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Abstract: The effects of an electric supercharger (eS) and a dual-loop exhaust gas recirculation (EGR)
system on a passenger car’s diesel engine’s emissions and fuel efficiency under various worldwide
harmonized light-duty vehicles test procedure (WLTP) reference operation points were investigated
using a one-dimensional engine cycle simulation, called GT-Power. After heavy EGR application,
the in-cylinder pressure and temperature declined due to a dilution effect. As eS power and rpm
increased, the brake-specific fuel consumption (BSFC) decreased because the effects of the air flow
rate increased. However, it was unavoidable that nitrogen oxide (NOx) emissions also increased
due to the higher in-cylinder pressure and temperature. To induce more EGR to the intake system,
a dual-loop EGR system was applied with eS at different low-pressure EGR (LP-EGR) fractions (0,
0.25, 0.5, 0.75, and 1.0). Under these conditions, a design of experiment (DoE) procedure was carried
out and response surface plots of the BSFC and brake-specific NOx (BSNOx) were prepared. A
multi-objective Pareto optimization method was used to improve the trade-off in results between
the BSFC and BSNOx. Through optimization, optimal Pareto fronts were obtained, which suggested
design parameters for eS power and rpm to control the engine under various LP fraction conditions.

Keywords: 1D engine cycle simulation; dual-loop EGR; electric supercharger; design of experiment;
multi-objective Pareto optimization

1. Introduction

As regulations for passenger cars are being strengthened nowadays, conventional passenger cars
with gasoline and diesel engines should be improved to provide better fuel efficiency and reduced
emissions. Diesel engines have the advantage of better fuel efficiency to meet such CO2 emission
regulations; however, given their compression ignition (CI) combustion characteristics, emissions of
dangerous materials, such as nitrogen oxide (NOx) and particulate matter (PM), are inevitable. Thus,
regulations for passenger cars are being strengthened to meet ‘worldwide harmonized light-duty
vehicles test procedures’ (WLTP) or ‘real driving emission cycle’ (RDE), which can describe real driving
conditions during the test mode [1].

However, as these regulations are becoming increasingly harsh, further advanced technologies,
such as heavy exhaust gas recirculation (EGR), dual-loop EGR, and two-stage turbocharging with
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an electric supercharger (eS), need to be investigated to satisfy them. One issue here is that as boost
pressure increases, fuel efficiency improves, but increased emissions are also inevitible [1].

To reduce the major emissions of CI engines, such as NOx and PM, many after-treatment systems
have been applied to passenger car diesel engines. Such after-treatment systems are expensive, so
reducing emissions by other mechanisms, such as with low-temperature combustion (LTC), should
be investigated. A well-controlled LTC engine can improve fuel efficiency and reduce NOx and PM
emissions without an after-treatment system.

Commensurate with the increased need for LTC, the importance of EGR is emerging. Heavy
EGR should be applied to reduce the combustion temperature. However, as the EGR induction rate
increases, several problems, such as EGR induction and boost pressure shortages—due to reduced
mass flow rate to the turbocharger—have emerged [2–9]. To address these problems, dual-loop EGR
systems and two-stage turbochargers need to be investigated.

Conventional EGR systems use only high-pressure EGR (HP-EGR) or low-pressure EGR (LP-EGR)
systems. Table 1 shows the advantages and shortcomings of each system. HP-EGR responds
rapidly to lower speed or low loads, but EGR induction is limited when the turbine inlet pressure is
sufficiently higher than the intake manifold pressure. When these two systems are applied together
to an engine EGR system, it is called a dual-loop EGR system. Dual-loop EGR systems have the
advantage of being able to optimize the EGR rate under many driving conditons [10–12]. Experimental
studies with dual-loop EGR systems were reported by Cho et al. [13]. They studied a high-efficiency
clean-combustion (HECC) engine and compared the performance of HP and LP dual-loop EGR systems
under five operating conditions. Adachi et al. [6] and Kobayashi et al. [7] investigated the combination
of both high boost pressure from a turbocharger and a high rate of EGR with respect to reducing the
brake-specific NOx (BSNOx) and PM. Park et al. [14] studied the effects of an EGR split index (ESI) of a
dual-loop EGR system numerically. Using an LP-rich dual-loop EGR, a high EGR rate could be applied
for low, medium, and high speeds, increasing the applicable load ranges versus the base conditions.

Table 1. Advantages and shortcomings of two types of EGR.

Type Advantages Shortcomings

HP-EGR
• Lower HC and CO emissions
• Fast response

• Cooler fouling
• Unstable cylinder distribution
• Not capable of heavy EGR supply

LP-EGR

• Lower temperature EGR
• Clean EGR (no fouling)
• Stable cylinder distribution
• Better heavy EGR supply capability

• Compressor corrosion due to condensation water
• Slow response
• HC/CO increases

A conventional turbocharger system with a single-stage turbocharger is a widely used method for
improving fuel efficiency. However, it is hard to avoid turbo lag, due to turbine inertia, and to improve
the boost pressure in the case of heavy EGR operation, due to the decrease in the turbine inlet flow
rate. To overcome these weaknesses, a two-stage turbocharger system with eS should be investigated.
By applying eS, it is easy to improve transient responses and to improve boost pressure under heavy
EGR conditions.

Mattarelli [15] investigated various two-stage turbocharging systems and compared them in
terms of the steady state at the New European Driving Cycle (NEDC) test reference operation points.
Tang et al. [16,17] investigated the effects of various turbocharging approaches on gasoline engine
transient conditions. They found that applying an electric turbo charging system improved transient
responses and fuel efficiency. Salehi et al. [18] investigated the effects of high and low pressure eSs
on a heavy duty diesel engine, for both steady state and transient operations, and found that LP eS
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was more efficient with respect to transient responses, although the high engine speed response was
improved with an HP eS.

The aim of this paper was to optimize the thermal performance and emissions of diesel
engine considering dual-loop EGR and eletric supercharger under steady-state rpm-load conditions,
representing the frequently selected operating conditions from the WLTP for the test of real engines. To
achieve the research goal, multi objective Pareto optimization was applied based on thermodynamic
cycle simulation results, including the detailed multi-zone combustion model for a compression ignition
direct injection (CIDI) engine, the heat transfer model for each component, such as EGR and EGR cooler,
and the thermal performance of the electric supercharger. Starting from the validation of the base engine
model, which describes engine operation based on the OEM(Original Equipment Manufacturer)’s test
results for WLTP, performance, in terms of fuel efficiency and emission characteristics, was investigated
through brake-specific fuel consumption (BSFC) and BSNOx under various WLTP reference load
conditions. Heavy EGR was applied to reduce NOx emissions. To improve fuel efficiency and
NOx emissions simultaneously, both the dual-loop EGR system and eS effects on the engine were
investigated with a design of experiment (DoE) and multi-objective Pareto optimization method. The
main goal of this study was to lower BSNOx and BSFC, via a trade-off curve by means of LTC (Low
Temperture Combustion), and to suggest design parameters for various engine operating conditons
using a multi-objective Pareto optimization method.

2. Methodology

A one-dimensional (1D) engine cycle simulation tool, called GT-Power (Gamma Technologies) [19],
was used to investigate engine performance outcomes numerically, in terms of the BSFC, BSNOx, brake
mean effective pressure (BMEP), and air fuel (A/F) ratio. The base engine model was validated by
comparison with expermental data. The base passenger car diesel engine specifications are shown
in Table 2. The reference operating and selected WLTP points are shown in Figure 1. The operating
conditions of the base engine were 4 bar of BMEP at 1500 rpm, 6 and 8 bar of BMEP at 1750 rpm, 10 bar
of BMEP at 2000 rpm, and 12 bar of BMEP at 2250 rpm. To achieve more validated points (marked with
green triangles in Figure 1), additional rpm-load conditions were peaked to predict and to optimize the
target engine. As a result, there were five validation points (red triangles in Figure 1) to get modeling
accuracy and five prediction points (green triangles in Figure 1) that were not covered by the real
engine test. Detailed operating conditions are shown in Table 3. The overall research plan is shown in
Figure 2.
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Table 2. Engine specifications.

Item Specification

Engine type In-line four cylinders
Displacement (cc) 1396

Bore (mm) 75
Stroke (mm) 79

Connecting rod (mm) 140
Compression ratio 17:1
Maximum power 67 kW @4000 rpm
Maximum torque 22.4 kgm @1500~2750 rpm

Injection type Common rail direct injection
EGR system High pressure EGR
Firing order 1-3-4-2

Table 3. Detailed operating conditions of the selected WLTP reference points.

Case No. 1 2 3 4 5

Engine speed (rpm) 1500 1750 1750 2000 2250
BMEP (bar) 4 6 8 10 12

Boost pressure (bar) 1.09 1.22 1.37 1.67 1.93
Rail pressure (bar) 538 795 889 1084 1243

Injected mass (mg/stroke) 9.43 13.93 17.89 21.97 25.59
Pilot1 injection timing (CA BTDC) 23.28 25.9 25.34 25.08 27.28
Pilot2 injection timing (CA BTDC) 12.41 13.9 13.4 15.22 16.27
Main injection timing (CA BTDC) −5.66 −5.4 −5.07 −4.6 −3.89

EGR rate (%) 31.4 26.4 17.4 16.3 6.1
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2.1. 1D Engine Modeling and System Modifications

First, an engine model was prepared based on hardware specifications (bore, stroke, connecting-rod
length, top dead center (TDC) clearance height, and compression ratio), intake/exhaust valve profiles,
a performance map-based waste gate-type single-stage turbocharger system and intercooler, diesel
fuel injection profiles, and EGR systems with an EGR valve and EGR cooler. To meet the required
properties, proportional integral derivative (PID) controllers for the EGR fraction and target boost
pressure controllers were attached to the engine.
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A NOx predictive combustion model, the direct-injection diesel multi-pulse (DI-pulse), was used
to calibrate the diesel combustion. In the DI-pulse model, injected fuel is tracked during its injection,
evaporation, mixing with surrounding gases, and burning through three thermodynamic zones, which
have their own temperatures and compositions. The three zones consist of the main unburned zone,
the spray unburned zone, and the spray burned zone. The main unburned zone contains all of the
cylinder substances at the intake valve closing (IVC). The spray unburned zone contains injected fuel
and entrained gases. The spray burned zone contains the combustion products. In the DI-pulse model,
fuel is injected in pulses, which are tracked separately. Injected fuel is added to the spray unburned
zone and, immediately, the injected fuel penetrates and slows down, mixing with the surrounding
unburned and burned gases. The mixing process occurs through entrainment and the mixed gas is
referred to as the entrained gas. The entrainment rate is determined by applying the conservation of
momentum to an empirical spray penetration law. The fuel is heated by the surrounding gases, causing
evaporation, and the entrained gas is mixed in a turbulence-driven process. The mixture for each pulse
ignites with its own ignition delay, modeled by the Arrhenius expression. When pulse ignition starts,
a premixed combustion occurs first, but this is assumed to be limited kinetically. After ignition, the
remaining unmixed fuel and entrained gas in each pulse start mixing and burning in a diffusion-limited
phase. Through this combustion process, NOx formation is calculated using the extended Zeldovich
mechanism [19]. A diagram of the calibrated in-cylinder pressure with fuel injection using the DI-pulse
model is shown in Figure 3.
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After the validation against experimental data, several systems were made and attached to the
base engine model. The LP-EGR PID controller was attached to the model and made into a dual-loop
EGR control system. The main control factor, i.e., the LP-fraction, was calculated with Equation (1):

LP-fraction = Total EGR−HP Fraction/(1−HP Fraction). (1)

Then, the turbocharger compressor and an eS control system were attached, controlled by power
and rpm. The system control scheme is shown in Figure 4. To maintain constant BMEP under each
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condition (which differ in EGR rate, LP-fraction, and eS characteristics), a constant BMEP PID controller
was attached. After sensing the average BMEP of the engine, to keep the BMEP constant, more fuel
was injected into the cylinder to increase the BMEP, or the fuel flow rate was lowered to decrease it.
The overall control scheme of the constant BMEP controller is shown in Figure 5.
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2.2. DoE with Latin Hypercube Sampling (LHS) and Multi-Objective Pareto Optimization

There are several engine design parameters that are related to each other. To overcome the cost
and hardware difficulties associated with experimental testing, DoE and numerical analyses should
be sufficiently powerful to model optimal engine operation conditions despite the use of multiple,
complex parameters. Usually, a sampling method is used, such as a full-factorial approach or LHS.
After the sampling operation, response surface plots are created using various fitting methods, such as
the radial basis function network (RBFN), a least-squares method (LSM), or an artificial neural network
(ANN). In this investigation, 400 random cases were made using LHS and, after the simulation, RBFN
was used to generate the response surface plot, which is a feed-forward neural network consisting
of artificial neurons and a dynamically varying structure, to achieve precise predictions [20,21]. In
Table 4, several of the sampling ranges used for the DoE are shown.

Table 4. Sampling ranges for Latin hypercube sampling of design of experiment.

Case No. 1 2 3 4 5

Engine speed (rpm) 1500 1750 1750 2000 2250
BMEP (bar) 4 6 8 10 12

LP-fraction (4, 5cases) 0–0.75 0–1 0–1 0–1 0–1
eS rpm 40,000–90,000 40,000–90,000 40,000–120,000 40,000–120,000 40,000–160,000

eS power (kW) 0.1–1.5 0.1–1.5 0.1–1.5 0.1–1.5 0.1–1.5
Number of sampling points 400 points for each case

In this investigation, for eS, as the power and rpm increased, the fuel efficiency of the engine
was improved, but increasing NOx emissions were inevitable due to increased thermal efficiency. To
minimize NOx emissions and fuel consumption simultaneously, a multi-objective Pareto optimization
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method was used. By applying the optimization, both BSFC and BSNOx will be improved, by
optimizing multiple input parameters that improve or worsen engine fuel efficiency and emission
characteristics simultaneously.

Multi-objective Pareto optimization is a method to determine Pareto-optimal points from a set
of possible solutions satisfying multiple evalutation criteria (i.e., multiple objective functions) that
conflict with each other. The optimization process with n variables and m objectives can be defined as
in Equation (2) [14,20,22–26]. Detailed explations of RBFN, LHS, and Pareto optimization methods can
be found in Park etl al.’s previous paper [20]

min f (x) subject to x ∈ X =
{
xx ∈ Rn, g(x) ≤ 0

}
, (2)

with three vectors, defined as x = [x1, · · · , xn]
T of an n-dimentional decision variable vector,

f(x) = [ f1(x), · · · , fm(x)]
T of an m-dimensional objective funtion vector, and g(x) = [g1(x), · · · , gl(x)]

T

of a 1D constraint condition vector. When there are no solutions satisfying x ∈ X:

fi(x) ≤ fi(x∗), ∀i = {1, · · · , m} and fi(x) < fi(x∗), ∃i = {1, · · · , m} , (3)

x∗ ∈ X is referred to as a Pareto-optimal solution. The overall process flow of the multi-objective Pareto
optimization is shown in Figure 6. In this investigation, a simulation range selection was made first;
LHS was performed for each case, the RBFN fitting method was applied, and finally the multi-objective
Pareto optimization was performed and Pareto fronts were obtained through the objective function
spaces of f1 and f2 , for BSNOx and BSFC, respectively.
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3. Results and Discussion

3.1. Validation and Heavy EGR Application

Before applying the control systems (eS, dual-loop EGR, and constant BMEP controller), in
each case several numerical results were validated against experimental data using the operational
characteristics listed in Table 3. Through this validation, we confirmed that the engine model was
accurate for investigations. In Figure 7, comparisons between experimental and numerical results
are illustrated in terms of base engine results and major control factors. Boost pressure, EGR rate,
maximum in-cylinder pressure (Pmax), BSFC, BMEP, and BSNOx were compared against experimental
results. The maximum error was <3%, confirming that the results were reliable.
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Before applying eS and the dual-loop EGR system, a constant BEMP controller was attached to
the engine model and heavy EGR was applied (Figure 8). Heavy EGR was applied to induce as much
EGR as the engine could take. The heavy EGR rates that were applied and the base EGR rates are
shown in Table 5. As shown in Figure 8, when the EGR fraction increased compared with the base
engine operating conditions in Table 3, due to a dilution effect, Pmax and maximum temperature were
reduced, causing NOx emissions to also be reduced. As the EGR rate was increased—but with total
boost pressure and rpm conditions being constrained—the total air flow rate decreased, resulting in
a decreasing A/F ratio. As a result, the BSFC results deteriorated, by a maximum of 4%, but NOx

emissions were reduced by a maximum of 84%. These results represent the basic effects of LTC on a
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diesel engine and are similar to those obtained in previous investigations [6–8,15,27]. However, for a
passenger car diesel engine, fuel efficiency is as important as emissions for operations and sales. Thus,
there is a need to apply and optimize eS and a dual-loop EGR system to reduce emissions and increase
fuel efficiency.
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Table 5. Heavy EGR application.

Case No. Base EGR (%) Heavy EGR (%)

1 31.4 37
2 26.4 35
3 17.4 22
4 16.3 18
5 6.1 15
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3.2. Effects of the LP Fraction and eS rpm and Power on Fuel Efficiency

Before applying the dual-loop EGR and eS, the effects of LP-fraction, eS power, and rpm were
investigated by a full-factorial DoE method. When investigating the effects of eS rpm, it was found
to increase from 40,000 to 160,000, in 5000 intervals, with power held at 0.5 kW. When investigating
the effects of eS power, it was found to increase from 0.1 to 1.5 kW, in 0.1 intervals, with rpm held at
70,000 rpm. In each case, the LP fraction was divided into five cases, ranging from 0 to 1 (0, 0.25, 0.5,
0.75, and 1.0). In case 1, with the LP fraction being equal to 1, the LP-EGR pressure was lower than that
of the intake air and the EGR induction rate was not satisfied. Thus, comparison and optimization of
an LP fraction of 1 in case 1 would be meaningless.

The effects of LP-fraction, eS rpm, and power on fuel efficiency in case 2 are shown on the left
side of Figure 9. In this study, fuel efficiency was determined by BSFC. With increasing eS, rpm, and
eS power, the engine intake pressure was increased. Thus, the thermal efficiency of the engine was
increased by the enhanced intake pressure. Moreover, as the LP fraction in each case increased, the fuel
efficiency was enhanced. This was influenced by the compressor and eS efficiency increasing because
the air flow rate was increased by the LP-EGR induction rate being increased in all cases. Results in
other cases were similar to those of case 2.
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In Figure 9, the BSFC was decreased by 4.5%, at 10,000 versus at 9000 rpm. This was because the
EGR induction rate was not fully satisfied due to the intake pressure increasing. This will be discussed
in the next chapter. These results were similar to previous reports [15,27–33].
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3.3. Effects of LP Fraction, eS rpm, and Power on NOx Emissions

In this study, the NOx emission was determined by BSNOx. The effects of LP fraction, eS rpm, and
power on NOx emissions are shown on the right side of Figure 9. As the eS rpm and power increased,
the fuel efficiency improved as a result of better thermal efficiency. However, as the thermal efficiency
improved, the in-cylinder pressure and temperature increased. As a result, thermal NOx increased
due to the higher eS power and rpm. As the LP fraction in each case increased, the NOx emission
was reduced due to the cooled EGR (because the intake air increased). The cooled EGR has better
dilution characteristics than the HP-EGR. In case 2 (Figure 9) the BSNOx increased rapidly when eS
rpm was 10,000 rpm in LP fraction 0 cases, because as the eS power and rpm increased, the intake air
pressure became higher than the EGR pressure of the HP-EGR, thereby decreasing the EGR induction
rate. Thus, the NOx emissions increased due to a lack of EGR. Results for the other cases were similar
to those of case 2. Moreover, these results were similar to those of previous research [15,27–33].

From the previous chapter and this one, it can be seen that, as the eS rpm or power increased,
the fuel efficiency improved, but NOx emissions also increased due to the higher in-cylinder pressure
and temperature. Thus, to improve fuel efficiency and NOx emissions simultaneously under heavy
EGR, dual-loop EGR, and eS conditions, a DoE and multi-objective Pareto optimization method should
be applied.

3.4. DoE and Multi-Objective Pareto Optimization

The results showed that BSFC decreased as brake thermal efficiency increased. Moreover, as
efficiency increased, NOx emissions increased simultaneously. These characteristics were influenced
by the heavy EGR, eS power, rpm, and LP fraction. Thus, to improve thermal efficiency and NOx

emissions simultaneously, the DoE and multi-objective Pareto optimization procedures were used
because the trade-off between related parameters can be optimized (here, between BSFC and BSNOx).
The detailed DoE parameters and ranges in each case are shown in Table 4. For each constant BMEP
condition, the LP fraction ranged from 0–1, except for case 1. The eS rpm range was controlled
according to the results given in Sections 3.2 and 3.3. In total, 400 cases were investigated in all LP
fractions. After the sampling, response surface plots were prepared using the sampling simulation
data and the RBFN fitting method. The RBFN fitting method has several advantages and it is used
widely in DoE methods [34]. In Figure 10, the response surface plots given by the RBFN are shown. In
case 1, for each LP fraction, BSFC and BSNOx are plotted as functions of the variables eS rpm and eS
power. BSFC and BSNOx functions were determined by these response surface plots in all cases and
all LP fractions.

After RBFN fitting, multi-objective Pareto optimization was performed to minimize both BSFC
and BSNOx; the feasible points to minimize both results are optimal Pareto fronts. These optimal Pareto
fronts and the base engine data are shown in Figure 11. By applying and optimizing heavy EGR and
eS with dual-loop EGR, engine efficiency and emission characteristics were improved simultaneously.
In case 1 (Figure 11), four LP fractions were investigated with a lack of EGR induction rate in LP
fraction 1. In each feasible Pareto-optimal front, the conditions of eS power and rpm were fixed. Thus,
by controlling eS power and rpm through these feasible fronts, the engine could be controlled to
meet the target BSFC or BSNOx, while minimizing the other trade-off results. In each case, BSFC and
BSNOx decreased with increasing LP fraction. Through the Pareto front lines, as the A/F ratio of the
engine increased, the BSNOx increased with decreased BSFC. In cases 1–4, eS power was dominant in
controlling the A/F ratio, but in case 5, the A/F ratio was controlled predominantly by eS rpm.
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Figures 12–16 show the A/F variation through Pareto front lines and dominant A/F controlling
factors: eS power versus rpm. The controlling parameters are discussed in detail in the next section.
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3.5. Design Parameter Recommendations

In Figures 12–16, the eS power, eS rpm, and A/F ratio variations are plotted through Pareto fronts
on typical LP fractions in each case (LP fractions: case 1, 0.25; cases 2 and 3, 0.5; case 4, 0.75; case 5, 1.0).
In each case, BSFC decreased and BSNOx increased as the A/F ratio increased through Pareto-optimal
lines. In cases 1–4, the A/F ratio was controlled predominantly by eS power. Case 1 was a low-load
operation condition where the air flow rate was low. Thus, as eS power increased, the A/F ratio
increased dramatically. In cases 2 and 3, the A/F ratio was controlled primarily by eS power. However,
as it reached the maximum power of eS = 1.5 kW, the A/F ratio was controlled by increasing eS rpm.
This means that more air can be introduced into the engine by increasing eS rpm when the maximum
power is already applied. In case 4, the A/F ratio was controlled only by eS power. This was because the
base boost pressure in case 4 was 1.68 bar, which is high enough, and the EGR rate difference between
the base and heavy EGR condition was quite low (~10.42%) versus the other conditions. In case 5, the
A/F ratio was controlled predominantly by eS rpm. This will be discussed in the next chapter.

3.6. LP Fraction Effects on eS Power and rpm

In Section 3.3, the effects of LP fraction on fuel efficiency and NOx emissions were investigated.
The fuel efficiency increased and NOx emissions decreased. In Figures 17–19, the effects of LP fraction
on eS power and rpm are shown. In cases 3 and 4, eS power was the major variable controlling the A/F
ratio. As the LP fraction increased, the eS power decreased at the same BSFC level. This is because,
at the same pressure ratio, the air flow rate increases when the LP fraction increases, making the eS
operate with higher efficiency. In case 5, Figure 19 shows that eS power was the major controller of the
A/F ratio in the LP fraction 0 case. However, as the LP fraction increased, eS rpm became the dominant
controller of the A/F ratio. In the cases wherein the LP fraction = 0.5 and 1.0, as the LP fraction
increased, eS power and rpm decreased under the same BSFC conditions. This was for the same reason
as in cases 3 and 4, i.e., the eS operated in a higher efficiency area as the LP fraction increased.
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3.7. Optimization Results

In Figures 20 and 21, the base engine, heavy EGR conditions, and optimization results are
compared. The selected LP fractions are case 1 with an LP fraction of 0.25, cases 2 and 3 with LP
fractions of 0.5, case 4 with an LP fraction of 0.75, and case 5 with an LP fraction of 1.0. The top panel
of Figure 20 shows the intake pressure of the base engine and the eS pressure ratio and the optimized
intake pressures. In case 4, the eS pressure ratio was lower than that of the other cases, so that its A/F
ratio was controlled by eS power alone. In the bottom panel of Figure 20, the A/F ratios are compared.
By applying heavy EGR, the A/F ratio decreased. However, by applying and optimizing eS, the A/F
ratio increased, so that the thermal efficiency of the engine also increased. However, in the case of
an intake pressure increase, Pmax would also be expected to increase. In the top panel of Figure 21,
Pmax for the optimized engine is shown. The maximum Pmax was 112.53 bar, which was lower than
the engine’s maximum pressure limit (165 bar). Thus, it was rational to apply the maximum Pmax.
As shown in the middle panel of Figure 21, the BSFC under all conditions decreased when applying
and optimizing eS and dual-loop EGR. BSFC decreased by a maximum of 5.86% in case 1. However,
for the whole engine system, the eS power of 0.54 kW needs to be considered. Finally in the bottom
panel of Figure 21, by applying heavy EGR and dual-loop EGR, BSNOx decreased with better thermal
efficiency. BSNOx decreased by a maximum of 63.73% in case 5. In case 1, BSFC decreased by 5.86%
but BSNOx decreased by 32.87% simultaneously.
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4. Conclusions

The fuel efficiency and NOx emission characteristics of a 1.4 passenger car diesel engine with an
eS and dual-loop EGR system were investigated using a 1D engine cycle simulation. Both BSFC and
BSNOx were improved simultaneously using a multi-objective Pareto optimization process.

The results of the study can be summarized as follows:

• The engine model was validated with experimental data in five WLTP reference states, using the
DI-pulse combustion model. A constant BMEP controller, an eS, and a dual-loop EGR system
were added to investigate their effects on the diesel engine.

• Heavy EGR was applied in each case. By applying heavy EGR, NOx emissions were decreased by
a maximum of 84%, whereas BSFC deteriorated by a maximum of 4%.

• The effects of eS power, eS rpm, and LP fraction were investigated under constant BMEP conditions.
As eS power and rpm increased, the BSFC of the engine decreased. This was because the thermal
efficiency also increased due to an increase in intake pressure. However, the increase in BSNOx

was due to an increase in thermal NOx emissions. Moreover, as the LP-fraction increased, BSFC
and BSNOx both decreased due to the increased efficiency of the turbocharger and the cooled EGR.

• Using DoE and RBFN methods, response surface plots of BSFC and BSNOx were obtained
according to eS power and rpm under all LP fraction conditions. A multi-objective Pareto
optimization was conducted using response surface plots and optimal Pareto fronts were obtained.

• By tracking the A/F ratio through the Pareto front lines, it was seen that, although as the A/F ratio
increased the fuel efficiency of the engine increased, NOx emissions also increased simultaneously.
The A/F ratio was controlled primarily by eS power. As the LP fraction increased, the power
needed to obtain the same BSFC decreased. This was because eS efficiency increased in response
to an increase in the air flow rate. However, in case 5, as the LP fraction increased, eS rpm became
the major controller of the A/F ratio and little extra power was needed to achieve the same BSFC.

• By applying and optimizing heavy EGR, eS, and dual-loop EGR, NOx emissions were decreased
by 63.73% in case 5. Moreover, the efficiency was improved by a maximum of 5.86% in case 1, in
which the NOx emissions were decreased by 32.87%.
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Abbreviations

CI Compression ignition
NOx Nitrogen oxides
PM Particulate matters
WLTP Worldwide harmonized light-duty vehicles test procedures
EGR Exhaust gas recirculation
DPF Diesel particulate filter
LNT Lean NOx trap
SCR Selective catalytic reduction
eS Electric supercharger
LTC Low-temperature combustion
HP-EGR High-pressure EGR
LP-EGR Low-pressure EGR
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HECC High-efficiency clean combustion
BSNOx Brake-specific NOx

ESI EGR split index
NEDC New European Driving Cycle
BSFC Brake-specific fuel consumption
DoE Design of experiment
BMEP Brake mean effective pressure
A/F ratio Air fuel ratio
TDC Top dead center
PID Proportional integral derivative
DI-pulse Diesel multi-pulse
IVC Intake valve closing
LHS Latin hypercube sampling
RBFN Radial basis function network
rpm revolution per minute
LSM Least-squares method
ANN Artificial neural network
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