± 180° Discontinuous PWM for Single-Phase PWM Converter of High-Speed Railway Propulsion System

Min-Sup Song 1, In-Ho Cho 2,* and Jae-Bum Lee 3

1 Railroad Test & Certification Division, Korea Railroad Research Institute, Uiwang-si 16105, Korea; mssong@krri.re.kr
2 Smart Electrical & Signaling Division, Korea Railroad Research Institute, Uiwang-si 16105, Korea
3 Department of Railroad Electrical and Electronics Engineering, Korea National University of Transportation, Uiwang-si 16106, Korea; leejb@ut.ac.kr
* Correspondence: inhocho@krri.re.kr; Tel.: +82-31-460-5469

Received: 26 February 2020; Accepted: 24 March 2020; Published: 26 March 2020

Abstract: As high-capacity alternating current/direct current (ac/dc) power conversion systems, single-phase pulse-width modulation (PWM) converters used in high-speed railway propulsion systems adopt high-voltage Insulated-Gate Bipolar Transistors (IGBTs) as switching elements. Due to their high breakdown voltage characteristics, the switching dynamics are inferior to those of low-voltage IGBTs and switching losses are more dominant than conduction losses despite operating at relatively low switching frequencies of hundreds to several kHz. To solve this problem, this paper proposes ± 180° discontinuous PWM (DPWM) suitable for a single-phase circuit. With the simple addition of offset voltages, the proposed DPWM method can be implemented easily and switching losses can be reduced by half by clamping the switching legs of the H-bridge converter to the positive or negative dc rail during every half cycle. In addition, temperature deviation between the power stacks can be minimized by using selective application of clamping modes. The validity and effectiveness of the proposed DPWM are verified through simulations and experiments of a prototype converter.

Keywords: high-speed railway propulsion system; high-voltage IGBT; PWM converter; discontinuous PWM; switching loss

1. Introduction

Recently, the number of personal vehicles globally has been increasing rapidly due to expeditious industrialization and urbanization, causing traffic congestion and environmental pollution. In tandem with efforts to solve this problem, the demand for eco-friendly and energy-efficient railway vehicles is increasing, and among them, high-speed railway (HSR) vehicles capable of high-speed and mass transportation are in the spotlight [1–3]. A high-speed railway propulsion system consists of a converter and a variable-voltage variable-frequency (VVVF) inverter to supply electric power to the traction system in the railway vehicles. Bi-directional H-bridge converters are widely used for both a unity power factor and constant direct current (dc)-link voltage controls [4]. They use high-voltage Insulated-Gate Bipolar Transistors (IGBTs) having low switching dynamic characteristics to handle high voltages and currents, resulting in high switching losses [4–6]. However, increased losses reduce the overall power conversion efficiency and are a burden on the design of the heat dissipation of the power converter. Therefore, low switching frequencies are used to keep switching losses below reasonable levels, which makes it difficult to expect a quick response to external disturbances including load and source variations. Meanwhile, recent advances in power electronics technology have enabled the use of relatively low breakdown voltage devices using multi-level converter topologies [7–10].
Multi-level converters have the advantage of having a high-power quality at relatively low switching frequencies due to their natural step-wise voltage waveform as well as the use of low breakdown voltage devices, but there are issues of increased circuit complexity and troublesome voltage balancing control. In the case of railway vehicles, the application of multi-level power systems has not yet become commonplace in the market because it is important to design the propulsion system to be as simple and robust as possible for the system reliability, safety of passengers, overall system cost, and maintenance convenience. On the other hand, a propulsion system using Silicon Carbide (SiC)-IGBT has been reported due to the recent development of power devices [11,12]. SiC-IGBT shows improved characteristics including fast switching dynamics, high breakdown voltage, low switching losses, and high thermal capacity over Si-IGBT. However, due to the low yield and high manufacturing cost, SiC-IGBT still needs more time to expand to the market. Therefore, the switching losses of power systems using simple two-level based high-voltage Si-IGBTs, such as HSR propulsion systems, should be reduced in different ways.

The classical carrier-based sinusoidal pulse-width modulation (CB-SPWM) determines the switching instant of each leg by comparing sinusoidal reference voltages with a triangular carrier [8]. Utilization of higher switching frequency creates more switching pulses, thus improving power quality and easing control of target values. However, it also increases switching losses. On the other hand, in a three-phase PWM inverter, various continuous and discontinuous modulation techniques can be implemented by adding an appropriate offset voltage [13–18]. Selecting the appropriate offset voltage can provide advantages such as reduced switching losses, improved waveform quality, and increased linear range. In particular, to reduce switching losses, switching legs can be clamped during one third of the period (120°) by using discontinuous PWM (DPWM) [14]. In general, DPWMs used in three-phase inverters are known to reduce switching losses by about 33% on average [18].

While there are various modulation techniques present for three-phase systems, the classical CB-SPWM is still widely used for single-phase systems due to the relative lack of modulation techniques. The basic idea of a suitable DPWM for a single phase system has been presented in [19]; however, no practical implementation methods or application areas have been described. Recently an application of DPWM for a single-phase PWM converter has been reported [20]. It can reduce switching losses by clamping the leg voltage for one third of a period, like the three-phase inverter, which has the advantage of equally distributed losses among switches and diodes. However, the loss reduction effect is limited, and the implementation is relatively complicated and not intuitive.

In this paper, we propose an effective ± 180° DPWM that is simple to implement and reduces switching loss by 50% compared to the existing CB-SPWM. The proposed method, which clamps either of two switching legs to positive or negative dc rails during a half power cycle, is naturally applicable to single-phase systems with two legs having 180° phase difference with each other. The proposed DPWM aims to generate an appropriate offset voltage to inhibit switching state changes in either of the two legs during the half power cycle, thereby reducing switching losses by half. The proposed method can be implemented in two ways. One is clamping the switching leg to the positive dc rail and the other is clamping it to the negative dc rail. By using these selective applications between two clamping methods, temperature deviation between power stacks can be minimized by the proposed DPWM. In this paper, we explain the basic idea of the proposed method, and suggest an offset voltage addition method that can be implemented easily. The operation characteristics of a single-phase PWM converter using the proposed DPWM and overall controller design were also considered. To verify the validity of the proposed method, a simulation was carried out and its effectiveness was confirmed by a 4 kW prototype circuit.
2. Conventional Carrier-Based Sinusoidal Pulse-Width Modulation (CB-SPWM) for Single-Phase PWM Converter of High-Speed Railway (HSR) Propulsion System

The HSR propulsion system is a power conversion system for driving and controlling a traction motor by receiving power from a catenary power source. It consists of a bi-directional PWM converter for a unity power factor and constant dc-link voltage controls and a VVVF inverter for driving the traction motor, as shown in Figure 1. The PWM converter is normally implemented by a full-bridge circuit capable of bi-directional power conversion during powering and regeneration modes. In HSR propulsion systems, it can also be composed of two interlaced full-bridge circuits for reducing input ripple current and sharing high conduction current. General rules for unity power factor control of the PWM converter are as follows. In the powering mode, a converter input voltage V_c, which is the difference in voltage between two leg voltages of V_{uv} and V_{vy}, lags behind the input voltage V_s to generate an input current I_s having the same phase as V_s. On the other hand, in the regenerative mode, V_c is controlled to be ahead to V_s to generate I_s having an opposite phase with V_s [21].

![Figure 1](image-url)
Figure 1. Circuit diagram of conventional single-phase pulse-width modulation (PWM) converter for high-speed railway (HSR) propulsion system.

To generate those appropriate references for converter input voltages V_c^*, a typical controller for the PWM converter consists of four parts, as shown in Figure 2. They include a phase-locked loop (PLL) for V_s, a voltage controller for sustaining constant dc-link voltage V_{dc} including a band rejection filter (BRF) to remove 120 Hz pulsation of the dc output stage, a current controller for shaping I_s, and a PWM generator for making PWM switching pulses corresponding to V_c^*. Since instantaneous control methods are usually used in the current controller, steady-state errors occur in systems having low control frequency bandwidth. To reduce these errors and improve the control response, the vector control methods in the dq synchronous coordinate system also can be utilized [22].
In the single-phase PWM converter, the magnitudes of the two reference leg voltages are always the same. Therefore, the switching sequence resulting from CB-SPWM is symmetrical, as shown in Figure 4a. It is similar to the space vector PWM (SVPWM) in a three-phase PWM inverter, and either of two effective voltage vectors (01) and (10) is located symmetrically between two zero voltage vectors (00) and (11) in one switching sequence. Exact duration times for those effective and zero vectors are determined to satisfy the magnitude of \(V_{c*} \) on average during the single switching period \(T_s \). In the switching pattern, “1” means that the upper switch is turned on and the lower switch is turned off in one leg, and “0” vice-versa. In the CB-SPWM method, a total of four switching state changes occur during \(T_s \).
positive dc rail, as shown in Figures 3b and 4b. The general switching pattern of UCM is determined in DPWM using UCM, the larger of the two command voltages is clamped to the positive dc rail, and here, \(V_{UX}^{**} \) is fixed on the positive dc rail when \(V_{c^*} > 0 \), and \(V_{VY}^{**} \) is clamped to the negative dc rail when \(V_{c^*} < 0 \). On the other hand, in LCM, shown in Figure 3c, \(V_{UX}^{**} \) is clamped to the negative dc rail when \(V_{c^*} < 0 \) and \(V_{VY}^{**} \) is locked to the negative dc rail when \(V_{c^*} > 0 \). Here, \(V_{UX}^{**} \) and \(V_{VY}^{**} \) are modified reference voltages for the \(UX \) and \(VY \) legs, respectively, in the proposed DPWM. As shown in Figure 4, the difference values between the two command voltages \(V_{UX}^{*} \) and \(V_{VY}^{*} \) in CB-SPWM and between \(V_{UX}^{**} \) and \(V_{VY}^{**} \) in DPWM are both preserved as \(V_{c^*} \). However, in DPWM using UCM, the larger of the two command voltages is clamped to the positive dc rail, and in LCM, the smaller command value is fixed to the negative dc rail. Looking at the switching patterns of the two clamping modes, the switching state change is reduced by half with utilization of only one of two zero vectors of (11) or (00), as shown in Figure 5b,c.
3.2. Implementation Method I: Direct Time Calculation

The proposed DPWM can be implemented in two ways. First, we will look at a direct time calculation method that calculates the dwelling times of adjacent vectors according to the position of the command voltage, similar to SVPWM applied to a three-phase inverter [23, 24]. Given the converter command voltage Vc^*, two adjacent vectors exist depending on the position of Vc^*. When Vc^* is positive, the adjacent vector is selected as a zero vector (11) or (00) located to the left of Vc^* and an effective vector (10) located to the right of Vc^*. The dwelling times T_1 and T_2 corresponding to the left vector V_1 and the right vector V_2, respectively, are determined according to the position of Vc^* and the PWM methods. The duration times of the switches U and V are equal to the sum of the dwelling times of adjacent vectors when Vc^* is in region ①. On the other hand, when Vc^* is located in the region ②, V_1 becomes (01) and V_2 becomes (11) or (00). When applying DPWM, either (11) or (00) is selected as a zero vector, according to the applied clamping modes. Table 1 shows the results of calculated dwelling times of adjacent vectors according to the position of Vc^* and the PWM methods. The duration times of the switches U and V are equal to the sum of the dwelling times of adjacent vectors representing “1” in the switching pattern during T_S.

$$Vc^*T_S = V_1T_1 + V_2T_2,$$
$$V_1 = 0, V_2 = V_{dc},$$
$$T_1 = \frac{V_{dc} - V_c^*}{V_{dc}}T_S,$$
$$T_2 = \frac{V_c^*}{V_{dc}}T_S.$$

\(\text{(2)}\)

Table 1. Adjacent vectors and their dwelling times for CB-SPWM and DPWM.

<table>
<thead>
<tr>
<th>Regions</th>
<th>①</th>
<th>②</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent Vectors</td>
<td>Left: V_1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Right: V_2</td>
<td>V_{dc}</td>
</tr>
<tr>
<td>Dwelling Time</td>
<td>T_1</td>
<td>$(V_{dc} - V_c^*)/V_{dc}T_S$</td>
</tr>
<tr>
<td></td>
<td>T_2</td>
<td>$V_c^*/V_{dc}T_S$</td>
</tr>
<tr>
<td>PWM duration time for U (0 ~ T_S)</td>
<td>CB-SPWM</td>
<td>$T_1/2 + T_2$</td>
</tr>
<tr>
<td></td>
<td>DPWM</td>
<td>$T_1/2$</td>
</tr>
<tr>
<td></td>
<td>Upper clamping</td>
<td>T_2</td>
</tr>
<tr>
<td></td>
<td>Lower clamping</td>
<td>0</td>
</tr>
</tbody>
</table>

3.3. Implementation Method II: Offset Voltage Addition

The second method to implement the proposed DPWM is to apply the appropriate offset voltage to two leg command voltages V_{ux}^* and V_{uy}^*. Equation (3) describes an offset voltage addition method.

$$Vc^* = V_{ux} - V_{uy}^*$$
$$= \left(\frac{V_e^*}{2}\right) - \left(\frac{V_c^*}{2}\right)$$
$$= \left(\frac{V}{2} + V_{offset}\right) - \left(\frac{V_c^*}{2} + V_{offset}\right)$$
$$V_{ux}^* = V_{uy}^*$$

\(\text{upper clamping mode:}\)

$$\left\{\begin{array}{ll}
\left(\frac{V_e^*}{2}\right) - \left(\frac{V_c^*}{2}\right), & \text{when } V_c^* > 0 \text{ & } V_{offset} = \frac{V_e^*}{2} - \frac{V_c^*}{2}; \\
\left(\frac{V_e^*}{2} + V_c^*\right) - \left(\frac{V_c^*}{2}\right), & \text{when } V_c^* < 0 \text{ & } V_{offset} = \frac{V_e^*}{2} + \frac{V_c^*}{2}; \\
\left(\frac{V}{2} + V_{offset}\right) - \left(\frac{V_c^*}{2} + V_{offset}\right), & \text{when } V_c^* > 0 \text{ & } V_{offset} = -\frac{V_e^*}{2} + \frac{V_c^*}{2}; \\
\left(\frac{V}{2} - \frac{V_e^*}{2}\right) - \left(\frac{V_c^*}{2}\right), & \text{when } V_c^* < 0 \text{ & } V_{offset} = -\frac{V_e^*}{2} - \frac{V_c^*}{2}.
\end{array}\right.$$

\(\text{(3)}\)
For a given reference voltage \(V^* \), the original \(U \) and \(VY \) leg command voltages are determined as \(VUX^* \) and \(VVY^* \) having equal magnitude and opposite sign for the symmetry of the single-phase system. Here, the modified reference voltages obtained by adding the appropriate offset voltage \(V_{\text{offset}} \) to \(VUX^* \) and \(VVY^* \) are called \(VUX^{**} \) and \(VVY^{**} \), respectively. Since we added the same \(V_{\text{offset}} \) to \(VUX^* \) and \(VVY^* \), the difference between \(VUX^{**} \) and \(VVY^{**} \) is the same as the original value \(V^* \). Depending on the type of \(V_{\text{offset}} \), \(VUX \) and \(VVY \) can be clamped to the positive or negative dc rail. Meanwhile, \(VUX^{**} \) and \(VVY^{**} \) must be within the linear modulation range so that their magnitudes are limited as \(-Vdc/2 < [VUX(VVY)^{**}] < Vdc/2 \). Therefore, the possible applications of \(V_{\text{offset}} \) are limited to four cases, as shown in Equation (3), according to the polarity of \(V^* \) while maintaining linear modulation.

To summarize these results, the maximum of \(VUX^* \) and \(VVY^* \) can only be clamped to \(Vdc/2 \) and the minimum can only be clamped to \(-Vdc/2 \). Attempting to lock the maximum to \(-Vdc/2 \) or the minimum to \(Vdc/2 \) causes one of the \(VUX^{**} \) and \(VVY^{**} \) to fall outside the range of linear modulation. Thus, the suitable \(V_{\text{offset}} \) for clamping the switching leg to the positive or negative dc rails is simply determined by Equation (4). In the case of \(V_{\text{offset}} = Vdc/2-\max(VUX^*, VVY^*) \), it operates in UCM and if \(V_{\text{offset}} = -Vdc/2-\min(VUX^*, VVY^*) \), it is determined as LCM.

\[
V_{\text{offset}} = \left\{ \begin{array}{ll}
\frac{Vdc}{2} - \max(V_{UX^*}, V_{VY^*}), \\
 \frac{-Vdc}{2} - \min(V_{UX^*}, V_{VY^*}).
\end{array} \right. \quad (4)
\]

As expected, the results of the two implementation methods, the direct time calculation and the offset voltage addition methods, are the same. For example, when \(V^* > 0 \) and UCM is applied, the effective duty of the switch \(V, d_Y \), by the offset voltage addition method is calculated as Equation (5). The duty extraction process involves dividing the original reference value by \(Vdc \) for normalization and a \(+0.5\) level shift for positioning duty from 0 to 1. This is the same value of \(T_1/T_s \), where \(T_1 \) is the corresponding value in Table 1. Therefore, in the following, the proposed DPWM will be described based on the offset voltage addition method, which is easier to implement.

\[
d_Y = \left(\frac{V_{\text{dc}} - V^*_C}{V_{\text{dc}}} + 0.5 \right) = 1 - \frac{V^*_C}{V_{\text{dc}}}. \quad (5)
\]

3.4. Mode Analysis

The circuit analysis of the proposed DPWM is the same as for the conventional two-leg PWM converter except that either of two switching legs is fixed to a positive or negative dc rail for every half power cycle. Figure 6 shows the main operation waveforms of the single-phase PWM converter using the proposed DPWM. With unity power factor control, the phase of \(Ls \) equals to that of \(Vs \), and \(Vc^* \) lags to \(Vs \). When UCM is applied, \(VUX^{**} \) is clamped to \(Vdc/2 \) and \(VVY^{**} \) swings downward with a sinusoidal waveform in the range of \(VUX^* > VVY^* \). On the other hand, when \(VUX^* < VVY^* \), \(VVY^{**} \) is clamped to \(Vdc/2 \), \(VUX^{**} \) swings downward. Meanwhile, when LCM is applied, \(VVY^{**} \) is clamped to \(-Vdc/2 \), \(VUX^{**} \) swings upwards in the range where \(VUX^* > VVY^* \). On the other hand, when \(VUX^* < VVY^* \), \(VUX^{**} \) is clamped at \(-Vdc/2 \), \(VVY^{**} \) swings upwards.

Figure 7 shows the equivalent circuits for each operation mode of the single-phase PWM converter using the proposed DPWM. Figure 7a–d show equivalent circuits operating in UCM, where the switches \(U \) or \(V \) are clamped to the positive dc rail during the single power cycle and the opposite non-clamped leg switches are switched in a PWM manner. In boosting mode, the inductor voltage \(V_L \) becomes \(|Vs| \), and thus the inductor current increases. In powering mode, \(V_L \) becomes \(|Vs| - Vdc \), which is negative, and thus the inductor current decreases to the contrary. In Figure 7e–h, equivalent circuits in LCM, the switches \(X \) or \(Y \) are clamped to the negative dc rail during a unit power cycle period, and the opposite leg switches are PWM-switched.
Energies 2020, 13, x FOR PEER REVIEW 8 of 17
Figure 6. Main waveforms of single-phase PWM converter using proposed DPWM (from Top, \(V_s, I_s; \) Carrier, \(V_{ux^*}, V_{vy^*}, V_{offset}; \) Carrier, \(V_{ux^{**}}, V_{vy^{**}}; V_{ux}, V_{vy}\)).

Figure 7. Equivalent circuits for DPWM based single-phase PWM converter during one power cycle when adopting UCM (a–d), and LCM (e–h).
3.5. Controller Design for Proposed DPWM

Figure 8 shows the overall control block diagram for the single-phase PWM converter with the proposed DPWM. PLL of V_s for power factor control, constant voltage controller including BRF, all pass filters, and coordinate rotation conversion for vector current control in $d\dot{q}$ synchronous coordinate system are included. When the propulsion system is operated in powering mode, the output of the voltage controller becomes the d-axis current command of the current controller, which is positive, and the q-axis current command value is 0 for unity power factor control. In contrast, if it is operated in regenerative mode, the output of the voltage controller becomes negative to make d's voltage law to satisfy the inductor voltage loop equation, as shown in Equation (6).

$$
\begin{align*}
V_{dc}^{e} &= V_{dc}^{s} - V_{dc}^{l} + \omega L p \dot{q}^{s} \quad (6).
\end{align*}
$$

Here, the superscript e denotes a synchronous frame and the subscripts d and q represent d- and q-axis elements, respectively. $\pm \omega L q LI_{dS}$ are the cross coupling terms resulting from the rotation of the axis, ω is the angular frequency of V_s, and L is boost inductance. When Vc^{e} is generated from the current controller, the appropriate V_{offset} for switching suppression is determined by the proposed DPWM technique, and the final leg command voltages V_{ux}^{**} and V_{vy}^{**} are compared with the triangular carrier to output the gate signals $Gate_U$, $Gate_X$, $Gate_V$, and $Gate_Y$ for PWM switching.

4. Simulation

4.1. Operation and Performance Verification

A Piecewise Linear Electrical Circuit Simulation (PLECS) simulation was performed to verify the operation of the proposed DPWM [25]. The circuit used in the simulation is the same as the single-phase PWM converter in Figure 1. In order to compare the performance and losses with the existing CB-SPWM, the actual datasheet-based IGBT thermal module provided in the PLECS software package was used [26]. Using the datasheet provided by the IGBT manufacturer, the conduction and switching losses of switching devices under actual operating conditions can be calculated [27]. The main characteristics of the IGBT used are the maximum allowable voltage $V_{ce,\text{max}} = 4500$ V, the maximum allowable current $I_{c,\text{max}} = 1200$ A, and the maximum allowable junction temperature $T_{j,\text{max}} = 125$ °C. The main simulation parameters are shown in Table 2, which are based on the specifications of a PWM converter used in a propulsion system for a Korea power-concentrated HSR. The input inductance was selected considering both the ripple current at the rated power and the linear modulation range, and the dc-link capacitance was selected so that the voltage ripple at the
rating is within ± 100 V. When implemented in DPWM, the switching frequency f_{sw} of 1.08 kHz was chosen so that 18 pulses are produced within one cycle of the fundamental wave of 60 Hz.

Table 2. Parameters used in simulation.

<table>
<thead>
<tr>
<th>Main Parameters</th>
<th>DPWM</th>
<th>CB-SPWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage, V_s</td>
<td>1400 V ac(rms)/60 Hz</td>
<td>1400 V ac(rms)/60 Hz</td>
</tr>
<tr>
<td>Output voltage, V_{dc}</td>
<td>2800 V</td>
<td>2800 V</td>
</tr>
<tr>
<td>Input inductance, L</td>
<td>2 mH</td>
<td>2 mH</td>
</tr>
<tr>
<td>DC-link capacitance, C_{dc}</td>
<td>6.26 mF</td>
<td>6.26 mF</td>
</tr>
<tr>
<td>Output power, P_o</td>
<td>1 MW</td>
<td>1 MW</td>
</tr>
<tr>
<td>Switching frequency, f_{sw}</td>
<td>1.08 kHz</td>
<td>1.08 kHz</td>
</tr>
</tbody>
</table>

Figure 9 compares the simulation results using DPWM and CB-SPWM. In both PWM schemes, the power factors of V_s and I_s are more than 0.99. The total harmonic distortion of I_s is 10.9% for DPWM and 5.6% for CB-SPWM. V_{dc} is well regulated at 2800 ± 100 V in both methods. In CB-SPWM, the final leg command voltages V_{ux}^{**} and V_{vy}^{**} swing in a sinusoidal manner with the same magnitude and opposite phases to each other. On the other hand, in DPWM, V_{ux}^{**} and V_{vy}^{**} are clamped to $V_{dc}/2$ or $-V_{dc}/2$ due to the addition of the V_{offset} voltage alternated between $V_{dc}/2-max(V_{ux}^*, V_{vy}^*)$ and $-V_{dc}/2-min(V_{ux}^*, V_{vy}^*)$ per every power cycle. The converter input voltage V_c shows 18 pulses during a half period in the SPWM and nine pulses in the DPWM. From the waveform shapes of I_u, I_v, I_x, and I_y, which are currents flowing through the switches U, V, X, and Y, respectively, when the DPWM is applied, two clamped switches are completely turned off or on per every power cycle period. The proposed DPWM alternates V_{offset} per every power cycle to reduce the deviation of conduction and switching losses of all switches. On the other hand, the clamping mode can be changed every half cycle, and the advantages resulting from the freedom of the clamping mode selection will be described in detail later. From the above results, the normal operation of the proposed DPWM method is verified.

P_{sw_igbt} and P_{sw_diode} mean summed switching losses of all IGBT switches and their body diodes, respectively, and P_{cond_igbt} and P_{cond_diode} are summed conduction losses of all IGBT switches and their body diodes, respectively. P_{sw_igbt} includes turn-on and -off losses of IGBTs, and P_{sw_diode} means reverse recovery losses of the body diodes. These results are summarized in Table 3. As expected, when operating at the same switching frequency, the switching losses of DPWM are reduced by half compared to CB-SPWM. Due to the characteristics of high-voltage IGBTs, switching losses account for an absolute portion of the total losses, which leads to a 45% reduction in total switches’ losses.

Table 3. Comparison of switches’ losses between DPWM and CB-SPWM.

<table>
<thead>
<tr>
<th></th>
<th>DPWM</th>
<th>CB-SPWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{sw_igbt} [kW]</td>
<td>6.37</td>
<td>12.88</td>
</tr>
<tr>
<td>P_{sw_diode} [kW]</td>
<td>2.04</td>
<td>4.51</td>
</tr>
<tr>
<td>P_{cond_igbt} [kW]</td>
<td>0.64</td>
<td>0.68</td>
</tr>
<tr>
<td>P_{cond_diode} [kW]</td>
<td>2.15</td>
<td>2.12</td>
</tr>
<tr>
<td>Total loss [kW]</td>
<td>11.01</td>
<td>19.76</td>
</tr>
</tbody>
</table>

4.2. Ability to Reduce Temperature Deviations between Power Stacks

In large-power propulsion systems, the amount of power to be handled per unit power stack is very large, and thus separate heat-sinks or heat pipes are installed for each power stack for efficient heat-dissipation design. Therefore, the operating characteristics of the power stack may vary due to operating conditions or other external environmental factors. This difference in power stack characteristics results in unbalanced loss generation and temperature deviation between power stacks, which in turn affects the device lifetime, which is a key aspect of railway propulsion systems.
Figure 9. Simulation waveforms of single-phase PWM converter using (a) proposed DPWM and (b) conventional CB-SPWM (from top, V_s, I_s; V_{dc}; V_{ux}, V_{uy}, V_{offset}; V_{ux}, V_{uy}, Carrier; V_u, V_y; V_c; I_u, I_s, I_x, I_y; P_{sw_igbt}, P_{sw_diode}, P_{cond_igbt}, P_{cond_diode}).
In conventional CB-SPWM PWM converters, this temperature imbalance cannot be controlled due to the symmetric operation between power stacks. In DPWM, on the other hand, there is redundancy in the clamping mode, as described above, and it can utilize the discriminative selection of the clamping mode to reduce the temperature deviation between the power stacks. The operating mode is alternated between UCM and LCM during every half power cycle; in other words, UCM is selected when $Vc^* > 0$ and LCM when $Vc^* < 0$. Switch U is fully conducting in UCM, and at the same time, switch X is completely off. On the other hand, U is completely turned off and X is completely conducting during LCM. As a result, U and X have minimal switching, while the switches V and Y must be switched continuously. Therefore, the temperature of the power stack including the U and X legs is lowered and that of the V and Y legs is relatively increased. Of course, the opposite clamping mode selection can be used to reverse the temperature changing pattern between the two power stacks.

By selecting the clamping mode every half cycle based on the temperature deviation, the temperature difference between the two power stacks can be minimized. Figure 10 is a flow chart showing the procedure for selecting different clamping modes based on temperature differences between power stacks. To suppress the excessive clamping mode change, the clamping mode is updated at the moment of Vc^* crossing zero, i.e., every half cycle. Figure 11 shows the simulation results comparing the temperature deviation management capability. The simulation was performed by setting the initial temperature of V and Y stack, $Temp_VY$, to be 40 °C and that of U and X stack, $Temp_UX$, to be 25 °C. As can be seen from the results, the CB-SPWM cannot reduce the temperature deviation, while the DPWM reduces the temperature deviation rapidly by applying the selective clamping mode. When the proposed DPWM is applied, even in a steady state with little temperature deviation, the half of all IGBTs are clamped and stop switching during one cycle, and the clamped IGBTs cool down briefly. At the end of that clamped period, the temperature of the power stack containing those clamped IGBTs rises again by revived PWM switching. This temperature rising and falling phenomenon is repeated every two cycles, resulting in low-frequency thermal cycling of 30 Hz. Since such low frequency thermal cycling can shorten the lifetime of the IGBTs, thermal capacitance of the device junction to case, case to sink and heat-sink to ambient must be designed sufficiently large to withstand such low-frequency thermal cycling.

![Flow chart of clamping mode selection](image_url)

Figure 10. Clamping mode selection procedure according to power stack temperatures.
5. Experiment

Figure 12 shows the experimental prototype set of the single-phase PWM converter for verifying the normal operation of the proposed DPWM and compares its performance with CB-SPWM. The power stack is configured separately for each switch leg and the specific circuit configuration is equivalent to that of the PWM converter in Figure 1. An oscilloscope for observing Vs, Is, and bottom side gate signals $Gate_X$ and $Gate_Y$, and a multi-meter for measuring output dc voltage are prepared. The actual load of the PWM converter for the railway vehicle is a traction motor driven by a VVVF inverter, but a suitable inverter and motor load for prototype testing are not prepared, thus a resistive load was used instead in this experiment. LeCroy’s MDA810 used in the experiment is a high-performance oscilloscope with bandwidth of 1 GHz, resolution of 12-bit, and sample rate of 2.5 GS/s, which outperforms existing 8-bit resolution products. However, it should be noted that the measurement accuracy is normally within \pm 1%. The model name of used multi-meter is Fluke 177, which can measure from 30.0 mV to 1000 V with a resolution of 6000 counts, and the measurable ac frequency ranges from 2 Hz to 99.99 kHz. The load is a wound-type resistor with a fixed resistance value, including a cooling fan, which may contain a small inductance component that can affect the kHz band, but the effect is negligible due to the high-frequency filtering of the filter capacitor. The test conditions are as follows: Vs is 220 V (ac rms), Vdc is 400 V (dc), L is 3.16 mH with series equivalent resistor, R_l is 60 mΩ, Cdc is 3.06 mF. Switching frequency fsw is 5.4/2.7/1.8 kHz and the output power Po is 4 kW. Switches used in the experiments are Fuji Corporation’s high-voltage IGBT, 1MBI1200UE-330, having 3300 V/1200 A class.

![Figure 11](image_url)
Figure 11. Comparison of temperature variation reduction ability between (a) proposed DPWM and (b) conventional CB-SPWM (from top, Vs, Is; Vux, Vvy; $Temp_{UX}$, $Temp_{VY}$).
The red, yellow, blue, and green lines denote V_s, I_s, Gate_Y, and Gate_X respectively. In the CB-SPWM, the PWM gate waveform changes sinusoidally, whereas in the DPWM, the UX or VY legs are clamped upward or downward every half power cycle. In all the results, the power factor of V_s and I_s was over 0.96. The power conversion efficiency η was calculated by the following Equation (7):

$$\eta = \frac{(V_{\text{dc,rms}})^2}{R_{\text{Load}}} \int_{<T_s>} (V_S \cdot I_S)dt$$

Here, $V_{\text{dc,rms}}$ is rms value of V_{dc} and R_{Load} is the load resistance. The input power was calculated using the embedded function of the oscilloscope as the average value during one period of the product of the input voltage and current, and the output power was calculated as dividing the square of $V_{\text{dc,rms}}$ by R_{Load}. As shown in Figure 14, the efficiency differences between CB-SPWM and DPWM were about 6.6% at $f_{sw} = 5.4$ kHz ($\eta = 87.33\%$ for CB-SPWM, 93.93% for DPWM), 2.98% at $f_{sw} = 2.7$ kHz ($\eta = 94.14\%$ for CB-SPWM, 97.12% for DPWM), 1.87% at $f_{sw} = 1.8$ kHz ($\eta = 96.01\%$ for CB-SPWM, 97.88% for DPWM). Due to the low dynamics of the high-voltage IGBTs, the efficiency decreases rapidly as f_{sw} increases. In addition, since switching losses are more dominant than conduction losses in those IGBTs, the overall losses are reduced by almost half when DPWM is applied.

Figure 12. Prototype circuit of single-phase PWM converter.

Figure 13 shows the measured V_s, I_s, Gate_Y, and Gate_X by varying f_{sw} to 5.4 kHz, 2.7 kHz, and 1.8 kHz. The red, yellow, blue, and green lines denote V_s, I_s, Gate_Y, and Gate_X, respectively. In the CB-SPWM, the PWM gate waveform changes sinusoidally, whereas in the DPWM, the UX or VY legs are clamped upward or downward every half power cycle. In all the results, the power factor of V_s and I_s was over 0.96. The power conversion efficiency η was calculated by the following Equation (7):

$$\eta = \frac{(V_{\text{dc,rms}})^2}{R_{\text{Load}}} \int_{<T_s>} (V_S \cdot I_S)dt$$

Here, $V_{\text{dc,rms}}$ is rms value of V_{dc} and R_{Load} is the load resistance. The input power was calculated using the embedded function of the oscilloscope as the average value during one period of the product of the input voltage and current, and the output power was calculated as dividing the square of $V_{\text{dc,rms}}$ by R_{Load}. As shown in Figure 14, the efficiency differences between CB-SPWM and DPWM were about 6.6% at $f_{sw} = 5.4$ kHz ($\eta = 87.33\%$ for CB-SPWM, 93.93% for DPWM), 2.98% at $f_{sw} = 2.7$ kHz ($\eta = 94.14\%$ for CB-SPWM, 97.12% for DPWM), 1.87% at $f_{sw} = 1.8$ kHz ($\eta = 96.01\%$ for CB-SPWM, 97.88% for DPWM). Due to the low dynamics of the high-voltage IGBTs, the efficiency decreases rapidly as f_{sw} increases. In addition, since switching losses are more dominant than conduction losses in those IGBTs, the overall losses are reduced by almost half when DPWM is applied.

Figure 13. Comparisons of experimental main waveforms utilizing CB-SPWM (a–c) and proposed DPWM (d–f).
6. Conclusions

In this paper, a novel ±180° DPWM is proposed to reduce switching losses of single-phase PWM converters used in HSR propulsion systems. The conventional PWM converter for railway application has large switching losses due to the use of a high voltage-rated IGBT device despite using relatively low switching frequency. To solve this problem, we modified the DPWM used in the three-phase inverter to devise a ±180° DPWM suitable for a single-phase converter. By using the proposed modulation method, the switching state change can be reduced by half per every power cycle, and the switching losses can be reduced by half compared to the conventional CB-SPWM when operated at the same switching frequency. In addition, it has been shown that the offset voltage can be selectively applied every half power cycle to solve the temperature unbalance problem between the power stacks. Simulation and experiments confirmed normal operation of the proposed DPWM and it has been found that the total power conversion losses including switching losses can be greatly reduced by utilizing the proposed DPWM. The DPWM proposed in this paper is expected to be widely used in high power systems using high-voltage IGBTs as switching devices.

Author Contributions: Conceptualization, M.-S.S.; methodology, M.-S.S., I.-H.C., and J.-B.L.; software, J.-B.L.; validation, M.-S.S., I.-H.C., and J.-B.L.; formal analysis, M.-S.S.; experiments, M.-S.S., I.-H.C., and J.-B.L.; writing—original draft preparation, M.-S.S.; writing—review and editing, M.-S.S. and I.-H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by a grant from the R&D program of the Korea Railroad Research Institute, Republic of Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

2. Lin, Y. Travel costs and urban specialization patterns: Evidence from China’s high speed railway system. *J. Urban Econ.* 2017, 98, 98–123. [CrossRef]

