and u are the error and
output of the controller respectively; KP, KI and KD are the proportional, integral and differential gains
of the controller respectively; T1v is the differential time constant; s is the Laplace variable; and bp is the
permanent speed drop.

2. Servo-system

The simplified model commonly used in the servo-system is derived from the equation of motion
of the servomotor, Equation (3). To get closer to the real situation, the nonlinear dynamic behavior
in the servo-system, including saturation, speed limit and delay, are considered in the parameter
estimation of the HTRS, which is shown in Equations (3)–(6) or Figures 2 and 3.
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y = y′e−Tds (4)

F1(a1) =


min{1/so, a1}, a1 ≥ 0
max{−1/sc1, a1}, a1< 0 and y′ >yc1

max{−1/sc2, a1}, a1 < 0 and yc2 < y′ ≤ yc1

max{−1/sc3, a1}, a1< 0 and y′ ≤ yc2

(5)

F2(a2) = min
{
ymax, max

{
ymin, a2

}}
(6)

where Ty and Ty1 are defined as the response time constant of servomotor and that of auxiliary
servomotor, respectively; Both y and y′ are GVO, and the difference is that the former is obtained
by applying a certain delay Td to the latter; F1 is a speed limit function with the input variable a1,
including a three-stage closing rule to realize the sequence closing of guide vane, where sc1, sc2 and sc3

are the closing speed limits under different range of GVO, yc1, yc2 and yc3 are the three GVO nodes of
the sequence closing, and so is the opening speed limit of guide vane. F2 is a position limit function
with the input variable a2, and ymin and ymax are the minimum and maximum of GVO.Energies 2019, 12, x FOR PEER REVIEW 4 of 20 
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3. Water diversion system

The model of water diversion system can be divided into rigid water hammer model and elastic
water hammer model. In engineering, an appropriate model is usually selected according to the
penstock length of a hydropower station. When the penstock is long enough, the elastic model that
considers the elasticity of water and penstock can better reflect the water hammer phenomenon.
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According to the actual situation of the hydropower station studied, the rigid model, Equation (7),
is dopted in this paper:

h
q
= −Tws (7)

where h and q are the water head and discharge of a hydro-turbine; Tw represents the flow inertia
time constant.

4. Hydro-turbine

In the case of small disturbances, a local linear model can be utilized to describe the discharge and
torque characteristics of a hydro-turbine, which can be written as:

q = eqxx + eqyy + eqhh (8)

mt = exx + eyy + ehh (9)

where mt is the torque of a hydro-turbine; eqx, eqy and eqh are the transfer coefficients relating to the
discharge; and ex, ey and eh are the transfer coefficients relating to the torque.

5. Generator

If electrical transients are not considered, a generator can be described by a first-order model
derived from the equation of motion of its rotor, namely:

x
mt −mg

=
1

Tas + eg
(10)

where Ta is the unit inertia time constant; eg is the adjusting coefficient of generator; and mg represents
the change of load.

Combining Equations (1) through (10), the overall nonlinear model of the HTRS can be obtained
as shown in Figure 3.

3. Improved Particle Swarm Optimization

3.1. Basic PSO

PSO is an optimization algorithm based on swarm intelligence, which is derived from the study
of foraging behavior of birds in nature. Based on the observation of the activities of animal groups,
the information sharing mechanism among individuals in a group is used to make the movement of
the group show a variation from disorder to order and, therefore, complete the search for the optimal
target. In the basic PSO, position and velocity are the two basic properties of a particle. At any time,
the velocity of the particle is affected by the current velocity, the historical optimal position of the
individual, and the historical optimal position of the population. The update rules for velocity and
position of particles in basic PSO are shown in Equations (11) and (12).

v j
i (t + 1) = wv j

i (t) + c1
(
p j

i − x j
i (t)

)
+ c2

(
g j
− x j

i (t)
)

(11)

x j
i (t + 1) = x j

i (t) + v j
i (t + 1) (12)

where w is inertia weight; c1 and c2 are learning factors; t is the number of iterations; p j
i and g j are the

historical optimal position of the individual and that of the population, respectively; and v j
i (t) and

x j
i (t) represent the velocity and position of the j-th dimension of the i-th particle in the t-th iteration.

As can be seen from the update rules, the flight trajectory of a particle is determined by the
following three parts. The first part is the inertia of the particle, reflecting the current velocity.
The second part is the self-cognition of the particle, reflecting the distance between the current position
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and the optimal position experienced by itself. The third part is the social cognition of the particle,
reflecting the distance between the current position and the optimal location experienced by the
population. This memory-based information sharing mechanism makes the algorithm have a faster
convergence speed but easily falls into a local optimum.

3.2. Improvements on PSO

The main disadvantages of the basic PSO can be summarized as parameter settings and algorithm
topologies. Firstly, the inertia weight is the crucial control parameter in PSO that affects the search
ability and should be adjusted throughout the evolution process, while in basic PSO it is set only
before the iteration begins. At the same time, the position and velocity update of each particle partly
depends on the global best position provided by the information from all particles. The authors of [40]
studied the information transmission and communication in particle swarms based on the biosocial
model, finding that individuals in biological society cannot recognize and communicate with all other
individuals, and usually are only affected by a small number of individuals around them. Therefore,
the algorithm topology should also be flexibly designed to conform to the basic laws of the actual
biosocial model. In addition, it is worth noting that mutation is an effective means of getting rid of
local extremum, which is lacking in basic PSO. Based on the above analysis, PSO will be modified from
the following three aspects.

3.2.1. Parameter Tuning with Fuzzy Inference System

Real-time tuning of the control parameters according to the state of an algorithm can significantly
improve the search performance of the algorithm so as to adapt to the solution process of different
problems. In recent years, the research and understanding of the evolutionary process of PSO has
gradually become deeper, forming a large number of parameter tuning strategies that can be expressed
through language [25], which makes it possible to improve the performance of PSO by applying a fuzzy
inference system. A fuzzy inference system consists of four parts: a fuzzifier, fuzzy rule set, defuzzifier,
and fuzzy inference machine. Common fuzzifiers mainly include the triangular membership function
(MF) method, fuzzy singleton method, and Gaussian MF method. Popular defuzzifiers mainly include
the centroid method, bisector method, and maximum matching method. The fuzzy rule set contains
several rules represented in the form of IF-THEN language, which are derived from human experience
or expert knowledge. In the fuzzy inference method, the ‘min’ method or ‘prod’ method can be used
as a fuzzy implication operator, and the ‘max’ method or ‘sum’ method can be used as the aggregation
operator [41].

A Mamdani-type two-input single-output fuzzy inference system for inertia weight tuning in PSO
is designed in this paper. The inputs to the system are the iteration progress (denoted by Ts) and the
cumulative stall time (denoted by Ns), and the output is the increment of the inertia weight (denoted
by dw). The iteration progress Ts is defined as the ratio of the current iterations to the maximum
iterations. The cumulative stall time Ns is defined as the times of the best-so-far solution having not
been improved, and its calculation method is shown in Equation (13):

Ns(t + 1) =

max
{
Ns(t) + 1, 9

}
, if g(t + 1) ≤ g(t)

min
{
Ns(t) − 1, 0

}
, if g(t + 1) > g(t)

(13)

where g(t) represents the historical optimal fitness in the t-th iteration. The MF of the input and
output variables of the fuzzy inference system (both using the triangular MF) and the output surface
determined by the fuzzy rule set are shown in Figure 4.
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As can be seen from the output surface, the inertia weight changes according to a decreasing
trend throughout the iteration [42]. At the same time, an appropriate tuning on the inertia weight is
beneficial to reduce the risk of falling into local optimum when the cumulative stall time is large [43].

In addition, the learning factors are also important parameters in PSO, and relevant research has
made some progress. Linear time-varying learning factors are used in this paper, and its comprehensive
performance has been proven to be superior to many other methods [44]. The parameter tuning rules
are shown in Equations (14) and (15).

c1 = 2.5− 2
t

Tmax
(14)

c2 = 0.5 + 2
t

Tmax
(15)

where Tmax is the maximum iteration.

3.2.2. Variable Neighborhood Search

Variable neighborhood search (VNS) is a meta-heuristic algorithm that uses neighborhood changes
to improve the performance of an algorithm. Exploitation and exploration are two basic components
of swarm intelligence algorithm in the evolution process, which respectively reflect the global and
local search capabilities of an algorithm. VNS updates the way of information exchange between
particles by systematical neighborhood change to reach a dynamic balance between the exploitation
and exploration of an algorithm [45]. The size of the neighborhood determines the topology of an
algorithm and the strength of the connection among particles. Some typical connections between
individuals in a population are presented in Figure 5. Generally, in the early iteration, it should have a
strong global search ability (small neighborhood) for an algorithm to avoid falling into a local optimum;
while in the late iteration, it should have strong local search ability (large neighborhood) to accelerate
convergence and improve calculation accuracy.
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This connection between particles can also be explained using the theory of small world networks,
that is, most of the actual network structures are not regular or random, but have some statistical
properties [46]. Based on this idea, the topology of the basic PSO is improved by continuously changing
the neighborhood structure of particles during an evolutionary process to realize the adaptive tuning
on its search ability. The specific implementation of the VNS strategy proposed in this paper is
described below.

(1) Initialize the neighborhood size of each particle, which ranges from
[
2, Np − 1

]
, where Np is the

population size. At the beginning, the neighborhood size (denoted as NB) takes the minimum
value, which is NB = 2.

(2) Calculate the increase (denoted as ∆NB) in the size of the neighborhood based on the current
iteration, then NB = NB + ∆NB.

(3) Check if the current size of the neighborhood is outside the allowable range. If NB > NP − 1,
then NB = NP − 1. Go back to step 2.

It should be pointed out that the above-mentioned VNS strategy is implemented at the population
level, which can ensure the algorithm has a strong global search ability at the initial stage of iteration
and a strong local search ability in the late iteration, thereby improving search efficiency and solution
accuracy. At the same time, the dynamic relational network model generated by this strategy is more
conformable to the information exchange mode of the actual society.

3.2.3. Hybrid Firefly and Particle Swarm Algorithm

Species in nature inevitably experience various forms of mutation, and mutation is one of the
driving forces behind the biological evolution. The introduction of mutation strategies into algorithm
can enhance the evolutionary vitality of the population and increase the possibility of generating new
optimal solutions. The firefly algorithm (FA) is a new meta-heuristic algorithm with good mutation,
especially suitable for solving multimodal functions and ill-conditioned functions [47]. In FA, any two
fireflies may be selected for comparison to realize a more sufficient information communication and a
better global search ability.

Unlike basic PSO, individuals in FA only have positional attributes, and the update of their
position is determined by Equations (16) and (17):

xi(t + 1) = xi(t) + βi j
(
x j(t) − xi(t)

)
+ αεi (16)

βi j = β0e−γr2
(17)

where r is the Cartesian distance between two fireflies; β0 is the maximum attractiveness; βi j is the
attractiveness between i-th and j-th particles; γ is the light absorption coefficient that indicates the
change in attractive force; α is a positive constant; εi is the random vector obtained by Gaussian
distribution. For most problems, β0 = γ = α = 1 can achieve good results.

In order to improve the global search ability of PSO and provide an effective mutation mechanism,
this paper proposes a hybrid evolutionary strategy that combines the advantages of PSO and FA.
This method allows a particle to select an appropriate evolutionary strategy based on its current
state during iterations and apply the strategy to the update of its velocity and position with a certain
probability (denoted as pi). The basic principle of the hybrid evolutionary strategy as developed follows:

(1) Select the i-th individual for evolution in order, and the corresponding mutation probability is pi
(pi is initially 0);
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(2) Generate a random number r (r ∈ [0, 1]). If r > pi, the iterative formula of PSO is selected to
update the velocity and position of the individual; if r ≤ pi, the update mechanism based on FA
is used as shown in Equation (18):

vi(t + 1) = v j
i (t) + e−r2(

x j(t) − xi(t)
)
+ (rand− 0.5) × scale (18)

where scale is the length of the search interval of the variables; rand is a random number between
0 and 1.

(3) Update the fitness for the individual. If the new fitness is less than the historical optimal fitness
of the individual, the stall time of the individual, denoted as Tsi, is increased by 1, otherwise Tsi
and pi are both set to zero.

(4) Update the mutation probability according to the stall time of the individual. The rules are shown
as Equation (19).

pi =


0, Tsi < 0.03Tmax

min(0.005, pi + 0.001), 0.03Tmax ≤ Tsi < 0.07Tmax

min(0.05, pi + 0.01), 0.07Tmax ≤ Tsi < 0.15Tmax

min(1, pi + 0.1), Tsi ≥ 0.15Tmax

(19)

(5) Update the historical optimal value of the individual as well as the population and return to
step 1.

In the update of mutation probability, it is divided into four levels according to the stall time of
the individual: no mutation, mutation with a small probability, mutation with a medium probability,
and mutation with a large probability. The measure is beneficial for the new algorithm to take the
advantages of PSO and FA to keep a better search performance.

3.2.4. Proposed AFPSO

By combining the above strategies, an adaptive fuzzy particle swarm optimization (AFPSO)
algorithm is proposed to enhance the optimization ability of the basic PSO from the aspects of parameter
tuning, topology and mutation operation. It is possible in this way to: (1) save the time required to
find optimal algorithm parameters; (2) improve the quality of the optimal solution; (3) balance the
exploitation and exploration capabilities of the algorithm. The standard block diagram of AFPSO is
shown in Figure 6, which includes the following steps.

(1) Randomly initialize the population and the initial parameters of the algorithm, such as the initial
inertia weight (0.9 in this paper), the learning factors, the initial size of the neighborhood, and the
initial mutation probability;

(2) Calculate the fitness of each particle of the initial population;
(3) Record the historical optimal position and fitness of the particles and the population;
(4) Start the t-th iteration and select the i-th particle;
(5) Generate a random number r and compare it with the mutation probability pi to determine an

iterative formula for the state update of the particle;
(6) Update the velocity and position of the particle according to the iterative formula and calculate

the new fitness;
(7) Compare the new fitness with the historical optimal fitness of the particle to compute the stall

time of the particle;
(8) Update the mutation probability according to the stall time of the particle;
(9) Update the historical optimal position and fitness of the particle and the population;
(10) Go to the next step if all particles have been updated. Otherwise, let i = i + 1 and return to step 4;
(11) Change the neighborhood size of the particle according to the current iteration.
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(12) Compare the historical optimal fitness of the new population with that of the old one, and calculate
the iteration progress and the cumulative stall time. The two indicators are substituted into the
fuzzy inference system designed, and the inertia weight is updated according to the output of
the system.

(13) If the maximum iteration is reached, output the optimal solution; otherwise, let t = t + 1 and
return to step 4.
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4. Parameter Estimation for HTRS

4.1. Objective Function

In a parameter estimation process, the objective function is used to evaluate the feasible solution
and provide the correct evolutionary direction to find the optimal solution. The measurable variables
in HTRS are control output, GVO, water head and generator speed, i.e., δ = [u, y, h, x]. The model
parameters to be identified include the parameters of the controller (KP, KI, KD), servo system (Ty1, Ty),
water diversion system (Tw), and generator (Ta, eg), i.e., θ =

[
KP, KI, KD, Ty1, Ty, Tw, Ta, eg

]
. For the

purpose of parameter estimation, the objective function is generally defined as the output error of
the simulation system and the actual one, such as mean absolute error (MAE) or root mean square
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error (RMSE). However, when parameter estimation is performed based on actual measured signals,
the degree of correlation between signals (i.e., correlation coefficient) is also an important factor to
measure the optimization effect. However, even if there is a large error between the signals, their
correlation coefficients may be the same [48]. Therefore, a comprehensive error function is used here as
an evaluation indicator to identify the parameters.

FCE =

√√√ n∑
i=1

MAEi + RMSEi

R2
i

2

(20)

where n is the number of measurable variables; MAEi as well as RMSEi and Ri are defined as below:

MAEi =

∑N
k=1

∣∣∣δi(k) − δ̂i(k)
∣∣∣

N
(21)

RMSEi =

√∑N
k=1

∣∣∣δi(k) − δ̂i(k)
∣∣∣2

N
(22)

Ri =

∑N
k=1

(
δi(k) − δi

)(
δ̂i(k) − δ̂i

)
√∑N

k=1

(
δi(k) − δi

)2 ∑N
k=1

(
δ̂i(k) − δ̂i

)2
(23)

where δi and δ̂i are the measured output and the simulated output, respectively; δi and δ̂i are the mean
of the measured output and that of the simulated output, respectively; and N is the length of signals.

The accuracy of parameter estimation can be evaluated by the parameter error (PE) that is determined
by Equation (24) [18]. The smaller the PE, the higher the accuracy of the parameter estimation.

PE =

∣∣∣θi − θ̂i
∣∣∣

θi
(24)

where θi and θ̂i are the actual and estimated values of a model parameter, respectively.

4.2. Parameter Estimation

The parameter estimation strategy of HTRS based on AFPSO is shown in Figure 7. Firstly,
a disturbance signal is applied to the real HTRS to obtain the measured values of the output of each
subsystem. Secondly, AFPSO is used to generate estimated values of the system parameters, and the
same disturbance signal is applied to the simulation model of the real HTRS to obtain the simulated
output of each subsystem. Finally, AFPSO continuously revises the estimated values of the model
parameters based on the predetermined objective function until the simulation model can fully reflect
the dynamic characteristics of the real system. A step signal is selected as the disturbance signal
because it has a wide frequency band and can largely excite the dynamic characteristics of the system.

It can be seen from Figure 7 that the input of the system can be a step disturbance of given
frequency or load. Thus, the parameter estimation of the HTRS under two disturbance conditions will
be conducted in the subsequent experimental verification.
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5. Studies and Analysis

5.1. Test Conditions and Algorithm Parameters

The main research content in this paper is the parameter estimation of the HTRS in frequency
control mode. The measured data comes from the step disturbance response of the unit under no-load
conditions and load conditions, and the corresponding water head is 195 m. The known parameters
are as follows. The differential time constant of the controller is 0.1175 (i.e., T1v = 0.1175). The servo
system has a delay of 0.1 s (i.e., Td = 0.1), and the allowable range of the GVO is [0, 100%] (i.e.,
0% ≤ y ≤ 100%). The opening speed and closing speed of the guide vane are set as below: (1) the
opening speed limit so = 34.8123; (2) the first-stage closing speed limit sc1 = 10.5714 if 58% ≤ y ≤ 100%;
(3) the second-stage closing speed limit sc2 = 26.5392 if 6.5% ≤ y < 58%; (4) the third-stage closing speed
limit sc3 = 91.3040 if 0 ≤ y < 6.5%. For no-load and load conditions, the parameters of the controller
and the hydro-turbine are different and determined by the GVO and the water head. The maximum
output of the controller is 0.25 (i.e., 0 ≤ u ≤ 0.25) under the no-load condition, while it is not limited
under the load condition. Detailed parameters of the HTRS under the two operating conditions are
given in Table 1.

Table 1. Operating conditions of the system to be identified and the corresponding parameters.

Operating
Condition

Initial State Transfer Coefficients of the Hydro-Turbine bp
y0 P0 eqy eqx eqh ey ex eh

No-load 8% 0 MW 0.9916 −0.2266 0.9709 1.8768 −0.2167 1.0889 0
Load 70% 600 MW 0.9978 −0.3271 0.5484 1.1605 −1.2042 1.4751 0.01

The evolutionary computation methods used for the comparative experiments include standard
genetic algorithm (SGA) [49], gravitational search algorithm (GSA) [50], biogeography-based
optimization (BBO) [51], and particle swarm optimization (PSO) [52]. The parameter settings of
each algorithm for solving the parameter estimation issue are shown in Table 2 [18,53]. No parameter
setting is required for AFPSO, and the size of the neighborhood increases linearly from 2 to the
allowable maximum value. To ensure fairness, the population size is 30 and the iterations are 200.
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Table 2. Algorithm parameters for the parameter estimation of HTRS.

Algorithm Populations Iterations Parameter Setting

SGA 30 200 Crossover probability Pc = 0.7; Mutation probability
Pm = 0.01

GSA 30 200 Initial gravitational constant G0 = 30; Attenuation rate β = 10
BBO 30 200 Mutation probability Pm = 0.01; Keep rate Rk = 0.2
PSO 30 200 Inertia weight w = 0.6; Learning factors c1 = c2 = 2

5.2. Parameter Estimation under No-Load Condition

The actual values and initial range of the parameters to be identified under the no-load condition
are listed in Table 3. The step disturbance of frequency, used as the excitation of the real HTRS,
is applied to the nonlinear simulation model (see disturbance 1 in Figure 7). The disturbance quantity
is set as −4 Hz (that is, the frequency suddenly decreases by 8% based on the rated value of 50 Hz).
The parameter settings of the algorithms are the same as those of Table 2. For each algorithm,
30 repeated tests are performed. The statistical results, including the average estimated value and the
corresponding PE, the optimal fitness, as well as the average fitness change, are shown in Tables 4
and 5, and Figure 8, respectively.

Table 3. Actual value and initial range of the parameters to be identified (no-load condition).

Parameter KP KI KD Ty1 Ty Tw Ta eg

value 2.8404 0.0268 1.8595 0.0408 0.4594 1.0573 17.0569 0.0864
range [0, 5] [0, 0.2] [0, 5] [0, 0.1] [0, 0.5] [0, 2] [10, 30] [0, 0.2]

Table 4. Average estimated value and parameter error obtained by different algorithms in 30 tests
(no-load condition).

Identified
Parameter

SGA GSA BBO PSO AFPSO

^
θ PE ^

θ PE ^
θ PE ^

θ PE ^
θ PE

KP 3.1593 1.1 × 10−1 2.8691 1.0 × 10−2 3.2605 1.5 × 10−1 3.5088 2.4 × 10−1 2.8476 2.5 × 10−3

KI 0.0281 4.8 × 10−2 0.0422 5.8 × 10−1 0.0288 7.3 × 10−2 0.0179 3.3 × 10−1 0.0268 7.4 × 10−4

KD 2.8078 5.1 × 10−1 2.2494 2.1 × 10−1 3.1448 6.9 × 10−1 2.9709 6.0 × 10−1 1.8819 1.2 × 10−2

Ty1 0.0259 3.6 × 10−1 0.0481 1.8 × 10−1 0.0300 2.7 × 10−1 0.0208 4.9 × 10−1 0.0362 1.1 × 10−1

Ty 0.4487 2.3 × 10−2 0.4407 4.1 × 10−2 0.4508 1.9 × 10−2 0.3644 2.1 × 10−1 0.4600 1.2 × 10−3

Tw 1.0575 1.6 × 10−1 1.0190 3.6 × 10−2 1.0596 2.2 × 10−3 1.0186 3.7 × 10−2 1.0573 4.4 × 10−5

Ta 17.0551 1.0 × 10−4 17.1314 4.4 × 10−3 17.0647 4.6 × 10−4 17.2039 8.6 × 10−3 17.0586 9.7 × 10−5

eg 0.0854 1.1 × 10−2 0.0766 1.1 × 10−1 0.0842 2.6 × 10−2 0.0913 5.6 × 10−2 0.0864 3.7 × 10−4

Table 5. Statistical results of optimal fitness obtained by different algorithms in 30 tests (no-load condition).

OF SGA GSA BBO PSO AFPSO

Min 3.39 × 10−5 5.86 × 10−6 2.86 × 10−5 1.88 × 10−6 4.98 × 10−9

Max 3.94 × 10−4 5.21 × 10−2 3.51 × 10−4 1.70 × 10−3 3.74 × 10−5

Mean 1.66 × 10−4 2.87 × 10−3 1.74 × 10−4 5.59 × 10−4 9.64 × 10−6
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It can be seen from Table 4 that the estimated value of each parameter obtained by AFPSO is closest
to the actual value, and the corresponding PE is also the smallest. AFPSO has a high identification
accuracy that reaches to the level of 10−5 for the parameters Tw and Ta, indicating that the two
parameters are easy to be identified under the no-load condition. Analysis of the optimization results of
the other algorithms can also lead to the same conclusion. Comparing the results of all the algorithms,
it can be seen that the identification accuracy of the parameters Ty1 and KD is relatively low, indicating
that the state of the system is not sensitive enough to the changes of the two parameters.
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It can be seen from Table 5 that the maximum, average and minimum values of the optimal fitness
(or objective function value) obtained by AFPSO are both better than with the other algorithms. Under
the no-load condition, the average and maximum optimal fitness of GSA is the worst performing,
while SGA and BBO have similar optimal fitness statistics (or solving ability). In the repeated tests,
the minimum optimal fitness of AFPSO reaches 4.98× 10−9, that is, far smaller than the other algorithms,
which illustrates AFPSO having a powerful local search ability and fast convergence to realize an
accurate identification for HTRS under the no-load condition. It is seen from Figure 8 that AFPSO
keeps fast convergence after around 20 iterations and successfully jumps out of the local optimum.
On the contrary, GSA has the slowest convergence and falls into the local optimum for a long time.
Although PSO shows a rapid convergence in early iterations, it suffers from the same problem of
premature convergence as GSA.

Under the no-load condition, comparison of the simulated output obtained by different algorithms
with that of the real system is plotted in Figure 9. There is an obvious two-stage closing law for the GVO
during the change in the first 5 s, reflecting the nonlinear characteristic of the servo-system. From the
overall trend of the curves, the simulated outputs obtained by GSA and PSO are quite different from
that of the real system. Locally amplifying the transient process of each state variable (12–13 s), it can
be clearly seen that the simulated output obtained by AFPSO can optimally approximate the dynamic
characteristics of the real system. The parameter estimation effect of the algorithms can be sorted
based on the observation of the local variation of the water head. The sorting results from good to bad
according to performance is AFPSO, SGA, BBO, PSO and GSA, which is consistent with the results in
Figure 8.
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Note: the unit of the four state variables here is the per-unit value, that is, the form of relative value
of deviation. If taking frequency signal x as an example, we have x = (xactual − xinitial)/xrated , where
x is the relative value of deviation; xrated is the rated value; xinitial is the initial value; xactual is the
actual value.

5.3. Parameter Estimation under Load Condition

The actual value and initial range of the parameters to be identified under the load condition
are shown in Table 6 in which the control parameters are different from that of the no-load condition.
The step disturbance of load, used as the excitation of the real HTRS, is applied to the established
nonlinear simulation model (see disturbance 2 of Figure 7). The disturbance quantity is set as −0.1 (that
is, the load suddenly decreases by 10% based on the initial value of 600 MW). All parameter settings
and test methods are the same as that of the no-load condition. The statistical results, including the
average estimated value and the corresponding PE, the optimal fitness, as well as the average fitness
change, are shown in Tables 7 and 8, and Figure 10, respectively.

Table 6. Actual value and initial range of the parameters to be identified (load condition).

Parameter KP KI KD Ty1 Ty Tw Ta eg

value 2.5165 0.3523 0.2120 0.0408 0.4594 1.0573 17.0569 0.0864
range [0, 5] [0, 1] [0, 1] [0, 0.1] [0, 0.5] [0, 2] [10, 30] [0, 0.2]
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Table 7. Average estimated value and parameter error obtained by different algorithms in 30 tests
(load condition).

Identified
Parameter

SGA GSA BBO PSO AFPSO

^
θ PE ^

θ PE ^
θ PE ^

θ PE ^
θ PE

KP 2.9040 1.5 × 10−1 2.5172 2.8 × 10−4 2.6038 3.5 × 10−2 2.5180 6.1 × 10−4 2.5169 1.7 × 10−4

KI 0.3786 7.5 × 10−2 0.3526 7.6 × 10−4 0.3611 2.5 × 10−2 0.3522 1.7 × 10−4 0.3523 5.2 × 10−5

KD 0.2037 3.9 × 10−2 0.2151 1.5 × 10−2 0.2273 7.2 × 10−2 0.1951 8.0 × 10−2 0.2123 1.2 × 10−3

Ty1 0.0293 2.8 × 10−1 0.0522 2.8 × 10−1 0.0501 2.3 × 10−1 0.0430 5.5 × 10−2 0.0395 3.2 × 10−2

Ty 0.4682 1.9 × 10−2 0.4603 2.0 × 10−3 0.4647 1.2 × 10−2 0.4562 7.0 × 10−3 0.4595 3.0 × 10−4

Tw 1.0784 2.0 × 10−2 1.0582 8.5 × 10−4 1.0673 9.4 × 10−3 1.0560 1.2 × 10−3 1.0574 7.9 × 10−5

Ta 19.4769 1.4 × 10−1 17.0699 7.6 × 10−4 17.6436 3.4 × 10−2 17.0683 6.7 × 10−4 17.0591 1.3 × 10−4

eg 0.1534 7.8 × 10−1 0.0882 2.0 × 10−2 0.1182 3.7 × 10−1 0.0855 1.0 × 10−2 0.0865 9.5 × 10−4

Table 8. Statistical results of optimal fitness obtained by different algorithms in 30 tests (load condition).

OF SGA GSA BBO PSO AFPSO

Min 2.40 × 10−5 1.13 × 10−6 2.06 × 10−5 7.39 × 10−7 4.59 × 10−9

Max 9.42 × 10−4 2.54 × 10−5 4.09 × 10−4 1.29 × 10−4 1.87 × 10−5

Mean 4.18 × 10−4 1.06 × 10−5 1.41 × 10−4 2.49 × 10−5 1.34 × 10−6
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As can be seen from Table 7, the estimated value of each parameter calculated by AFPSO is closest
to the actual value, and the corresponding PE is also the smallest. AFPSO has a high identification
accuracy of 10−5 for the parameters KI and Tw, indicating they are easy to accurately estimate under
the no-load condition. Comparing all the optimization results, the same conclusion as under the
no-load condition can be drawn that the identification accuracy of the parameter Ty1 is always the
lowest, revealing that the state of the system is not sensitive to the changes of the parameter Ty1 under
both no-load and load conditions.

The results from Table 8 show that the maximum, average and minimum values of the optimal
fitness obtained by AFPSO are superior to the other algorithms. Under the load condition, the average
optimal fitness of SGA is the worst performing, while that of GSA and PSO are similar to each other.
In the repeated experiments, the minimum optimal fitness of AFPSO reaches 4.59 × 10−9, that is, far
smaller than the other algorithms, which indicates that the algorithm is indeed a promising tool for
accurate parameter estimation of HTRS. The curves in Figure 10 explain that AFPSO continuously
maintains a fast convergence throughout iteration and effectively avoids the danger of falling into a
local optimum. As the iteration increases, the convergence of SGA, BBO and PSO gradually becomes
slow, affecting the final identification accuracy. Although the GSA converges faster in the late iteration,
it wastes a large amount of computation time in the early stage, which means it is difficult to meet the
requirements of the actual optimization problem.
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Under the load condition, comparison of the simulated output obtained by different algorithms
with that of the real system is plotted in Figure 11. In the transition process, the movement law of the
GVO is not restricted by the nonlinear factors. From the overall trend of the curves, the simulated
output obtained by SGA and BBO is quite different from the real system. By locally amplifying the
transient process of each state variable (12–12.01 s), it can be clearly seen that the simulated system
obtained by AFPSO is the closest to the real system, indicating that it can completely replace the real
system to conduct various experiments. It should be pointed out that the simulation models obtained
by the other algorithms have the distinguishing approximation degree for different state variables.
For example, the model determined by BBO simulates the change of the GVO better than that of PSO,
while the model obtained by PSO can simulate the change of controller output (i.e., u) better than that
of BBO.
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Comparing the results in Figures 8 and 10, it can be found that the convergence of AFPSO in
both load and no-load conditions manifests an algebraic decay (more or less), but the PSO in the
no-load condition decays to an almost flat trend while it is not so in the load condition. This interesting
phenomenon could be explained from the perspective of servo-system. It can be seen from the results
of parameter estimation in Tables 4 and 7 that the estimation accuracy of Ty1 is the worst in the two
operating conditions. However, comparatively speaking, the estimation accuracy of Ty1 under the load
operating condition is better than that of the no-load operating condition. On the one hand, the dynamic
behavior of the HTRS is less affected by Ty1 compared with other parameters. So the algorithms used
are not sensitive to the change near the actual value of Ty1, which is the main reason why Ty1 is
difficult to identify. On the other hand, the speed limit nonlinearity plays an important role in the
transition process under the no-load operating condition, which can be obviously observed in Figure 9.
The nonlinearity further increases the difficulty for the estimation of Ty1. In this situation, the change
of Ty1 cannot determine the output of the servo-system. For the proposed AFPSO, the convergence can
always keep an algebraic decay because of its global and local search ability throughout the iteration,
while for PSO it is greatly affected by the complexity of a problem. Therefore, based on the above
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analysis, it can be concluded that in order to accurately identify the parameters of a system, one should
make the best use of the experimental data that do not or less trigger the dynamic characteristics of
nonlinear links.

Finally, the computational expense of different algorithms under the two operating conditions
is compared and the results are listed in Table 9. It can be seen from the table that SGA has the
least computational expense while PSO has the most computational expense under both no-load and
load operating conditions. Meanwhile, it is noticed that the mean time consumption of 30 repeated
parameter estimation tests under the no-load operating condition is less than that under the load
operating condition. This indicates that the former situation requires more computation than the latter
in model simulation. Although the proposed AFPSO is not the best one in computational expense
under the two operating conditions, it is superior to the PSO, GSA and BBO in both efficiency and
accuracy, which indicates that the design of the algorithm is not at the cost of computational efficiency,
but an overall improvement for the algorithm.

Table 9. Computational expense of different algorithms under the two operating conditions.

Operating Condition SGA GSA BBO PSO AFPSO

No-load 355.38 398.07 395.10 401.86 392.97
Load 406.83 449.10 453.17 473.10 439.93

Note: the data represents the mean time consume of 30 parameter estimation tests, and the unit is second.

6. Conclusions

In this paper, a nonlinear HTRS considering the complex characteristics of the servo-system is
studied. The corresponding mathematical model for parameter estimation is established. Furthermore,
aiming at the shortcomings of the traditional algorithm, an improved particle swarm optimization
with adaptive mechanism is proposed and applied to the parameter estimation of the HTRS. It can
adaptively adjust the algorithm parameters according to iteration and the state of the solution, which
avoids the deterioration in performance caused by an improper parameter selection. At the same
time, the variable neighborhood search and the hybrid evolutionary strategy effectively enhance the
global and local search ability of the algorithm and reduce the risk of falling into a local optimum.
In order to verify its performance in practical problems, the parameter estimation strategy of nonlinear
HTRS based on AFPSO is designed. According to the statistical results of the comparison experiments,
the parameter error and the objective function of the new algorithm are significantly smaller than that
of the other algorithms. The estimated model can accurately reflect the dynamic characteristics of the
real system, proving that AFPSO is an effective and efficient parameter estimation method.

Parameter estimation of HTRS is one of many optimization problems in engineering. The main
purpose of designing AFPSO is to provide an algorithm that not only has a better performance in
both efficiency and accuracy, but is also adaptive for different engineering problems. For engineers
and researchers, it is beneficial to reduce their burden of methods that require parameter selection.
Parameter selection requires experience or skill, which may take time to master. Therefore, the potential
and more important value of the proposed algorithm lies in its adaptability, making it possible to be
widely used in different fields.
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