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Abstract: In order to solve the problem of pollution of acid mine drainage (AMD), such as low pH value
and being rich in SO4

2−, Fe and Mn pollution ions, etc., immobilized particles were prepared by using
sugar cane-refining waste (bagasse), a natural composite mineral (called medical stone in China) and
sulfate-reducing bacteria (SRB) as substrate materials, based on microbial immobilization technology.
Medical stone is a kind of composite mineral with absorbability, non-toxicity and biological activity.
The adsorption capacity of medical stone is different according to its geographic origins. Two dynamic
columns were constructed with Column 1 filled by Fuxin’s medical stone-enhanced SRB immobilized
particles, and Column 2 filled by Dengfeng’s medical stone-enhanced SRB immobilized particles as
fillers. The treatment effect on AMD with SRB-immobilized particles enhanced by medical stone from
different areas was compared. Results showed that Column 2 had better treatment effect on AMD.
The average effluent pH value of Column 2 was 6.98, the average oxidation reduction potential (ORP)
value was −70.17 mV, the average removal percentages of SO4

2−, Fe2+ and Mn2+ were 70.13%, 83.82%
and 59.43%, respectively, and the average chemical oxygen demand (COD) emission was 555.48 mg/L.

Keywords: acid mine drainage; medical stone; bagasse; sulfate-reducing bacteria;
immobilized particle

1. Introduction

As the main body of energy, coal resources are one of the main driving forces of rapid economic
development [1]. Coal mining destroys groundwater resources, produces greenhouse gases such as
carbon dioxide and methane [2], and produces large amounts of solid waste. Some associated minerals
in coal mines will undergo oxidation reactions after contact with water and oxygen, and dissolve SO4

2−

and a variety of metal ions to form acid mine drainage (AMD). AMD is characterized by extremely
low pH value and elevated in SO4

2−, Fe2+, Mn2+ and other polluting ions [3]. The untreated AMD
directly flows into surface water and groundwater, which will adversely impact water resources [4].
AMD has become a global environmental threat, seriously affecting the water resources and soil
ecosystem around the coal-mining areas [5]. Therefore, the problem of repairing AMD pollution has
been studied by some domestic scholars. The study found that heavy metals in acid mine water can
be removed by adsorption, ion exchange, reverse osmosis and other methods, but there are some
disadvantages such as saturation of adsorption, susceptible to external factors, and high maintenance
costs [6,7]. In recent years, microbial methods represented by sulfate-reducing bacteria (SRB) have
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been considered as a promising alternative to traditional methods due to their high treatment efficiency,
low operating cost and strong reproducibility [8,9]. However, SRB growth is inhibited by low pH
and high concentration of metal ions [10], and continuous carbon source addition and other issues
have limited the large-scale application of microbial method. Microbial immobilization technology
can create a suitable microenvironment, improve biological activity and toxicity resistance, which has
become one of the most effective measures to solve the above problems.

In order to improve the adaptability and long-term efficiency of microbial immobilization particles
in the treatment of AMD, the structure and characteristics of the immobilized particles were improved
by adding substrate materials in the immobilization process, which has become an important part
of the study of the immobilization method of SRB. Bagasse, a sugar cane-refining waste, contains
soluble carbon sources and easily decomposable substances. The study found that the growth and
the metabolism activity of SRB using bagasse as the carbon source was better than that of corncob
and peanut shell, and bagasse could provide SRB with a more durable carbon source [11]. Therefore,
bagasse is an ideal cohesive carbon source material for microbial immobilized particles. The main
nature of the original rock of medical stone is granite which is formed by long-term weathering and
other geological effects [12]. Medical stone is a kind of composite mineral or medicinal rock with
absorbability, non-toxicity and biological activity [13,14]. The main chemical composition of medical
stone is aluminosilicate, including SiO2, Al2O3, Fe2O3, FeO, MgO, CaO, K2O, Na2O, TiO2, P2O5, MnO,
and etc., containing all the major elements required by biology. It has large surface area, more pores and
strong cation exchange capacity, and has been widely used in wastewater treatment [15,16]. In addition,
medical stone has a good bidirectional adjustment ability to the pH value in the aqueous solution, and
it is capable of adsorbing and fixing metal ions [17,18]. Therefore, if medical stone is used as the filler
of microbial immobilized particles, not only the activity of acid pH to SRB can be reduced, but also the
metal ions in AMD can be removed by adsorption. However, to date few studies focus on the use of
medical stone as microbial-immobilized particulate filler, and even fewer comparative studies focus on
the characteristics of different kinds of medical stone as fillers to prepare bio-immobilized particles.

Therefore, the medical stone-enhanced sulfate-reducing bacteria-immobilized particles were
prepared using medical stone, bagasse and SRB as substrate materials for this paper, based on microbial
immobilization technology. The bagasse was used as the slow release carbon source to ensure normal
metabolism of SRB in the particles. With the bidirectional pH regulation and adsorption characteristics,
medical stone was used to reduce the toxic effect of acidic pH and high concentration metal ions
on SRB. Two groups of dynamic columns was constructed by using medical stone from Fuxin and
medical stone from Dengfeng as the substrate material of SRB-immobilized particles. By comparing
and analyzing the changes of concentration of SO4

2−, Mn2+, and Fe2+, pH increase, oxidation reduction
potential (ORP) value, chemical oxygen demand (COD) release and other indicators, the ability of the
two particle systems to treat AMD was determined to optimize the substrate materials composition of
the immobilized particles. Finally, the particles before and after the reaction would be analyzed by a
scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS)
probe and X-ray diffractometer (XRD). The internal mechanism of pollutants removal by immobilization
particles was studied further, the synergistic mechanism of different kinds of medical stone and SRB
was revealed, and the difference and feasibility of removal of AMD pollution by different kinds of
medical stone was studied. These studies provide a scientific theoretical basis and technical reference
for the practical application of SRB immobilization particles enhanced by medical stone.

2. Material and Methods

2.1. Experimental Materials

Fuxin’s medical stone (1): The medical stone was taken from Fumeng County, Fuxin City, Liaoning
Province. After drying and crushing, the medical stone with a particle size of 0.046–0.074 mm
was sieved.
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Dengfeng’s medical stone (2): The medical stone, 0.046–0.074 mm in size, was purchased from
Gongyi Wanying Environmental Protection Material Company in Dengfeng City, Henan Province.
According to Table 1a, the two kinds of medical stone contain similar macroelements. However,
the content of SiO2 in the Dengfeng medical stone is significantly higher than that of Fuxin’s, while the
content of Fe, Ti and P is slightly lower. According to Table 1b, the content of beneficial elements such
as Fe, Zn, Na and Ni leached from Dengfeng’s medical stone is similar to that of Fuxin, while the
leaching amount of Ca, Mg, P, Sr and other elements are obviously higher than that of Fuxin’s. In
addition, the content of toxic elements leached from medical stone from Dengfeng is significantly
lower than that of Fuxin’s.

Table 1. Comparison of two kinds of medical stone.

(a) Comparison of Macroelements of Two Kinds of Medical Stone (%).

Components SiO2 Al2O3 Fe2O3 FeO TiO2 CaO MgO MnO K2O Na2O P2O5 H2O+ S
1 65.19 15.36 2.34 2.01 0.54 3.88 1.72 0.13 3.31 3.67 0.22 1.11 -
2 71.79 15.02 0.98 0.40 0.11 1.48 1.10 0.01 3.32 4.46 0.06 1.17 0.01

(b) Chemical Composition Comparison of Two Kinds of Medical Stone after Soaking at 20 ◦C for 48 h.

Beneficial and Other Elements
(µg/g) Ca Fe Mg Zn K Na P Ni Sr

1 2.82 1.04 1.51 0.008 9.3 23.2 0.02 <0.001 -
2 16.4 0.45 2.17 ≤0.007 1.47 17.9 0.07 <0.005 0.09

Toxic Elements (µg/g) Pb As Hg Cd

1 <0.002 <0.005 <0.001 <0.0002
2 <0.002 - - -

Modified Starkey medium: 0.5 g Na2SO4, 1.0 g NH4Cl, 0.5 g K2HPO4, 0.1 g CaCl2·H2O, 2.0 g
MgSO4·7H2O, 1.2 g (NH4)2Fe(SO4)2·6H2O, 0.1 g ascorbic acid, 4.0 mL sodium lactate, 1.0 g yeast
extract, and 1L distilled water, with pH = 7.0, were sterilized at 121 ◦C for 30 min.

SRB sludge: The wet mud at the foot of the coal gangue pile in Fuxin was taken as seed mud.
Then it was inoculated into sterilized modified Starkey medium for anaerobic culture. The SRB with
strong activity was enriched and cultured.

Bagasse: The bagasse was taken from a sugar factory in Huizhou, Guangdong Province,
and washed three times with deionized water. After drying and pulverizing, the bagasse particles
with a size of about 0.149 mm were sieved.

AMD: The concentrations of Fe2+, Mg2+, Mn2+, Ca2+ and SO4
2− in the AMD simulated in

laboratory were 14 mg/L, 50 mg/L, 6 mg/L, 100 mg/L and 816 mg/L respectively, and the pH value was
4.0.

2.2. Experimental Apparatus and Method

Preparation method of immobilized particle: Based on the preliminary results of the research
group, the preparation method of immobilized particle is as follows [19]. The mass fraction of 9% of
PVA and 0.5% of sodium alginate were dissolved in distilled water. After being sealed for 24 h at
normal temperature, it was placed in a constant temperature water bath and stirred at 90 ◦C until
no bubbles formed. The bagasse with a mass fraction of 4.5% and 15% of medical stone from Fuxin
(or medical stone from Dengfeng) were slowly added to the gel, stirred well until it was evenly
distributed, and cooled to room temperature. The culture solution containing the SRB sediment was
centrifuged at 3000 rpm for 10 min and the supernatant was removed; 30 mg/L of the SRB-containing
precipitate was added to the above gel mixture and stirred evenly. The gel mixture was dropped into
2% CaCl2 saturated boric acid solution with a specific syringe and the particles were removed after 4
h of cross-linking and stirring with a 100 rpm agitator. Finally, the particles were washed with 0.9%
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saline and activated in an anaerobic environment with a modified Starkey medium solution without
organic inredients for 12 h before being used. According to the above method, Particle No.1 (medical
stone-enhanced SRB-immobilized particles from Fuxin) and Particle No.2 (medical stone-enhanced
SRB-immobilized particles from Dengfeng) were prepared separately.

An organic glass tube with an inner diameter of 54 mm and height of 500 mm was used as the
reaction vessel in the dynamic experiment, and the dynamic experimental apparatus is shown in
Figure 1. Two dynamic columns with a height of 250 mm were constructed, including Column 1 filled
with medical stone enhanced SRB immobilized particles from Fuxin and Column 2 filled with the
particles from Dengfeng. The tubes were filled with 50 mm quartz sand of 3–5 mm in diameter on the
top and bottom of immobilized particles, for fixed and protective purposes. The AMD flew in from the
bottom and out from the top to ensure sufficient react between the immobilized particles and AMD
in an anaerobic environment. The flow rate of the AMD was 0.26 mL/min controlled by a peristaltic
pump. The test was carried out continuously and sampled once a day at 7:30 a.m. to check the pH
values, ORP values and SO4

2−, Fe2+, Mn2+, and COD concentrations in the AMD influent water and
the effluent water of the two dynamic columns. The removal percentages of SO4

2−, Fe2+ and Mn2+

ions in the AMD influent water by two dynamic columns were calculated.
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Figure 1. System diagram of dynamic testing device.

Removal percentage = ((C0 −Ct)/C0)× 100% where, C0 is the initial ion concentration in AMD, mg/L.
Ct is the residual ion concentration in the effluent water after dynamic experimental treatment, mg/L.

2.3. Water Quality Detection Methods

pH: glass electrode method; ORP: ORP detector; SO4
2−: barium chromate spectrophotometry

(HJ/T 342-2007); Mn2+: potassium periodate spectrophotometry (GB 11906-89); Fe2+: phenanthroline
spectrophotometry (HJ/T 345-2007); COD: potassium dichromate method (HJ/T 399-2007).

3. Results and Discussion

3.1. Analysis of the Change of pH and Oxidation Reduction Potential (ORP)

From Figure 2a, the effluent pH values were improved in the dynamic reaction process, and the
average effluent pH values of Column 1 and Column 2 were 6.69 and 6.98, respectively. At the same
time, the effluent ORP values of both Column 1 and Column 2 showed a trend of decreasing first and
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then increasing, and the average ORP values were −63.74 mV and −70.17 mV, respectively. On 1–7
days, the pH value increased rapidly, mainly due to the pH adjustment ability of medical stone [18] and
the tight binding of ligands on the surface of bagasse to H3O+ [11]. The rapid decrease of effluent ORP
value at this stage was due to the reaction between AMD and SRB in the particles. The study found that
the quantity and activity of anaerobic bacteria such as SRB are important factors for changing the ORP
value, and the reducing environment caused by the decrease of ORP value further promotes the growth
and reproduction activities of anaerobes [20]. On 8–23 days, the strains gradually adapted to AMD
environment, so the effluent pH value tended to be stable, ORP value decreased to negative value, and
the filling layer began to blacken. Among them, the effluent pH value of Column 1 was stable between
6.67 and 7.01, and that of Column 2 was stable between 7.11 and 7.35. At this time, the pH regulation
mainly depended on the SRB growth and metabolism to produce alkaline substances. The sugars
produced by the hydrolysis of bagasse provided a sufficient carbon source for SRB, which increased the
amount of sulfate reduction. Hao T. [21] found the sulfate reduction process is accompanied by organic
carbon mineralization, bicarbonate production and, subsequently, an increase in pH and alkalinity.
At the same time, bagasse and medical stone absorbed the free H+ by electrostatic adsorption, so the
pH of the effluent was stable in the neutral range, which can provide favorable growth conditions
for SRB [22] and promote the growth of SRB. Studies have shown that the composite minerals such
as quartz and feldspar in the medical stone [23] have a strong regulatory effect on acidic pH. At this
stage, the reason why the effluent pH of Column 2 was significantly higher than that of Column 1
is that the pH regulation effect of Dengfeng’s medical stone was better than that of Fuxin, and the
promotion effect of Dengfeng’s medical stone on SRB growth was more obvious. The high-efficiency
regulation of pH of medical stone from Dengfeng promoted the growth and metabolism of SRB, and
the ORP value of the Column 2 effluent was optimal and slightly fluctuated. After 24 days, the effluent
pH gradually decreased, while the effluent ORP value gradually increased. This indicated that the
reduction of carbon source released by bagasse, low pH and high concentration of metal ions reduce
the biological activity of SRB [24], resulting in a decrease in the ability of microbial metabolism to
produce alkalinity and a decrease in the pH of the effluent. The proliferation and activity of SRB were
inhibited, resulting in an increase in the effluent ORP value. Chang [25], Neufeld [26] and other studies
found that SRB can grow normally under the condition that the ORP value is negative, and the SRB
reduction activity decreases with the increase of ORP value. In addition, the adsorption of H+ of
bagasse and medical stone in the particles being saturated gradually was another reason.

3.2. Analysis of the Removal Effect of SO4
2−

From Figure 2b, in the dynamic reaction process, although both columns had the removal effect
on the SO4

2− in the AMD influent, the removal effect of Column 2 was better than that of Column
1. The average removal percentages of SO4

2− by Column 1 and Column 2 were 59.93% and 70.13%,
respectively. The highest removal percentages of SO4

2− by Column 1 and Column 2 were 70.55%
and 81.44%, respectively, and the corresponding residual concentrations of SO4

2− were 266.1 mg/L
and 159.8 mg/L respectively. On 0–6 days, the residual concentration of SO4

2− decreased rapidly,
while the removal percentage of SO4

2− increased significantly. It was because the SRB in the particles
gradually adapted to the new living environment at the initial reaction stage, and made SO4

2− become
an electron acceptor with its own metabolic activity, and it was reduced to S2− [27]. In addition,
the beneficial elements released by the medical stone and the organic matter produced by the hydrolysis
of bagasse could provide trace elements for the growth and metabolism of SRB, which could enhance
the biological activity of SRB, and accelerate the metabolism of SO4

2−. Therefore, the concentration of
SO4

2− decreased rapidly. On 7–23 days, bagasse and medical stone provided sufficient carbon and
trace elements for SRB. Therefore, the activity of SRB reached the highest level, with the strongest
dissimilation and reduction ability to SO4

2−, and the highest removal percentage of SO4
2−. At this

stage, the removal effect of Column 2 on SO4
2− was better than that of Column 1, because the alkaline

materials and trace elements released by the medical stone from Dengfeng were more than that of
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the medical stone from Fuxin. The biological activity of SRB can be enhanced by alkaline and trace
elements, which promoted the transformation of SO4

2−. After 24 days, the concentration of SO4
2−

increased significantly, possibly due to insufficient hydrolysis of bagasse at a later stage, which could
not provide enough nutrients for SRB. At the same time, since the precipitate produced in the previous
reaction adhered to the surface of the particle, which blocked the internal channels of the particles,
the matrix could not exchange ions with the outside. Therefore, the activity of SRB was low, and the
removal percentage of SO4

2− decreased. In addition, studies have shown that the presence of sulfides
and metal ions can interfere with the biological removal of sulfate by SRB [28,29].
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3.3. Analysis of the Removal Effect of Fe2+

From Figure 2c, the average removal percentages of Fe2+ by Column 1 and Column 2 were 79.98%
and 83.82%, respectively, which means Column 2 performed better than Column 1. The highest removal
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percentages of Fe2+ by Column 1 and Column 2 were 83.37% and 88.03%, respectively, and the residual
concentrations of Fe2+ in the corresponding effluent were 2.21 mg/L and 1.68 mg/L respectively. On 1–7
days, the removal percentage of Fe2+ by Column 1 increased rapidly from 60.42% to 82.82%, and that
by Column 2 increased rapidly from 68.25% to 86.39%. The reason was that the medical stone and
bagasse in the initial reaction stage had a strong adsorption capacity for Fe. Z.U. Halim [30] found that
bagasse has an adsorption capacity for Fe, and the adsorption of Fe conforms to the pseudo-secondary
adsorption kinetics model. Medical stone has more pores and strong physical adsorption capacity
for heavy metal elements [31,32]. On 8–23 days, the removal percentage of Fe2+ by Column 1 was
78.25–83.37%, and that by Column 2 was 87.56–86.00%. At this stage, the removal percentage of Fe2+

by the two dynamic columns was relatively high and stable, which resulted from the synergistic effect
of bagasse, medical stone and SRB. On the one hand, Fe in AMD was adsorbed by bagasse and medical
stone. On the other hand, medical stone released a large amount of trace elements and bagasse released
a large amount of organic matter, which provided sufficient nutrition for growth and metabolism of
SRB. The dissimilation reduction ability of SRB to SO4

2− was enhanced, and the reduction product
S2− increased. Metal sulfide precipitate, formed by the combination of S2− and Fe, made the removal
percentage of Fe2+ optimal and stable. At this stage, the removal effect of SO4

2− by Column 2 was
better than that of Column 1, because the enhanced effect of Dengfeng’s medical stone was better than
that of Fuxin. On 23–30 days, the removal percentage of Fe2+ by Column 1 decreased from 81.77% to
33.88%, and the removal percentage of Fe2+ by Column 2 decreased from 86.50% to 36.45%. The results
were consistent with the removal effect of SO4

2−. This indicated that the sediments produced in the
first two stages accumulated on the surface of the particles, and the organic matter released from the
bagasse decreased, resulting in a decrease both in activity of SRB and in the ability to reduce SO4

2−.
Therefore, the removal effect of Fe2+ was poor.

3.4. Analysis of the Removal Effect of Mn2+

From Figure 2d, the highest removal percentages of Mn2+ by Column 1 and Column 2 were
61.21% and 66.61%, respectively, and the residual concentrations of Mn2+ in the corresponding effluent
were 2.25 mg/L and 1.97 mg/L. Among them, the average removal percentages of Mn2+ by Column 1
and Column 2 were 55.81% and 59.43%, respectively, which means Column 2 functioned better than
Column 1. On 1–8 days, the removal percentage of Mn2+ by Column 1 increased from 30.51% to
60.34%, and Column 2 increased from 35.59% to 65.34%. On 9–23 days, the removal percentage of
Mn2+ by Column 1 was 56.13–61.21%, and Column 2 was 63.39–66.61%. The removal mechanism of
Mn from AMD by both columns was similar to that of Fe, but the average removal percentage of Fe2+

was slightly higher than that of Mn2+. Karathanasis [33] found that in the presence of other metal
ions, the biological sulfide of Mn2+ is difficult to form, so Mn2+ is mainly removed by adsorption.
Meanwhile, Soltan [34] proved that bagasse can adsorb metal ions in solution, and its adsorption effect
on Fe is better than that on Mn. On 24–30 days, the removal percentage of Mn2+ by Column 1 in the
effluent decreased from 49.34% to 10.34%, and that by Column 2 decreased from 46.23% to 14.48%.
The decreasing trend of removal percentage of Mn2+ by Column 1 and Column 2 were consistent with
SO4

2− and Fe2+. The adsorption of Mn2+ by bagasse and medical stone in the immobilized particles
tended to be saturated. The SRB in the immobilized particles is poisoned and inhibited by Mn2+ and
low acidity in the AMD influent [35], resulting in a significant decrease in the removal percentage of
Mn2+ in the later reaction stage.

3.5. Analysis on Release of Chemical Oxygen Demand (COD)

From Figure 2e, in the dynamic reaction process, COD was released from the effluent of Column
1 and Column 2, and the average release of COD was 631.70 mg/L and 555.48 mg/L, respectively.
When the release reached equilibrium, the COD release of effluent by Column 2 was lower than
that of Column 1. The COD of effluent from the dynamic column was related to the organic matter
released from bagasse and the leakage of SRB biometabolites in immobilized particles. Therefore,
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the biological activity of SRB in the immobilized particles of Column 2 was stronger, the ability of
SRB to grow with the organic matter released by bagasse as a carbon source was stronger, and the
leakage amount of hydrolyzed products of bagasse and SRB biometabolites in the particles was smaller.
On 1–7 days, the release of COD in the effluent by Column 1 increased from 203 mg/L to 646 mg/L,
and Column 2 increased from 102 mg/L to 594 mg/L. The rapid increase of COD release was due to the
hydrolysis of bagasse on the surface of immobilized particles into sugar and other organic compounds.
On 8–23 days, the COD release in the effluent of Column 1 and Column 2 were 712–764 mg/L and
613–659 mg/L respectively. At this stage, the bagasse inside the immobilized particles continued to
hydrolyze, resulting in a significant increase in COD release. At the same time, the activity of SRB in the
immobilized particles and the ability to utilize organic substances were gradually enhanced. Studies
have shown that natural cellulose and lignin contained in bagasse can be decomposed by anaerobic
fermentation microbial into small molecular substances, which can be used by SRB [36,37]. Therefore,
When the amount of organic matter released from bagasse and the amount of organic matter utilized
by SRB remain stable, the amount of COD released in the system basically remains stable. At this time,
the COD value of Column 2 effluent was significantly lower than that of Column 1, mainly because the
medical stone from Dengfeng in Column 2 had a better repair effect on AMD, enhanced the activity
of SRB, and accelerated the metabolism of organic matter. On 24–30 days, most of the bagasse in the
particles had been hydrolyzed, and the precipitate produced in the early stage blocked the internal
channel, leading to the gradual decrease of organic matter content produced by bagasse and the
significant decrease of COD release. At this time, with the continuous consumption of carbon source
released from bagasse, the COD/SO4

2− ratio is lower than the optimum carbon–sulfur ratio of 0.67 for
SRB growth [38]. As a result, the metabolic activity of SRB and the utilization rate of organic matter
decreased, and the removal effects of SO4

2−, Fe2+ and Mn2+ in AMD also decreased accordingly.

3.6. Instrumental Analysis

3.6.1. Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy (SEM/EDS) Analysis

Particle No.1 and No.2 before and after treatment of AMD were dried at 60 ◦C for 24 h. The surface
of the particles and the section structure were observed by Hitachi S-3400N field emission scanning
electron microscope equipped with Energy Dispersive X-ray Spectroscopy probe (SEM/EDS), and the
magnification was 200 times. The SEM/EDS microscopic scan results are shown in Figure 3.

From Figure 3a, before treatment of AMD with Particle No.1, there were many uneven pores
and folds on the particles surface according to SEM. Meanwhile, EDS results show that Particle No.1
mainly contained C, O, Na, Mg, Al, Si, Cl, K, Ca, Mn and Fe, and the weight percentage of each element
was 45.31%, 49.64%, 0.70%, 0.20%, 0.18%, 0.51%, 1.02%, 0.19%, 1.98%, 0.03% and 0.27%, respectively.
From Figure 3b, after treatment of AMD with Particle No.1, a large number of particles deposited on the
surface, the surface folds were significantly reduced, and no pore channels were observed according
to SEM. Meanwhile, EDS results show that Particle No.1 mainly contained C, O, S, Mn, Fe and other
elements, and the weight percentage of each element was 49.10%, 44.44%, 0.96%, 0.20% and 2.19%,
respectively. From Figure 3c, before the treatment of AMD with Particle No.2, the surface texture
of the particles was relatively flat and the pores were even from the SEM. Meanwhile, EDS results
show that Particle No.2 mainly contained C, O, Na, Mg, Al, Si, Cl, K, Ca, Mn and Fe, and the weight
percentage of each element was 45.11%, 42.32%, 0.66%, 0.17%, 0.98%, 3.72%, 1.27%, 0.34%, 3.74%, 0.04%
and 1.53%, respectively. From Figure 3d, after treatment of AMD with Particle No.2, a lot of small
particles deposited on the surface of the particles, and more pore channels were observed from the
SEM. EDS results show that Particle No.2 mainly contained C, O, S, Mn, Fe and other elements, and the
weight percentage of each element was 41.78%, 34.91%, 1.16%, 0.17% and 10.31%, respectively.
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By comparing Figure 3a–d, after the immobilized particles were treated with AMD, a large amount
of small particles were attached to the surface, and the contents of S, Mn and Fe on the surface increased
significantly. It is caused by the joint repair of AMD with medical stone, bagasse and SRB in the
particles. During the treatment of AMD, a series of complex physical adsorption, chemical replacement
and biological metabolic reactions occurred, and the precipitate formed by the reaction accumulated on
the surface of the particles. Among them, medical stone had strong pH value bidirectional adjustment
ability and metal cation exchange performance, which could repair the acidity of AMD, adsorb metal
ions in AMD, and reduce the toxic effect of low pH value and high concentration metal ions on SRB.
Studies have found that medical stone has large surface area, many pores and strong cation exchange
capacity, which can effectively fix metal ions [14,17]. Milani [39] found that bagasse can also adsorb
and remove Fe and Mn ions from the solution. The bagasse not only adsorbed and removed Fe and Mn
ions from the solution, but also released organic matter, which provide carbon source for the growth
and metabolism of SRB. The SRB contained in the particles could reduce SO4

2− to S2−, and S2− formed
precipitates with Fe and Mn ions. Therefore, the content of S, Mn and Fe in the particles increased
significantly after reaction.

By comparing Figure 3b,d, the weight percentage of S and Fe elements on the surface of the
particles after treating AMD with Particle No.2 increased significantly, and the increase rate was
significantly higher than that of Particle No.1. This indicates that the adsorption effect on Fe in AMD
solution by Dengfeng’s medical stone was better than that of Fuxin, and so was the promotion effect
on SRB activity. Under the action of medical stone from Dengfeng, SRB activity in Particle No.2
was excellent, SO4

2− could be excellently reduced to HS− and OH−, then Fe and Mn ions formed
precipitates with the reduction products in the solution. Therefore, after treatment of AMD with
Particle No.2, the increase of S and Fe content on particle surface was higher than that of Particle No.1.
This result is consistent with the AMD treatment effect in dynamic experiment.

From Figure 3e, before the dynamic reaction of Particle No.1, it is clear that a large number of
uneven folds and uneven pore channels existed in the bagasse and medical stone inside the particles
according to the SEM of the section. From Figure 3f, after treatment of AMD with Particle No.1, the
section became smooth and a small amount of deposited particles appeared on the section. The reason
for this phenomenon was that, during the process of AMD treatment, the particles exchanged ions
with outside solution. Some ions entered the interior of the particle and reacted with the matrix, so
the interior structure became relatively smooth, and a small amount of precipitation was formed and
accumulated in the interior of the particle. From Figure 3g, before the dynamic reaction of Particle
No.2, the SEM of the section showed that the bagasse and medical stone inside the particles had a large
number of flat folds and even pore channels. From Figure 3h, after treatment of AMD with Particle
No.2, a small amount of precipitate, many tiny pore channels and small raised folds appeared on the
section. The reason for this phenomenon was that a series of physical, chemical and biological reactions
had taken place during the treatment of AMD in the medical stone enhanced SRB immobilization
system. These reactions made its polluted ions remain in the internal pores in the form of precipitation,
making the internal structure relatively smooth while effectively inhibiting the diffusion of pollutants.

3.6.2. X-ray Diffraction (XRD) Analysis

The immobilized particles before and after the dynamic experiment were dried at 60 ◦C and
ground into 0.046 micron powder. The XRD-6100 X-ray diffractometer (Shimadzu, Kyoto, Japan) was
used to analyze the XRD phase of the particles. The results are shown in Figure 4.
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From Figure 4a, Particle No.1 mainly contained quartz, albite, potash feldspar, anorthite, kaolin,
chlorite, polyvinyl alcohol, sodium alginate, NH4Cl, and cellulose. From Figure 4b, immobilized
Particle No.2 mainly contained quartz, albite, anorthite, kaolin, chlorite, polyvinyl alcohol, sodium
alginate, NH4Cl, and cellulose. Quartz, albite, potash feldspar, anorthite, kaolin and chlorite in the
immobilized particles are all composite minerals in medical stone. This is consistent with the findings
of Wen Ke et al. [23]. By comparing Figure 4a,b, the diffraction peak intensity of mineral components
of medical stone from Dengfeng in Particle No.2 was stronger than that of No.1. Among them, the
diffraction peaks of albite at 23.5◦ were 461 (No.1) and 867 (No.2), potash feldspar at 41.76◦ were
175 (No.1) and 304 (No.2), kaolin at 45.79◦ were 128 (No.1) and 406 (No.2), and chlorite at 25.2◦ and
38.58◦ were 255 (No.1), 443 (No.2) and 126 (No.1), 291 (No.2) respectively. Combined with the water
quality test results, the mineral components such as albite, anorthite, kaolin, and chlorite in medical
stone from Dengfeng contained in Particle No.2 had a strong regulating effect on acidity and heavy
metals in AMD. The diffraction peaks of polyvinyl alcohol appeared at 22.3◦and 27.4◦of 2θ for both
two immobilized particles. Hai T. A. P. et al. have shown that the diffraction peak of PVA at 2θ values
of 22.31◦, which corresponds to the (200) plane of the monoclinic unit cell [40]. The diffraction peak
of sodium alginate appeared at 13.7◦ and 23.0◦ of 2θ, which is consistent with the results of Wang,
Q. [41]. The diffraction peak of cellulose appears at 15◦, 17◦, 21◦, and 23◦ of 2θ. Studies have shown
that the chemical composition of bagasse is about 50% cellulose, 25% lignin, 25% hemicellulose and a
small amount of extract [42,43]. XRD analysis shows that the immobilized particles contain cellulose.
Flauzino [44] found that cellulose appeared at 15◦, 17◦, 21◦ and 23◦ of 2θ are cellulose I-type structure.
From Figure 4a,b, after treatment of AMD with both immobilized particles, new phases of MnS, FeS and
Mn(OH)2 appeared in the XRD patterns. This is due to the fact that the medical stone and bagasse in
the immobilized particles promoted the reduction of SO4

2− to S2− and OH− by SRB, and the metal
ions were removed as precipitates of metal sulfides and metal hydroxides. In addition, some Fe2+ and
Mn2+ were removed by adsorption of bagasse. The results are consistent with SEM/EDS analysis and
changes of AMD detection indexes.

4. Conclusions

(1) Dynamic Column 2 had a better repair effect on AMD than Column 1. Therefore, the optimal
composition of the substrate material in immobilized particles was bagasse, SRB and medical stone
from Dengfeng.
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(2) The SEM/EDS analysis showed that the contents of S, Mn and Fe on the surface of the
particles increased significantly after treatment of AMD. XRD analysis shows that FeS, MnS and
Mn(OH)2 appeared after treatment of AMD. Medical stone, bagasse and SRB in immobilized particles
worked together to remove AMD pollution through a series of complex biological, physical and
chemical reactions.
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