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Abstract: Currently, for analyzing harmonic impacts on voltage at a point of interest, due to multiple
nonlinear loads, the literature recommends carrying out simultaneous and synchronized measurement
campaigns in all suspicious points with the use of high cost energy quality analyzers that are usually
not available at the customers’ facilities and very often also not at the electric utilities. To overcome
this drawback this paper proposes a method of assessing the harmonic impact due to multiple
nonlinear loads on the total voltage harmonic distortion using only the load current true RMS values
which are already available in all customers’ installations. The proposed methodology is based on
Regression Tree technique using the Permutation Importance indicator which is validated in two case
studies using two different electrical systems. The first case study is to ratify the use of Permutation
Importance to measure the impact factor of each nonlinear load in a controlled scenario, the IEEE-13
bus test system, using ATP simulation (Alternative Transient Program). The second is to apply the
methodology to a real system, an Advanced Measurement Infrastructure System (AMI) implanted on
a campus of a Brazilian University, using low cost meters with only true RMS current measurements.
The results achieved demonstrated the feasibility of applying the proposed methodology in real
electric systems without the need for additional investments in high-cost energy quality analyzers.

Keywords: current true RMS; harmonic distortion contribution; machine learning; power system
analysis computing; total voltage harmonic distortion

1. Introduction

With the advance of technology, a problem has become quite frequent in distribution systems:
harmonic distortion. This is due to the increasing use of nonlinear loads, mainly in the form of power
electronics or consumers’ electronics equipment. The first records on harmonic distortion were in the
1920s, when the main effects were on rotating machines [1]. It is noticed a great influence of harmonic
distortion in the voltage and current’s waveforms, being responsible for harmful effects at various
levels in distribution networks.

Heating in distribution transformers, malfunction of protection and overload of neutral conductors
are some of the implications on equipment most sensitive to these variations, directly affecting
the operation of the system and substantially increasing the likelihood of failure occurrences and
interruptions in electricity supply [2]. The electric network itself is a source of harmonic distortions in
voltage and current due to its operation characteristics but loads are the main responsible for this type
of phenomenon [3,4].
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However, the electric energy as a product needs to be delivered at certain quality levels, and
the harmonic distortion, as well as other factors impacting the power quality need to be regulated,
forcing distribution utilities to continuously improve their services. In Brazil, for example, ANEEL, the
Brazilian Electricity Regulatory Agency, establishes the main power quality indicators to be met by
utilities and the respective penalties for non-compliance with these limits [5].

Therefore, electric utilities need to continuously monitor their electrical grids to detect any
suspicious loads that could be contributing to the voltage harmonic distortion above specified limits
as recommended by power quality standards. Therefore, the development of procedures to identify
which customers’ loads are more impacting to the voltage harmonic distortion observed at specific
locations in the grid are relevant and can help to implement a differenced treatment to these customers
aiming at taking remedial actions to mitigate the possible harmonic distortion transgressions.

The point is that monitoring all customers who may be heavily contributing to the voltage
harmonic distortion at a specific point in the electric network is not a trivial task and would involve a
simultaneous measurement campaign in all these customers, resulting in a high financial investment
in power quality analyzers.

In the current scenario of distribution systems, consumers rarely have power quality analyzers in
their electrical installations. In this way the implementation of simultaneous measurement campaigns
to assess harmonic distortion parameters becomes infeasible. However, all-consuming facilities have
power measurement, and consequently, electric voltage and current rms measurements, which is
typical in a current Advanced Metering Infrastructure system (AMI) [6].

In an AMI, Smart Meters (SMs) measure the major electrical quantities of the network at regular
time intervals and make them available online through a central Meter Data Management System
(MDMS). AMI can be used on any power system if coupled to a Power Line Communication (PLC)
module, see for example [7–9].

Considering this current scenario, this paper proposes a low-cost methodology capable of
identifying and quantifying the impact of multiple nonlinear loads on the voltage total harmonic
distortion at a point of interest in the electric grid using only the True RMS current measured at the
customers’ electric installations.

This new perspective is quite attractive in terms of cost, as it dramatically reduces it by using
more affordable meters for utility’s reality, but still allows for even greater gain when coupled with
an Advanced Metering Infrastructure, enabling real-time power quality monitoring. To achieve
this, the Gradient Boosting Regression Tree (GBRT) technique was applied using the permutation
importance, an inherent characteristic of regression tree techniques to determine the impact of multiple
nonlinear loads in the voltage total harmonic distortion (THDu) at the point of interest.

The proposed methodology will be tested and validated using the two steps procedure as described
in the following:

(1) Validation using the permutation importance as a metric to measure the impact factor for each
nonlinear load by comparison with the result obtained by ATP software in a controlled simulation
scheme using the IEEE-13 bus system [10].

(2) Applying the methodology to the AMI system installed at the Federal University of Pará campus
located in the north of Brazil, so that it is possible to indicate the most representative nonlinear
loads in impacting the THDu at the Common Coupling Point (CCP) with the utility electric grid.
The result of this test case was also compared to the methodology presented by [10].

2. Related Works

Xu and Liu [11] presented a method for determining the consumer’s and the electric utility’s
harmonic contribution at the common coupling point (CCP) based on a harmonic Norton equivalent
circuit capable of separating harmonic current and voltage into two components: one due to consumer
and the other due to the power grid.
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Following similar methods as the one used in [11], other studies based on harmonic Norton
equivalent circuits emerged, as in [12] which has innovated by offering the possibility to evaluate the
relative contribution of several customers at the CCP. The main disadvantage of such methodologies is
the difficulty of application in systems where there are multiple nonlinear loads constantly changing,
making it difficult to establish an adequate and accurate equivalent circuit.

Wang, Nino and Xu [13] presented a measurement method that can determine the source and
harmonic impedance for residential and commercial systems supplied by a single-phase transformer,
showing the utility’s and consumer’s contribution at the CCP through a short circuit controlled by
a thyristor at the measuring point. The biggest problem with this technique is the need to insert a
thyristor in the measurement arrangement which represents an unnecessary additional cost compared
to measurement systems already available in the market.

Taking advantage of evolutionary computing, Srinivasan et al. [14] used trained neural networks
to extract waveform patterns from the input current to identify harmonic sources and the various
types of devices connected to the grid using their uniquely distinct harmonic “signature”. The main
disadvantage of this method is its inability to provide information about multiple nonlinear loads in
the system, such as location, and the application in large power systems.

Mazumdar et al. also conducted studies with recurrent neural networks [15–17], seeking to
minimize conflicts between utilities and customers by analyzing the responsibility for harmonic
distortions at the CCP. However, the verification is not done in real time, but only when problems
related to the responsibility for harmonic contribution in the electric network occur.

Kandev and Chénard [18] present a method capable of locating in real time the consumer
responsible for the harmonic disturbance in the grid by vector analysis of harmonic currents measured
at different points of the electrical network. Although it has the advantage of real-time analysis, only
one harmonic current is analyzed for each experiment.

Manito in [10] presented an artificial neural network (ANN) model to estimate the impacts of
nonlinear loads on the voltage harmonic distortion at a point of interest. His method relies on a
sensitivity analysis to establish the percentage contribution (impact factor) of load currents on the
observed individual voltage harmonic distortion. The study was conducted in an industrial test system
with the alternative transient program (ATP). The proposed methodology was able to correctly classify
the impact degree of nonlinear load currents on the 5th harmonic voltage distortion at the points of
interest, however, only one specific harmonic at a time.

Utilizing a statistical vision, Yin et al. [19] explored statistics tools that provide a solution for
identifying sources of harmonic distortions in electric networks with multiple nonlinear loads. Methods
with multiple linear regression and partial correlation analysis were proposed. However, this article
only determined their contributions to individual harmonic distortions.

Matos et al. [20] presented a method for finding the harmonic impact of multiple nonlinear loads
using measurements of individual harmonic voltage and current distortions by linear and nonparametric
regression models. Two electrical networks were used for tests and in both the nonparametric models
obtained better results.

Following the premise of evaluating harmonic distortion impacts due to multiple loads comparing
the performance of evolutionary computation techniques and statistical methods, [21] compares the
techniques of multiple linear regression, artificial neural networks and regression tree. This work
considered daily and weekly time windows, also analyzing the load curve for different loading levels.
However, just like the work previously mentioned, this research evaluates only one harmonic order at
a time.

Moradifar et al. [22] presented a new approach to the problem by applying fuzzy logic to
determine the optimal allocation of harmonic meters for intelligent detection of multiple nonlinear
loads in distribution systems. In addition, the fuzzy algorithm estimates the location and relative
level of harmonic sources by investigating the power magnitude and signal considering the harmonic
distortions and network reactance.
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Looking at the mentioned previous works the main contributions of this article can be summarized
as follows:

(1) The methodology uses as input the true RMS current, an electric variable that can be easily
measured by low-cost meters, making viable for the reality of both distribution utilities and
customers. The use of true RMS current in identifying and quantifying the impact of multiple
nonlinear loads on voltage total harmonic distortion levels at the CCP as proposed in this article
is a novelty.

(2) The methodology can be applied with other input and output variables as long as they are
representative to the scope of the problem. True RMS current was chosen because it is the most
accessible magnitude with high correlation with voltage total harmonic distortion levels at the
point of interest;

(3) It presents an innovative and insightful methodology for solving the problem of identifying and
quantifying the impact of multiple loads on the THDu level per phase at the CCP through a metric
which is inherent to the regression tree technique. As it is already a step of the computational
technique chosen, the estimation of input variables importance in the output variable does not
add computational cost.

The methodology, when applied to an AMI system, offers further contributions:

(1) Understanding that Advanced Metering Infrastructure is a relatively new definition, this article
presents some procedures to ensure data reliability during its implementation;

(2) Provides real-time power quality monitoring in all phases of the distribution grid, identifying
meters with big contribution to total harmonic distortion;

(3) Allows a wide range of experiments with varying time windows. According to the case to be
studied by the grid managers, the combination of the proposed methodology with an AMI is able
to investigate the meters contributions at different times per day, week or month, investigating
the most impacting loads on the grid power quality seasonally.

3. Proposed Methodology

The problem to be solved is illustrated schematically as shown in Figure 1, representing an electric
network having m nonlinear loads for which it is desired to calculate how these nonlinear loads are
impacting the voltage total harmonic distortion at bus X, THDux. To reach this objective a GBRT model
will be used having the nonlinear loads electric currents as input variables to calculate the harmonic
impacts on the total harmonic distortion at a point of interest. To describe the problem mathematically,
consider the input matrix as X and the output vector as Y.

Matrix X contains the time series of measured true RMS currents, IRMSj(t), where j = 1, 2, 3, . . . , m,
been m the number of nonlinear loads considered for a given time series t. And vector Y is composed of
voltage total harmonic distortion values measured at the common coupling point X, THDux simultaneously
measured with nonlinear loads currents presented in matrix X. Matrix X and vector Y structures are
shown in Equations (1) and (2), respectively.

X =



IRMS1(1) IRMS2(1) IRMS3(1) · · · IRMSm(1)
IRMS1(2) IRMS2(2) IRMS3(2) · · · IRMSm(2)
IRMS1(3) IRMS2(3) IRMS3(3) · · · IRMSm(3)

...
...

...
. . .

...
IRMS1(t) IRMS2(t) IRMS3(t) · · · IRMSm(t)


(1)

Y =
[

THDX(1) THDX(2) THDX(3) · · · THDX(t)
]

(2)

The proposed methodology is based on the principle of supervised learning for the estimation of
a time series, where the quality of this prediction is reflected in how the inputs to build the model are
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representative. This analysis is performed by estimating a THDX within a period t based on a set of
input attributes, IRMSm , measured simultaneously according to a specified sampling rate. However,
nothing prevents the use of this methodology with other input and output variables, if the high
correlation between them is proven.Energies 2019, 12, x FOR PEER REVIEW 5 of 22 
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Figure 1. Characterization of the problem of identifying the contribution of multiple harmonic sources
in THDu at a point of interest in the power grid. Adapted from [23].

Commonly, machine learning problems apply the attribute selection procedure to combine and
identify the most significant variables in a dataset, acting to improve predictive performance and
reducing its learning curve. There are techniques that already implement this procedure on its own
structure, as is the case of Regression Tree. The regression tree comprises an input X and output Y,
being formed by n nodes, subsets of X. The nodes are subjected to binary tests, dividing into new
two subsets of X which in turn are labeled with a better value for the output variable, decreasing the
degree of impurity with each step, adopting a voracious approach, top-down, recursive, under the
divide-to-conquer strategy. Thus, the tree will continue to form nodes until they become pure in terms
of Y or when all variables Xj are locally constant.

The importance of an input variable Xm is then evaluated in predicting the output by adding the
weighted impurities decreases for all nodes where Xm is used. Thus, using the weighted impurity
function to measure the Impact Factor (IF) of each harmonic generating source at a point of interest, is an
innovative aspect introduced in this article, not found yet in other references in the technical literature.

Based on this problem formulation, this paper proposes the use of the Gradient Boosting Regression
Tree (GBRT) technique [24–26], together with the impurity-based function proposed by [27,28], known
as Mean Decrease Accuracy (MDA) or Permutation Importance, to get the impact factor. For the
impurity measure i(n) it can be also used the Gini index, the Shannon entropy, the Y variation, among
others [27,28]. Generally, (3) can be referred to as the Mean Decrease Impurity (MDI) importance.
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And Permutation Importance is an MDI that weighs the importance of a Xm variable in the output
when its values are randomly exchanged in out-of-bag samples:

Imp(Xm) =
1

NTR

∑
NTR

∑
n ∈ NTR:v(sn)=Xm

p(n) ∆i(sn, n) (3)

In (3) NTR represents the number of trees built, p(n) is the proportion of samples reached on n
nodes, sn is the binary test for separating samples in subsets, v(sn) is the variable used as the separation
parameter and ∆i(sn, n) is the variation of a measure of impurity.

Finally, the relative contribution of each nonlinear load to the voltage total harmonic distortion at
the model output is measured by the impact factor, IFTHDum (%), according to (4):

IFTHDum(%) =
Imp(IRMSm)∑m
j=1 Imp

(
IRMS j

) (4)

The impact factor of each j load can be interpreted as a relative percentage value that is calculated
for each true RMS current individually for the set of nonlinear loads considered in the analysis, leading
to (5):

IFTHDu1 + IFTHDu2 + · · · + IFTHDum = 100% (5)

An overview of the methodology proposed in this article is presented in Figure 2. As a starting
point, it is important to identify the data sources. The methodology points out two possible ways:
the first corresponds to the application in an AMI system following procedures as will be indicated in
topic A; the second not applying in an AMI system, that is, using traditional measurement campaigns.
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Figure 2. Overview of the proposed methodology.

If measurement campaigns are to be used without the resources of a Data Management System,
a time window must be chosen having a sampling interval. For power quality applications a maximum
sampling interval of 10 min is recommended by legislation for one-week campaigns, which correspond
to 1008 samples [5]. The smaller the sampling rate the greater the possibility of applying data
preprocessing techniques, which corresponds to the next step in the methodology.
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After the data acquisition comes a data management step, which corresponds basically to the
application of process of Knowledge Discovery in the Database (KDD), which is an essential step to
obtain a good estimation model.

In the Data Extraction step, it is important to apply a filter to select which measurement points
should be considered in the study, depending on how many null samples exist in the time series.
Points with more than 30% of null samples must be discarded from the diagnosis. These null samples
usually correspond to periods of meter shutdowns or failures. This same procedure is applied in the
SM selection step for the interest area.

According to the proposed methodology the next step is the dataset creation and separation that
will be used in the training step and later in the validation step of the configured and constructed
estimation model. It is advisable to use the cross-validation technique to mitigate effects caused by
seasonality which are inherent in electric loads modeling.

If the modelling error is not satisfactory, new parameters configuration must be selected to raise
the desired performance. Otherwise, it is recommended to restart the methodology with a greater
focus on the Data Manipulation step. When a satisfactory estimation model is obtained the impact
factor for each nonlinear load is calculated accordingly.

Aprocedures for Implementing the Methodology in an Advanced Metering Infrastructure

As previously presented, this work also contributes to the application of the proposed methodology
in a real scenario with an already implemented and functioning AMI system. In this section it will be
outlined the main steps taken to ensure that data acquisition from the meters be reliable for usage in
the methodology.

To achieve that, it begins by highlighting important technical factors for the basic elements that
make up the infrastructure required for this application:

• End user devices-Smart Meters;
• Communication;
• Meters Data Management System (MDMS).

In general, smart meters need to be able to send stored data and receive operational commands.
Thus, it is crucial a SM to have at least one network communication interface and an internal real-time
clock to allow synchronism checking, and in the case different meters are used, it must be possible to
standardize the time measurement.

In [6] several recommendations for the implementation of an AMI are presented, but as one of
the main motivations of this work is cost reduction so the methodology can be accessible, the efforts
were devoted to the development of an application with the function of mediation between meters,
database and end users. In other words, routines and mechanisms for communication and data
integrity checking were proposed to implement the infrastructure Data Management System.

The application was divided into three steps: data acquisition; data processing; and data
persistence. Each step must be associated with an error and exception release. The first is related to
the communication with the meters, being responsible for verifying possible changes in the physical
network and data acquisition. The essential procedures for this implementation are:

• Flag communication failures;
• Scan network to check if meter is connected or disconnected to system;
• Identify and flag meter configuration changes;
• Request data and apply checksums CRC (Cyclic Redundancy Check).

Cyclic Redundancy Check is an error detection methodology that aims to identify changes in the
data chain during information transmission [29]. It basically consists on the polynomial calculation of
bytes check, usually called checksum, which are added to the original message for later transmission.
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The data acquired during the Data Acquisition step correspond to measurements provided
almost instantaneously by the SMs, with requests in every 30 s. Since the purpose of this application
is to measure steady state quantities and the meters preferentially work with RMS current values,
the interval between data acquisition doesn’t need to be smaller than one cycle of the input sinusoid.
Thus, the request period can happen in seconds, allowing time for repetition of the data acquisition
process in case of errors or inconsistencies.

Such errors need to be detected and corrected so that persisted data in the database are reliable
for the estimation model construction step. It is also very important to store the history of faults and
errors, as they will be used to filter meters that will participate in the diagnosis. Table 1 shows how the
codes associated with each error detected by the AMI system of the test scenario are stored, which it
will be presented in the next section.

Table 1. Error table that can be identified in the Data Acquisition step.

Error Code

Without Error 0
Communication Error 1

CRC Error 2
NaN Error 3
Date Error 4

The second step of the proposed application is Data Processing. The measurement treatment
process consists of obtaining a representative value of this set of samples for each electrical quantity,
which are IRMS and THDu in this specific case. Thus, the first step is to remove measurements with
an error, in an independent way for each variable. Then the remaining samples are filtered using the
Chauvenet criterion presented in the computer code Algorithm 1. Finally, the mean value is calculated,
and used to represent the respective variable. If in one of the steps all measurements are removed,
the value representing the variable is taken as zero, and an equivalent error is defined as the smallest
value among the errors obtained for the set of variables.

Algorithm 1: CHAUVENET CRITERIA
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The last step to address is Data Persistence, which is the step responsible for storing the handled
data in the database. It is important to meet the acquisition and treatment rates, because it is an
application which should be repeated periodically. These cycles start at different intervals and can be
easily configured according to the scenario covered. In summary, the procedures presented in this
section ensure the use of the proposed methodology in an AMI environment. It is important to note
that all samples must respect a sampling rate and be in the same time window, ensuring synchronism.

Table 2. Critical Values ∆R adapted from [31].

N AR

3 1.38
5 1.65
6 1.73
7 1.8

10 1.96
50 2.57
100 2.87
300 3.14
500 3.29

1000 3.48

4. Results and Discussion

In order to validate the proposed methodology, two tests were executed. The first one, compares
the impact factor performance calculated using the GBRT technique with Permutation Importance,
and the impact factor calculated using Artificial Neural Network based procedure as presented in [10]
for the IEEE-13 bus industrial system. The second test is accomplished using the AMI system installed
at the Federal University of Pará campus.

4.1. Permutation Importance Validation

Although permutation importance is already used successfully to evaluate the impact of input
variables on output variables in several applications [32–34], it is necessary to evaluate its performance
in the problem addressed in this article. As previously mentioned, in the first test the GBRT technique
combined with the permutation importance metric are used to calculate the impact factor in an ATP
simulation study using the balanced IEEE-13 bus industrial distribution system, and the obtained
results are compared with those obtained in [10] also using the same test system.

Manito et al. (2018) in [10] used an Artificial Neural Network to estimate the impacts of fifth
harmonic currents generated by the nonlinear loads on the fifth harmonic voltage at a point of interest,
in a scenario simulated in ATP Draw software (Alternative Transient Program [35]).

The same scenario is used with the GBRT modeling technique with permutation importance to
calculate the impact factor of fifth harmonic currents on the fifth harmonic voltage at the same point of
interest as calculated in [10], comparing the results of the two techniques.

4.1.1. IEEE-13 Bus Industrial Electrical Distribution System

The IEEE-13 bus industrial distribution system [36,37], represented in Figure 3, is a three-phase
system used by several authors as a test system for power quality analysis [38–40]. The same scenario
of [10] was used in this study, where four nonlinear loads were specified at buses B11, B29, B49 and B51,
modeled by the ATP Draw software as shown in Figure 3, configuring nonlinear loads as harmonic
current sources HS1, HS2, HS3, and HS4 respectively. Importantly, ATP Draw software is widely
used in power quality analysis, simulating the characteristics and the actual behavior of the network
satisfactorily [41–45].
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4.1.2. Data Manipulation

As described in section III, it is necessary to evaluate the scenario database focusing mainly on
data preprocessing. Applying this step to the first test data, outliers were found most frequently in
harmonic sources 1 and 4 being identified and removed. At the end of this step the samples were
reduced from 10800 to 7427, which is a 31.23% reduction. In the next topic it will be presented the
importance of this step for the calculated harmonic impact factor values shown in Table 3.

Table 3. Impact factors calculated for each nonlinear load.

Harmonic Sources HS1 (%) HS2 (%) HS3 (%) HS4 (%)

ATP Calculated Impact (Reference Values) 11.83
Fourth

51.82
First

12.68
Third

23.67
Second

GBRT Calculated Impact 11.43
Fourth

51.63
First

12.71
Third

24.23
Second

GBRT Calculated Impact (without pre-processing) 19.74
Third

42.36
First

8.82
Fourth

29.08
Second

ANN Calculated Impact 13.83
Third

52.83
First

12.73
Fourth

20.61
Second

4.1.3. Comparison between Techniques and Metrics

The work developed by Manito et al. (2018) divided the dataset, so the first 80% samples
were intended for training and testing the ANN via cross-validation and the 20% remaining for the
ANN model validation. To apply the proposed methodology by using GBRT, the above proportion
was respected, and the cross-validation technique was also used, but with 10 folds for training the
GBRT model.

The methodology was implemented in Python with the aid of the Scikit-learn library [46] and the
Gradient Boosted Regression Trees regression technique, as already mentioned. After training and
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construction of the GBRT model, it had its performance evaluated by the Absolute Mean Error (MAE)
obtained through the test set, as well as in [10].

The best parameter setting found for the GBRT model was: Max_depth = 10, Min_sample_split = 10,
Min_sample_leaf = 3, N_estimator = 50, Learning rate = 0.1, Loss functions = huber, alpha = 0.85. With this
configuration the GBRT technique obtained a MAE equal to 0.0065 while ANN obtained 0.0107 in this
study, so the GBRT improved the estimation performance by 39.25%. In addition, GBRT presented a
satisfactory result when compared to impact factors calculated by ATP simulation, which are considered
reference values for comparison, as seen in Figure 4.

It is also observed in Figure 4 that the impact factors calculated by the GBRT model are systematically
closer to the exact results obtained by ATP, for all harmonic sources HS1, HS2, HS3 and HS4. Other
relevant results are summarized in Table 3, for the ANN and GBRT models. While ANN and GBRT
without data preprocessing have erroneously ranked third and fourth most impacting harmonic sources
as compared to ATP ranking, the GBRT model with data preprocessing as proposed in the article ranked
correctly all harmonic sources. This fact makes evident the importance of the data preprocessing step
included in the GBRT model.
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4.2. Test Case in an Advanced Metering Infrastructure Instalation

After validating the use of permutation importance as a metric to calculate the impact factor,
it was decided to execute the proposed methodology in a real electric distribution grid having an AMI
system already implanted. This is located at the Federal University of Pará (UFPA) Campus in Belém
City-Brazil, as depicted in Figure 5. The AMI system is named SISGEE that is the short form for Electric
Energy Management System.



Energies 2019, 12, 4132 12 of 21

Energies 2019, 12, x FOR PEER REVIEW 12 of 22 

 

 

 
Figure 5. Federal University of Para Campus located in Belém City-Brazil (Adapted from Google Map). 

4.2.1. Brief Description of SISGEE (Electric Management System) 

SISGEE’s main objective is to monitor the steady-state electrical quantities in the University 
Campus electric grid and to arrange them in an intuitive online environment so that it is easily 
accessed by computers logged in the Campus available Wide Area Network (WAN). Figure 6 shows 
schematically the electric grid of the University Campus summarizing the main load blocks. 

UFPA´s electric loads are distributed in four main sectors, namely: Basic 1, Basic 2, Professional, 
and Health as detailed in Figure 6. Basic sector is the largest, comprising most graduation courses, 
administration buildings, banks, convention center, among others, being supplied by two 
distribution feeders, namely AL1 and AL2. The Professional and Health sectors are supplied by 

Figure 5. Federal University of Para Campus located in Belém City-Brazil (Adapted from Google Map).

4.2.1. Brief Description of SISGEE (Electric Management System)

SISGEE’s main objective is to monitor the steady-state electrical quantities in the University
Campus electric grid and to arrange them in an intuitive online environment so that it is easily
accessed by computers logged in the Campus available Wide Area Network (WAN). Figure 6 shows
schematically the electric grid of the University Campus summarizing the main load blocks.

UFPA’s electric loads are distributed in four main sectors, namely: Basic 1, Basic 2, Professional,
and Health as detailed in Figure 6. Basic sector is the largest, comprising most graduation courses,
administration buildings, banks, convention center, among others, being supplied by two distribution
feeders, namely AL1 and AL2. The Professional and Health sectors are supplied by feeders AL3 and AL4
respectively. The common coupling point, where the THDux is to be measured is the 13.8 kV substation
connecting the internal UFPA electric distribution networks to the local utility distribution grid.
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SISGEE monitors this power grid through class S Smart Meters (SM) installed at the substations of
the largest institutes and buildings. SMs use the MODBUS TCP/IP over Ethernet protocol to send the
acquired data to a central server which is responsible for requesting, calculating, storing the acquired
data and hosting an internet site for displaying online and real time results. The MS parameters
according to factory specification are shown in Table 4.

Table 4. Specifications of Smart Meters Connected to SISGEE.

Electrical Characteristics

Feed voltage 80 to 300 Vac/Vdc
Consumption 10 VA

Voltage Measurement 30 to 300 Vac (phase-neutral)
Voltage Accuracy 0.5%

Current Measurement 60 A to 3000 A (Model TR4000/TI)
Current Accuracy 0.5%

Phase Angle Accuracy <5 degree
Power Accuracy 1.0%
Communication RS-485 MODBUS RTU or Ethernet

Memory Autonomy Up to 60 days

Table 5 lists the installed SMs by feeder and building highlighting its main activity type and the
installed power transformer capacity. In red are the SMs that were inactive in the period of the experiment.

Table 5. SM by feeder and by building.

Feeder Name Main Activity Power (KVA)

1

Language and Communication Institute Administration 150
CAPACIT Administration 225

Physics Lab (Research) Laboratories 225
Communications and IT Center Laboratories 225

Department of Material Resources Administration 225
Chemistry Lab (Research) Laboratories 300

Biological Sciences 1 Institute Class Blocks 500
Biological Sciences 2 Institute Class Blocks 500
Biological Sciences 3 Institute Class Blocks 500

2

Central Library 1 Administration 225
Central Library 2 Administration 225

Geosciences Institute Class Blocks 225
Convention Center Benedito Nunes Administration 500

Administration Building 1 Administration 500
Administration Building 2 Administration 750
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Table 5. Cont.

Feeder Name Main Activity Power (KVA)

3

Education Sciences Institute Administration 225
Technology Institute Administration 225
Architecture Center Class Blocks 225

Applied Social Sciences Institute Class Blocks 225
Legal Sciences Institute Class Blocks 300

Electrical Engineering Lab Laboratories 300
Electrical Engineering Lab Annex Laboratories 500

4

Center of Energy Efficiency in Amazon Laboratories 225
Nutrition Center Laboratories 225

Physiotherapy College Laboratories 225
Odontology Laboratories 300

— Main Power Cabin — —

Table 6 lists by feeder, the respective nominal power capacity, the effective measured power during
the measurement campaign, and the percentage of nominal power capacity used by connected loads.
Because, although SISGEE serves the institutes with the largest loads installed, there are some other
buildings that are not yet monitored.

Table 6. Percentage of loads by feeder.

Feeder Location Nominal Power
(kVA)

Measured Power
(kVA)

Nominal/Measured
(%)

1 Basic 1 5587.5 2850 51.01%
2 Basic 2 3775 2425 64.24%
3 Professional 5950 2000 33.61%
4 Health 3012.5 675 22.41%

4.2.2. Test Scenario Description

This test scenario aims to apply the proposed methodology in an electric network with an
implanted AMI system which facilitates the prompt access to the measurements acquired from the real
time operation of the electric network. Accessing the UFPA AMI system make available, by phase, real
time and historical data involving all electric quantities like voltage, current, power, energy, power
factor and also discriminators of power quality like individual and total harmonic distortions indicators.

To validate the proposed methodology of obtaining impact factors in the THDu of a point of
interest using only the electric current true rms values, the test was conducted from January 21 to
January 27, 2019, because it was the week that had the highest number of THDu violations of the
year. Initially, it was selected all meters with status active and that have not extrapolated 30% of null
samples. This selection filter is made according to each phase and automatically by MDMS.

Before the final database is formed, it still undergoes a sample removal action that corresponds to
the university’s general power outages measured at the Main Power Cabin. At the end of this process,
the database for constructing and validating the regression model had 897 samples, where the input
attributes correspond to true rms current values measured at the points that have active and validated
meters, with the THDu measured at the CCP (Main Power Cabin) representing the model output.

It is important to know that of all active meters listed in Table 5, only the meter installed in the
Physiotherapy College building was excluded from the Phase B experiment because it did not meet
the above prerequisites.
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4.2.3. Parameters Definition

Following the steps of the proposed methodology (Figure 2), after selecting the SM that will
represent the input and output attributes of the regression model, it is time to create the basis that
will be used for training, testing and validation. For this, randomly following the ratio of 80% for the
training set and 20% for the validation set. The model was built using the 10-pack cross-validation
technique, which forms training and test subsets.

The methodology was implemented using the Python language with the aid of the Scikit-learn
library [46] and the GBRT regression technique, through the impurity index obtained from the own
GBRT construction process, and the harmonic impact factor is estimated for each SM.

Model performance was evaluated by the Mean Absolute Error (MAE), Mean Square Error (MSE),
and Mean Absolute Percent Error (MAPE) metrics obtained by the test set, and the best ratio of configuration
parameters for the GBRT model are: Max_depth = 8, Min_sample_split = 9, Min_sample_leaf = 9,
N_estimator = 50, Learning rate = 0.09, Loss functions = huber, alpha = 0.85. Table 7 presents the errors
obtained for phases A, B, C, by the configured estimator with the above parameters.

Table 7. GBRT model performance using the test set data.

A B C

MAE 0.1379 (+/− 0.000910) 0.1262 (+/− 0.000010) 0.1347 (+/− 0.000047)
MAPE 4.9519 (+/− 0.030815) 4.4932 (+/− 0.000418) 3.1215 (+/− 0.001083)
MSE 0.0304 (+/− 0.000174) 0.0245 (+/− 0.000002) 0.0301 (+/− 0.000019)

Analyzing Table 7, it can be observed that MAPE in all phases remained below 5.0%, which is an
acceptable threshold to guarantee a satisfactory performance of this prediction model for the next step,
which is the impact factor calculation. Figure 7 compares the THDu values measured at the CCP with the
values estimated by the model for phases A-B-C respectively, together with the 95% confidence interval.
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4.2.4. Impact Factor Calculation

In order to calculate the IF by the technique proposed in [10], it is necessary to vary, one by one,
each electric current time series in the input vector of the trained model by a percent factor, for example
10%, 20%, etc and then resubmit them to obtain a new estimated output that will be compared with the
actual measured values. This procedure was named in [10] as a sensitivity analysis. The difference
between both time series is evaluated by the Mean Absolute Percent Error (MAPE), that indicates the
IF of the respective load current on the THDu at the point of interest.

As the GBRT regression technique already calculates the importance factor as part of its process, it is
evident the gain in processing time offered by the use of GBRT and importance factor. Figure 8 demonstrates
how the sensitivity factor varies with varying percent values from 10% to 1000% for phases A-B-C.
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To have a good resolution in the sensitivity analysis for the second test system, the input vector
was varied 200%, resulting MAPE and Permutation Importance percent values as presented in Figure 9.
For the results analysis, the IF calculated for each nonlinear load, represented by the measurements of
each SM, were grouped by feeder as can be seen in Figure 9.

This type of representation enables simpler monitoring of the electric network power quality
situation and allows the manager to first perform a macro analysis and then focus his actions on
specific points.

According to Figure 9, it is highlighted that feeder 2 phases A and B are the most impacting on
the THDu at the CCP, by both metrics, that is, MAPE with 41.90% and Permutation Importance with
44.18%. in phase A, and 40.55% and 42.76% in phase B, respectively.
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It is also important to note that feeder 2 has the largest length and has also the largest installed
load. Still looking at feeder 2, and analyzing the detailed data in Table 8, there was a considerable
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contribution of the Geoscience Institute with 21.25% of the total IF in phase A at the CCP, the highest
percentage of impact factor found in all phases.

In phase C, feeder 2 presented similar results as feeder 3 using both MAPE and Permutation
Importance, with approximately 33% of contribution. Summarizing the results in Table 8 it is shown
the top three most impacting loads are Geoscience Institute, Administration Building 2 and Legal
Sciences Institute.

Table 8. Impact Factor percentage final results of the nonlinear loads at the CCP.

Feeder Name
Phase A (%) Phase B (%) Phase C (%)

Permutation MAPE Permutation MAPE Permutation MAPE

1

Chemistry Lab (Research) 3.37 3.71 3.45 4.29 2.62 3.65
Biological Sciences Institute 1 2.28 3.60 4.01 2.58 2.75 7.66
Biological Sciences Institute 2 5.67 4.45 2.45 2.99 2.32 3.60
Biological Sciences Institute 3 1.92 1.76 1.26 1.24 1.90 1.32

Language and Communication Institute 1.56 1.59 5.10 4.31 2.08 1.41
Physics Lab (Research) 2.82 3.86 6.86 9.32 2.25 3.12

Total 17.61 18.96 23.14 24.73 13.91 2.76

2

Central Library 2 4.20 2.82 8.76 10.81 2.84 2.58
Convention Center Benedito Nunes 3.02 4.15 4.60 5.81 6.40 3.92

Geoscience Institute 21.25 20.85 4.26 4.28 5.42 7.44
Administration Building 1 7.11 5.82 13.05 12.25 8.69 7.23
Administration Building 2 8.81 8.27 9.89 9.61 9.63 10.72

Total 44.38 41.91 40.55 42.76 32.98 31.90

3

Architecture Center 6.72 6.04 2.46 2.54 2.97 3.07
Electrical Engineering Lab 1.80 2.81 4.80 1.92 3.98 4.28

Electrical Engineering Lab Annex 4.36 5.72 4.68 3.75 2.89 2.67
Applied Social Sciences Institute 3.23 2.81 5.61 7.09 3.90 2.76

Education Sciences Institute 2.89 2.80 1.97 3.92 6.89 4.23
Legal Sciences Institute 2.22 3.23 3.41 2.05 10.95 12.53

Technology Institute 2.26 2.10 2.35 2.81 2.08 2.13

Total 23.48 25.51 25.28 24.08 33.65 31.67

4

CEAMAZON 5.25 4.22 6.48 5.90 3.17 3.94
Nutrition Faculty 4.47 4.78 4.55 2.53 6.68 3.54

Physiotherapy College 4.82 4.62 - - 9.61 8.19

Total 14.54 13.62 11.03 8.43 19.46 15.67

5. Conclusions

Voltage total harmonic distortion is one of the internationally regulated power quality indicators.
The THDu level is a concern for both electric power utilities and larger customers as the responsibility
for the negative impact on the grid, may involve legal aspects to be considered. Therefore, it is crucial
to find out which loads contribute most to the THD level at the common coupling point, which is the
point where the customer and utility are connected.

To contribute to the solution of this problem, this paper presented a new methodology for the
identification and quantification of the impacts of multiple nonlinear loads on the electric grid voltage
total harmonic distortion at a point of interest by using only true RMS current values employing a
concept inherent to the Gradient Boosted Regression Trees technique, which is the impurity index with
permutation importance, to find this Percent Impact Factor for each point of interest.

In the first experiment, the use of permutation importance as a metric for the Impact Factor
calculation was validated compared to the work developed in [10], finding values very close to the
reference scenario obtained from ATP simulations, and reducing the error by 39%. The result obtained
by GBRT without preprocessing showed that the technique is very sensitive to bad data, highlighting
the need for a data preprocessing step for a good performance of the technique.

Then, the proposed methodology was applied in a real system with an AMI system implanted,
obtaining very similar results for both metrics used, that is, MAPE and Permutation Importance. These
results make evident that the Permutation Importance can be used as a metric for the calculation of
harmonic impacts due to multiple nonlinear loads at a point of interest, which reduces considerably
the cost of computer processing in relation to the technique using MAPE as introduced in [10].
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Finally, the proposed methodology obtained satisfactory results in both test scenarios through
reducing the costs of these evaluations, allowing also the use of this procedure in an integrated way
with an AMI system.
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