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Abstract: Regarding the different ownerships and autonomy of microgrids (MGs) in the distributed
multi-microgrid (MMG) system, this paper establishes a multi-stage energy scheduling model
based on a multi-agent system (MAS). The proposed mechanism enables a microgrid agent (MGA),
a central energy management agent (CEMA), and a coordination control agent (CCA) to cooperate
efficiently during various stages including prescheduling, coordinated optimization, rescheduling
and participation willingness analysis. Based on the limited information sharing between agents,
energy scheduling models of agents and coordinated diagrams are constructed to demonstrate the
different roles of agents and their interactions within the MMG system. Distributed schemes are
introduced for MG internal operations considering demand response, while centralized schemes
under the control of the CCA are proposed to coordinate MGAs. Participation willingness is defined
to analyze the MGA’s satisfaction degree of the matchmaking. A hierarchical optimization algorithm
is applied to solve the above nonlinear problem. The upper layer establishes a mixed-integer linear
programming (MILP) model to optimize the internal operation problem of each MG, and the lower
layer applies the particle swarm optimization (PSO) algorithm for coordination. The simulation with
a three-MG system verifies the rationality and effectiveness of the proposed model and method.

Keywords: energy scheduling; multi-microgrid system; multi-agent system; demand response;
information sharing

1. Introduction

Rapid technological development of demand response (DR) and distributed generation (DG)
have enabled microgrids (MGs) to become more modern and more autonomous. With the presence of
distributed renewable energy (DRE), energy storage systems (ESS), controllable distributed generation
(CDG), and DR, MGs can be regarded as small-scaled systems that are self-interested in energy
scheduling and management inside the MG [1,2]. However, due to the uncertainties of DRE and
load demands and its limited energy handling capacity, it is a great challenge for a MG to deal with
the energy handling issues totally independently [3]. With the trends of ever-increasing MGs that
arise in the distribution network, the concept of a multi-microgrid (MMG) system is on the horizon,
where multiple MGs operate in a coordinated manner to cut down the total investment and operation
cost and enhance the reliability of the distributed system [4,5].
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Coordinated energy scheduling and management in the MMG system has been an interesting
research focus recently [6–8]. Its coordination architecture can be classified into two categories,
i.e., centralized [9,10] and distributed [11,12]. In the centralized architecture, there is a central master
that is in charge of accumulating data from all the individuals, performing optimization, and finally
determining the actions of all units inside the MMG. Since energy scheduling strategies are based on
a single master, it requires extensive information of the MGs to obtain the global optimum, which
is not practical due to the different ownerships of MGs in the MMG system [13]. Considering the
environment, a centralized architecture is unable to provide differentiated operating schemes with
respect to each MG. Furthermore, a fully distributed coordination involves various local controllers
that only dispose of a corresponding single unit. In this way, each controller in each MG is only aware
of the local parameters and actions from the components, such as electricity consumers and generators,
and has no idea about the neighboring MGs and system-level operation [14,15]. In addition, the generic
energy planning and scheduling framework for the MG in [16] is formulated to address the problem
of optimal operation with an allowable level of CO2. The authors in [17] model all the components
in MG as autonomous individuals which optimize their behavior independently and are also able to
communicate with each other in a distributed manner without a direct way. As electricity markets
and distribution networks become more complex, there is a strong relationship among MGs and a
tendency to have a cooperative economy in the MMG system.

As a result, some researchers devised a hybrid form of coordination known as hierarchical
coordination. For instance, the authors in [18] design a hierarchical control system for a robust
MG operation, where the internal model is in charge of mitigating voltage disturbances while the
coordination controller is responsible for the power-sharing. The authors in [19] proposed an energy
management system for a MMG organized in a bi-level hierarchical structure, where the upper level is
to minimize the operation and carbon trading cost while the lower level is to achieve the self-organizing
of each MG. Applications of a multi-agent system (MAS) within a MMG system have been widely
proposed in [20,21]. The key advantages of a MAS are flexibility, scalability, and capability of providing
the plug-and-play property to MGs. For example, the authors in [20] presented a MAS-based day-ahead
energy management framework consisting of CDG agents, wind turbines agents, photovoltaic agents,
demand agents, ESS agents, and a MG aggregator agent to minimize energy loss and operation cost.
X. Kong et al. [21] constructed a MAS-based control structure to distribute the profits of different DER
owners in the marker mechanism. MAS is also applied to the energy market of MMG under the
supply-demand mismatch scenario with/without ESS in [22]. V.H Bai et al. [23] proposed a MAS-based
community energy management system with the information of surplus and shortage amounts from
MGs to better control the generation and adjust load demand. W. Jiang et al. [24] developed a
hierarchical multi-agent-based energy management framework to maximize the local consumption of
renewable energy. In [25], the authors developed a MAS-based energy market where game theory is
applied for the day-ahead market while hierarchical optimization is used for the hour-ahead market in
an MMG system.

The above studies proposed a variety of energy coordination mechanisms considering different
entities, but they do not consider the distinctive features of limited information sharing between agents
because such features raise privacy concerns. Moreover, they do not analyze the willingness of MGs
to participate in the matchmaking with neighboring MGs, since MGs have different ownerships and
have a self-interest in the internal operation and related costs. This paper addresses a solution to the
coordinated energy scheduling problem by implementing a MAS-based environment considering the
autonomy of MGs in the view of information sharing and participation initiative. Moreover, energy
transmission problems can also occur in power transactions between different MGs. In this paper,
we use a coordination control agent (CCA) to evaluate whether the distribution network meets the
requirement under a central energy management agent (CEMA) coordination strategies by power
flow calculations.



Energies 2020, 13, 4077 3 of 19

In this paper, we introduce a coordinated energy scheduling method including the distributed
MGA, CEMA, and CCA. We construct the models of these agents to depict the autonomy and
independence of the MGA’s internal operation, the data aggregation and matchmaking trade-off

supported by the CEMA, and the electricity network operation maintained by the CCA. We propose
a multi-stage energy scheduling framework to minimize the internal operation cost of MGs and
maximize the net social benefit of the whole MMG system. In this way, each MGA only communicates
with the CEMA using limited information to realize the coordination with other MGAs, which is
supported by the CEMA and CCA. The optimization problems are formulated and solved by all agents
using a linear solver and a modified particle swarm optimization (PSO) algorithm implemented in an
iterative manner. Our contributions are as follows:

1. We propose a novel framework for energy scheduling of a distributed MMG system, where
the agents, i.e., MGA, CEMA, and CCA, work in a cooperative manner during prescheduling,
coordinated optimization, and rescheduling, and participation willingness analysis (PORA)
is evaluated.

2. We adopt a novel coordinated energy scheduling method based on limited information sharing,
which can not only preserve the MGA’s privacy by content packaging but also facilitate promoting
energy scheduling coordination within the MMG system.

3. We introduce a novel centralized scheme under the control of the CCA for coordinated energy
trade among MGs, which not only guarantees the normal operation of the network but also
optimally minimizes the cost of line loss.

4. We define the participation willingness, which is the MGA’s satisfaction degree to the matchmaking
scheme. It can evaluate the impact of the matchmaking scheme on MGAs.

2. Multi-Agent-Based Energy Scheduling Model

2.1. System Framework

We consider a typical MMG system with I MGs connected to the main power grid by an electricity
network. To better deal with energy scheduling issues, there are three kinds of agents providing
different energy control (i.e., MGA, CCA, and CEMA). The multi-stage framework of energy scheduling
with different agents is proposed in Figure 1, which is a hierarchical control with the agents having
different ownerships.

• MGA: Each MGA is only responsible for the local MG, which gathers local information about the
MG that is under its control and is neither aware of systematic operations nor neighboring
operations. With the autonomy of MGAs, they can realize the decentralized control and
independently determine whether to participate in the matchmaking based on their respective
limited knowledge.

• CEMA: The CEMA serves as an aggregator that can play a role in coordinating various MGs for
better energy scheduling systematically. When dealing with the coordinated energy scheduling
issues, the CEMA aggregates operation data submitted by all the MGAs after content packaging
and determines the dynamic amount of the energy exchange among MGs.

• CCA: To evaluate the feasibility and economy of the matchmaking scheme offered by the CEMA,
the CCA applies power flow calculations to analyze the electricity network performance when
MGs coordinate with each other.

As indicated in Figure 1, we define the operation mode 0 ≤ r ≤ 1to represent the degree of
information sharing, where r = 0 means it is the fully distributed coordination implemented by each
MGA, r = 1 means it is the centralized coordination implemented by CEMA, and 0 < r< 1 means it is
the proposed hierarchical coordination. Our system consists of four stages.
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1. Prescheduling: It is the initialization stage for coordinated energy scheduling. During this stage,
MGAs obtain the equilibrium solution of the game between customers and generators inside the
MG without interaction with other MGAs.

2. Coordinated Optimization: CEMA receives the packaged information from satisfied MGAs,
obtains the optimal matchmaking scheme under the control of the CCA, and then sends them
back to the MGA based on the privacy-preserving rules.

3. Rescheduling: Given the returned matchmaking scheme, the MGA is aware of the energy
exchange amount with the surrounding MGAs and reconfigures the internal parameters of both
customers and generators by another equilibrium solution.

4. Participation Willingness Analysis: After the MGA completes its internal reconfiguration,
it calculates the participation willingness to compare the previous cost with the current one.
The CEMA aggregates all the satisfied MGAs and returns to the coordinated optimization stage
until there is less than one MGA participating in the energy coordination.
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Figure 1. Multi-stage framework of energy scheduling with a multi-agent system (MAS).

2.2. MG Internal Energy Scheduling

We consider an MG that can consume, generate, and store electricity while being connected to the
main grid. In this way, there is a natural conflict between consumers and generators. We formulate the
interaction between these two entities as a Stackelberg game, where the generators are the leaders
and the consumers are the followers. The generators (leaders) can predict the electricity load curve in
advance and impose a set of time-varying electricity prices to minimize operation costs inside the MG.
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Later, the consumers (followers) reply with their best energy consumption strategies to minimize their
individual costs given the assigned prices.

2.2.1. Electricity Consumer Model

For the consumers, we consider they are self-interested in minimizing their total cost by adjusting
their optimal day-ahead electricity consumption given the prices imposed by the MG. The cost of all
users inside the MG can be denoted as the sum of Ce and Cd. The energy payment of a consumer inside
the MG depends on the imposed prices and its electricity consumption, which can be represented by:

Ce
(
Xi j

)
=

∑
t∈T

µitxi jt (1)

In addition, we introduce the discomfort cost to measure the discomfort experience caused by
consumption adjustment, which can be derived as:

Cd

(
Xi j

)
= βi j

∑
t∈T

(
xi jt − yi jt

)2
(2)

where β is 0.5 in this paper. Therefore, the optimization problem can be expressed as:

P1 : min Ci
u, j

(
Xi j

∣∣∣µ∗i )
s.t.


Ci

u, j = Ce
(
Xi j

∣∣∣µ∗i )+ Cd
(
Xi j

)
xmin

i j ≤ xi jt ≤ xmax
i j∑

t∈T
xi jt =

∑
t∈T

yi jt

(3)

where µ∗i is the optimal price set imposed by the i-th MG, the first constraint guarantees that the
consumption is adjusted between xmin

ij and xmax
ij , respectively. The second constraint ensures the

integrity of the consumption over T.

2.2.2. MG Operation Model

For all the generators in the i-th MG, the operation cost is:

Ci
o = Ci

CDG + Ci
R + Ci

PG + Ci
MG

Ci
CDG =

∑
t∈T

(
ai
(
Pi

CDG,t

)2
+ biPi

CDG,t + ci

)
Ci

R = k f
(
ceBi

ESS + cpPi
ESS

)
Si

Si = [(
T∑

t=1

∣∣∣∣Pi
ESS,t

∣∣∣∣∆t)/(2NrepBESS)]

Ci
PG =

∑
t∈T

(
µB+µS

2 Pi
line,t +

µB−µS
2

∣∣∣∣Pi
line,t

∣∣∣∣)
Ci

MG =
∑
t∈T

∑
k∈{I−i}

Pik
MG,tµ

ik
MG,t

(4)

where the operation cost includes four terms, namely, CCDG, CR, CPG, and CMG.
Power balance constraint:

∑
j∈Ji

xi jt = Pi
LD,t

Pi
DRE,t + Pi

CDG,t + Pi
line,t = Pi

LD,t + Pi
ESS,t +

∑
k∈{I−i}

Pik
MG,t

(5)
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Unit output limit constraint: 
Pi,min

CDG ≤ Pi
CDG,t ≤ Pi,max

CDG
Pi,min

DRE ≤ Pi
DRE,t ≤ Pi,max

DRE,t
Pi,min

ESS ≤ Pi
ESS,t ≤ Pi,min

ESS

(6)

ESS operation constraints:

Bi
ESSSOCi

t =

 Bi
ESSSOCi

t−1 + ∆tPi
ESS,tηc, ifPi

ESS,t ≥ 0
Bi

ESSSOCi
t−1 + ∆tPi

ESS,t/ηd, ifPi
ESS,t < 0

(7)

{
SOCi,min

≤ SOCi
t ≤ SOCi,max

SOCi
0 = SOCi

T
(8)

where SOCi
0 and SOCi

T are the initial and final SOC during the whole time slot T, respectively.
Tie line exchange power limit constraint:

Pi,min
line,t ≤ Pi

line,t ≤ Pi,max
line,t (9)

Therefore, from the perspective of the MG operation, the optimization problem can be derived as:

P2 : min Ci
IES =

∑
t∈T

∑
j∈Ji

Ci
o −Ce

(
Xi j

)
s.t. (5) − (9)

(10)

Since MGA is an independent individual with high autonomy, after receiving the optimal
matchmaking scheme from CEMA, it can decide whether it should participate in the matchmaking
based on its internal operation. We define the PW function as:

PWi = sgn
(
Ci,n

MG −Ci,(n−1)
MG

)
(11)

where Ci,n
MG and Ci,(n−1)

MG are the operation cost of the n-th iteration and the (n-1)th iteration within the i-th
MG, respectively. When PWi is 0, it means that the i-th MG is unsatisfied with the n-th matchmaking
scheme. Otherwise, it means that the i-th MG is satisfied with the n-th matchmaking scheme.

2.2.3. MMG Coordinated Energy Scheduling

After receiving the packaged information from all MGs, the CEMA provides the most optimal
coordinated energy scheduling scheme under the control of the CCA as indicated in Figure 1. With this
scheme, MGs can collaborate with each other by mutually setting up the more attractive prices than
the main grid, realizing energy sharing within the MMG.

1. CEMA Model

Due to privacy concerns, each MG adopts the content packaging method to protect its internal
operation and customer data. The received information Di from the i-th MG can be derived as:

Di =
{
Pi,µi, Pi

line

}
(12)

Pi
t = Pi

DRE,t + Pi
CDG,t − Pi

LD,t − Pi
ESS,t (13)

µi = [µi1,µi2, · · · ,µiT] (14)

Pi
line =

[
Pi

line,1, Pi
line,2, · · · , Pi

line,T

]
(15)
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where Pi is the aggregated generated power within the i-th MG, the element of which can be formulated
in (13). µi represents the aggregated prices of the i-th MG during the whole time slot T, which can be
derived as (14). Pi

line is the aggregated tie line power between the i-th MG and the main grid during
the whole time slot T, which is expressed in (15).

The responsibility of the CEMA is to promote the matchmaking among MGs and optimize
the net social benefit with the above limited MGA information. The problem of the CEMA can be
formulated as:

P3 : max
Q={P,Pline,PMG}

CCEMA = Ctrade −WL

Ctrade =
∑

i, k ∈ I
i , k

∑
t∈T

Pik
MG,tµikt +

µs−µb
2

∣∣∣∣Pi
line,t

∣∣∣∣− µs+µb
2 Pi

line,t

s.t. (9)∑
u∈Nik

Pmin
iu ≤ Pik

MG,t ≤
∑

u∈Nik

Pmax
iu

(16)

where Q = {P,Pline,PMG} is the energy schedule set by the CEMA. Ctrade is the social benefit from MG
coordination, where µikt is the price for the matchmaking between the i-th and k-th MG in the t-th time
slot. WL is the cost caused by the line loss due to the matchmaking, which could be calculated by
the CCA. Nik is the set of nodes between the i-th and k-th MG in the network. Pmin

iu and Pmax
iu are the

minimum and maximum line power between the i-th node and u-th node, respectively.
The final optimal coordinated energy scheduling scheme sent back to each MGA, which can be

derived as:
D̂i =

{
P̂i

line, P̂i
MG, µ̂i

}
(17)

where P̂i
line, is the line power between the i-th MG and main grid during the whole time slot T in the

matchmaking. P̂i
MG is the transmitted power between the i-th MG and others in the matchmaking.

µ̂i is the matchmaking price set of the i-th MG and others.

2. CCA Model

The abovementioned problem is under the control of the CCA, the responsibility of which is to
evaluate whether the energy exchange in the matchmaking scheme can be realized with the current
network operation constraints. Thus, the above line cost WL can be formulated as:

WL =
∑
t∈T

∑
i, k ∈ I
i , k

ηLossPik
Loss,t

Pik
Loss,t =

∑
u1∈Nik

∑
u2∈Niu1

Vu1tVu2tgu1u2 cosθu1u2t

(18)

where ηLoss is the cost of the unit line loss coefficient. Pik
Loss,t is the total power loss caused by the

energy exchange between the i-th MG and k-th MG during the t-th time slot. Vu1t and Vu2t are the
u1-th and the u2-th node voltage, respectively. gu1u2 is the line conductance between node u1 and node
u2. cosθu1u2t is the power factor between node u1 and node u2.

In this paper, a MG is defined as a generalized PV node and thus the power flow constraint can be
written as follows:

Power flow constraints: Pu1u2t = gu1u2

(
V2

u1t −Vu1tVu2t cosθu1u2t
)
− bu1u2Vu1tVu2t sinθu1u2t

Qu1u2t = −gu1u2Vu1tVu2t sinθu1u2t − bu1u2

(
V2

u1t −Vu1tVu2t cosθu1u2t
) (19)

where Pu1u2t and Qu1u2t are the active and reactive power of node u1 and node u2 during the t-th time
slot, respectively. bu1u2 is the line susceptance between node u1 and node u2.
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Node voltage constraints:
Vu1,min ≤ Vu1,t ≤ Vu1,max (20)

where Vu1,min and Vu1,max are the minimum and maximum voltage of node u1.
Node power constraints: {

Pu1,min ≤ Pu1,t ≤ Pu1,max

Qu1,min ≤ Qu1,t ≤ Qu1,max
(21)

where Pu1,t and Qu1,t are the active and reactive power of node u1, respectively. Pu1,min and Pu1,max

are the minimum and maximum active power of node u1, respectively. Qu1,min and Qu1,max are the
minimum and maximum active power of node u1, respectively.

Line transmission power constraints:

Pu1u2,min ≤ Pu1u2t ≤ Pu1u2,max (22)

where Pu1u2,min and Pu1u2,max are the minimum and maximum active power of the line between node
u1 and node u2, respectively.

3. Proposed Algorithm

3.1. Solution to MG Internal Energy Scheduling Game

In general, the Stackelberg equilibrium (SE) can be obtained by finding the Nash equilibrium (NE)
of the subgame (P1), where the consumers compete in a non-cooperative way. Thus, the NE is defined
as a situation where no consumer can reduce the cost by changing their strategy. We first apply the
backward induction method to solve P1 with a fixed electricity price to find the best DR of consumers.

Theorem 1. In the proposed Stackelberg game within the MG, when the MGA imposes its price µi, the optimal
load demand adjusted by the j-th consumer is

x∗i jt = (2βi jyi jt + γi jt − δi jt + ϕi jt − µit)/2βi j (23)

Proof of Theorem 1. The first and the second derivative of Ci
u, j with respect to xijt is

∂Ci
u, j

∂xi jt
= µit + 2βi j

(
xi jt − yi jt

)
,
∂2Ci

u, j

∂x2
i jt

= 2βi j > 0 (24)

�

Obviously, the second derivative is greater than zero, so the Ci
u, j is a quasi-convex function.

Thus, based on [26], there is an NE in the non-cooperative game of consumers given the prices. Let γijt,
δijt and ϕij be the Lagrangian multipliers, where γijt, δijt are non-negative. The Lagrangian of P1 is
expressed in (25). According to the KKT condition, the optimal X∗i j satisfy the constraints in (26).
The value of xijt expressed in (23) is the unique Nash (Stackelberg) equilibrium.

L(Xi j,γi j,δi j,ϕi j) = Ci
u, j +

∑
t∈T

γi jt
(
xmin

i j − xi jt
)
+

∑
t∈T

δi jt
(
xi jt − xmax

i j

)
+ ϕi j

∑
t∈T

(
yi jt − xi jt

)
(25)


∂L
∂xi jt

= µit + 2βi j
(
xi jt − yi jt

)
− γi jt + δi jt −ϕi j = 0

γi jt

(
xmin

i j − xi jt

)
= 0, δi jt

(
xi jt − xmax

i j

)
= 0

(26)
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Substituting the optimal DR (23) and the constraints (26) into P2, we can rewrite P2 in (27).

P2′ : min Ci
IES =

∑
t∈T

∑
j∈Ji

Ci
o −Ce

(
X∗i j

)
s.t. (5) − (9), (25)

γi jt ≥ 0,δi jt ≥ 0,ϕi j ≥ 0

(27)

We apply two linearization methods to model the internal energy scheduling optimization (IESO)
problem in (27) as the mixed-integer linear programming (MILP) model, which can be solved by
CPLEX [27].

1. Linearize the product of variables

Equation (1) shows that the consumer’s cost is constructed using the product of two continuous
variables. Therefore, the McCormick convex envelope method in [28] is applied here to approximately
linearize the problem. The equation can be reshaped as:

Ce
(
xi jt

)
≤ µmin

it xi jt + µitxmax
i jt − µ

min
it xmax

i jt

Ce
(
xi jt

)
≤ µmax

it xi jt + µitxmin
i jt − µ

max
it xmin

i jt

Ce
(
xi jt

)
≥ µmax

it xi jt + µitxmax
i jt − µ

max
it xmax

i jt

Ce
(
xi jt

)
≥ µmin

it xi jt + µitxmin
i jt − µ

min
it xmin

i jt

(28)

where µmin
it and µmax

it are the minimum and maximum price of the i-th MG during the t-th time slot,
respectively.

2. Linearize a quadratic function

There is the piecewise linearization for the nonlinear problems caused by the quadratic function [29].
The quadratic function can be accurately approximated by a set of piecewise segments.∑

ξ∈M

λξ f (ωξ) = f̃ (ω),
∑
ξ∈M

λξωξ = ω,
∑
ξ∈M

λξ = 1 (29)

where f is the quadratic term in the cost of CDG Ci
CDG. ω is the actual value of Pi

CDG,t. ωξ is the value

of Pi
CDG,t corresponding to ξ-th point and λξ is the coefficient of the ξ-th point.

3.2. Coordinated Energy Scheduling Optimization (CESO) Algorithm

For the net social benefit maximization within the MMG system (i.e., P3), it is possible to obtain
the optimally coordinated energy scheduling scheme using PSO. However, although PSO has the
advantage of easy implementation, it can easily fall into local optima, which is caused by the premature
convergence and decline in population diversity. We applied a particle swarm optimization algorithm
with wavelet mutation (PSOWM) based on [30], which is introduced to mutate the particles to enhance
the searching performance.

Both velocity and position are two properties of the particle. The particle r’s position is defined
as the energy scheduling matrix Qr in CEMA, and the velocity is defined as matrix Vr. Using the
historical experience of each particle, they can be updated as: Vr

k+1 = g
(
wVr

k + c1rd1,k
(
Qab,k −Qr

k

)
+ c2rd2,k

(
Qgb,k −Qr

k

))
Qr

k+1 = Qr
k + Vr

k+1

(30)

where w is inertia weight factor; c1, c2 are the acceleration constants; rd1, rd2 are the random numbers
within the range of [0, 1]; Qb,k is the historical optimal position of the r-th particle; Qgb,k is the historical
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optimal position in the population; and g is the function to limit the velocity within the range of
[vmin, vmax], which is expressed as:

g(v) =


vmax, v > vmax

vmin, v < vmin

v, else
(31)

The particle element might mutate, which is governed by the mutation probability ρm ∈ [0, 1]. For
the selected particle Qr= [qr

1,qr
2, . . . , qr

D], the resulting element q̂r
d is:

q̂r
d =

 qr
d + σ

(
qmax

d − qr
d

)
, σ > 0

qr
d + σ

(
qr

d − qmin
d

)
, σ ≤ 0

(32)

where d ∈ 1,2, . . . ,D; D denotes the dimension of the particle; qmax
d and qmin

d are boundaries of the
element; and σ is the Morlet wavelet function, which is derived as:

σ =
1
√

a
e
−(θ/a)2

2 cos(5θ/a) (33)

where θ is randomly generated from [−2.5a, 2.5a]; a is the dilation parameter, which is formulated as:

a = e− ln g×(1−k/K)λ + ln g (34)

where g is the upper limit of a; K is the total iteration, and; λ is the shape parameter of the monotonic
increasing function.

Algorithm 1: CESO Algorithm

Initialization: iteration n = 0; the set of MGs willing to the coordination Ω0 = I; convergence coefficient ε

1: if n = 0 then

//Prescheduling//

2: Assume that MGs operate in an isolated way and find the optimal MG internal operation strategies by solving P2′ using LP solver, e.g., CPLEX.
3: Record the optimal MG internal operation strategies and corresponding costs in solution MGsetn; Package the content Dn as (12)–(14)
4: n→n + 1;
5: else while (n = 1) or ||Dn-Dn-1 || > ε do

//Coordinated Optimization//

6: Initialize Q0 and V0 within the constraints (15), (17)–(21) according to the data Dn-1; iteration number of PSOWM k→1; maximum iteration K;
7: while (not termination condition) do
8: k→ k + 1;
9: Evaluate the CCEMA (shown in (15));
10: Perform WM with ρm and update the position of the selected particles as (32)–(34) within the constraints (15), (17)–(21).
11: Update Q and V of the another as (29)–(30) within the constraints (15), (17)–(21);
12: end while
13: Update matchmaking schemes D̂;Ωn→Ωn-1

14: for MGi in Ωn

//Rescheduling//

15: Update the coordination data P̂i
MG and find the optimal internal operation strategies by solving P2′ using CPLEX;

16: Record the strategies and corresponding costs in solution MGsetn; Package the content Dn as (12)–(14)
//PW Analysis//

17: Evaluate the PW as (22);
18: if PW = 0
19: remove MGi from Ωn; break;
20: end if
21: n→n + 1;
22: end for
23: end while
24: end if
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With the above MILP model and PSOWM algorithm, we form a coordination diagram of agents,
as shown in Figure 2, and propose a CESO algorithm in Algorithm 1 based on the framework.
First, each MGA performs an internal operation optimization at the beginning of the day without
communication with the others and sends the data D to the CEMA after content packaging (Steps
1–4). After that, the CEMA performs coordinated optimization under the control of the CCA based
on PSOWM and returns the matchmaking scheme D̂ (Steps 6–13). With the returned data, the MG
performs internal operation optimization again (Steps 14–16) and analyses the PW (Step 17). If one
of the MGAs is unsatisfied with the matchmaking scheme, this MG discards the coordination and
returns the result to the CEMA to revise the matchmaking scheme (Steps 18–20). Otherwise, the CEMA
accumulates the data D and performs optimization for the next iteration (Step 5). The process continues
until convergence is reached.
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Figure 2. Coordination diagram of microgrid agent (MGA), central energy management agent 

(CEMA), and coordination control agent (CCA). 
Figure 2. Coordination diagram of microgrid agent (MGA), central energy management agent (CEMA),
and coordination control agent (CCA).

4. Simulation

4.1. Simulation Setting

To verify the rationality and effectiveness of the proposed method, we consider the system
depicted in Figure 3, which is improved from the IEEE-33 system, and Table 1 summarizes the major
components of each MG. The selling price announced by the main grid is 0.84 ¥/kWh from 0:00 to
7:00 while it is 2.1 ¥/kWh from 7:00 to 24:00 according to the Tokyo Electric Power Company [31].
The CDG cost coefficients are a = 0.013 ¥/kW, b = 0.62 ¥/kW, and c = 13.4 ¥/kW. The switch status of
each operation mode is shown in Table 2. We applied the robust optimization method to obtain one of
the extreme boundary scenarios for simulation analysis.Energies 2020, 13, x FOR PEER REVIEW 12 of 20 
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Table 1. System parameters.

No Name Capacity Name Capacity Name Capacity Name Capacity

MG1
PPV 200 kW PWT 500 kW PCDG 300 kW PESS 150 kW
BESS 300 kWh PLOAD 320 kW F 1 10%

MG2
PPV 300 kW PWT 600 kW PCDG 500 kW PESS 200 kW
BESS 500 kWh PLOAD 420 kW F 5%

MG3
PPV 500 kW PWT 300 kW PCDG 400 kW PESS 200 kW
BESS 500 kWh PLOAD 600 kW F 8%

1 F is the load demand flexibility, which determines the xmin
i j and xmax

i j .

Table 2. Switch status of each operation mode.

Mode
Switch Status

1 2 3 4 5 6

r = 0 off off off on on on
0 < r< 1 on on on on on on

r = 1 on on on on on on

The computational model is programmed in C++ by calling the commercial MILP solver ILOG
CPLEX 12.5 and PSO function from MathWorks. All experiments are implemented on a personal
computer, which has quad Intel Core i7 processors with CPU at 3.40 GHz and a RAM space of 8 GB.

4.2. Results Analysis

4.2.1. Performance of the MGA

Table 3 shows the internal costs of the MG and execution time with/without DR. It can be seen
that energy scheduling considers the consumer’s DR can decrease the total cost of the consumers by
comparing the two main columns, especially in the MG with the high ratio of α. When α = 3.283
(i.e., MG2), the cost for consumers achieves the maximum relative reduction compared with the
others. From the view of operational costs, DR can decrease the total operational cost (except MG2).
In MG1 and MG3, both the operational cost and consumers’ costs are decreased, which means energy
scheduling that considers the interaction attracts the attention of both the consumers and MG by cutting
down the costs. In MG2, although the operational cost increases slightly, the consumers’ cost has a
relatively higher reduction. This finding occurs because the MGA makes a better trade-off between
the consumers’ cost and operational cost when there is a game inside the MG. In addition, the MGA
determines the internal energy scheduling strategies considering DR with a bit longer execution time,
comparing with Case 1 without DR. The mean execution time of the two Cases is at the second level,
wherein the mean execution time of Case 1 is 1.356 while for Case 2 it is 2.725.

The total amount of power exchange and the utilization of renewable energy are given in Table 4.
Three cases have been compared here: (1) Case 1: the distributed optimal scheduling of the MGA
does not consider coordination and DR; (2) Case 2: the distributed optimal scheduling of the MGA
considering DR; (3) Case 3: the optimal scheduling considering coordination and DR. It is obvious
that the amount of purchasing power from the main grid has been reduced in the MG3. In particular,
Case 3 reduces the amount of purchasing power by making full use of coordination among different
MGAs and DR. In addition, the utilization of renewable energy has been improved in MG1 and MG3.
In MG2, the utilization is slightly reduced in Case 2 but the utilization is improved in Case 3.
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Table 3. Costs of MGs and execution time with/without DR.

Case 1: without DR Case 2: with DR

No (α 1) MG1 (3.043) MG2 (3.283) MG3 (3.078) MG1 (3.043) MG2 (3.283) MG3 (3.078)

execution
time (s) 1.505 1.308 1.255 2.710 2.689 2.777

|∆x|/F 2 0 0 0 0.64 0.94 0.86
Cu (¥) 12,500 12,500 12,500 12,209 16,184 14,414

Cope (¥) −1563 −1563 −1563 −1890 −2798 322
1 α is the ratio of internal generation and maximum load demand in MG. 2 |∆x| is the absolute value of the MG load
demand adjustment.

Table 4. Power exchange and utilization of renewable energy.

No Performance Case 1 Case 2 Case 3 Performance Case 1 Case 2 Case 3

MG1 Purchasing
Power (kWh) 0 0 0 Utilization of renewable

energy (%) 93.57% 95.45% 97.92%

MG2 Purchasing
Power (kWh) 0 0 0 Utilization of renewable

energy (%) 91.80% 91.23% 93.18%

MG3 Purchasing
Power (kWh) 1580 1567 1305 Utilization of renewable

energy (%) 100% 100% 100%

4.2.2. Performance of the CEMA and CCA

To elaborate on the impact of coordination among MGAs on the renewable energy curtailment
and power exchange with the main grid, two cases are compared: (1) Case 1: with a coordinated
energy scheduling strategy provided by the CEMA; (2) Case 2: without coordinated energy scheduling.
Figure 4a depicts the changes in renewable energy curtailment with/without energy coordination.
It can be seen that the CEMA could promote renewable energy sharing among MGs by providing
a platform for matchmaking. The result in Figure 4a shows that the total curtailment of renewable
energy in MG1 is reduced by 268.27 kWh, and that of MG2 is reduced by 300.76 kWh, comparing the
two situations with or without energy coordination. The lack of energy coordination by the CEMA
often results in a massive curtailment of renewable resources, especially in the MG with a high ratio
of internal generation and maximum load demand. From the time domain, it can be seen that the
curtailment of PDER in MG2 during 9:00–17:00 is 1408 kWh when there is lack of the CEMA, while the
curtailment is 1143 kWh in MG2 with the CEMA, which is reduced by 18.82%, implying that energy
coordination boosts efficient utilization of renewable energy.
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Figure 4b illustrates the power exchange with the main grid with/without energy coordination.
From the figure, the reduction of the total amount of sold energy is 777.72 kWh in MG1, and that of MG2
is 889.06 kWh. In addition, the maximum reductions occur in the period of 1:00–7:00 and 20:00–24:00.
The reduction of the total amount of buying energy is 262.22 kWh in MG3. Energy coordination helps
the MG lessen the energy reliance on the main grid. From Figure 4, the reason can be explained as
follows. When the load demand increases, the MG is more willing to participate in the matchmaking
with other MGs due to the more attractive pricing schemes in the CEMA platform. Correspondingly,
the purchased energy from the main grid decreases but the purchased energy from MGs increases.

Table 5 shows the performance of the convex equivalent optimization method (CEOM) in [32,33],
PSO, and PSOWM. CCEMA calculated by PSOWM is the largest, of which the value is 4758.2.
The second-largest CCEMA is calculated by PSO and its value is 4725.77, which is 99.32% of the
maximum CCEMA. The CCEMA of CEOM is the smallest one, which accounts for 98.22% of the
maximum CCEMA. Comparing the CEOM with PSO and PSOWM, it can be found that after CEOM
transforms the nonlinear problem into a linearized and convex optimization problem, the calculation
time is greatly reduced, and the reduction ratio is 90.36% comparing with PSO and 90.38% comparing
with PSOWM, respectively. Obviously, the calculation speed is improved but the error cannot be
avoided in the transform, which could ultimately affect the optimization of the objective. PSO and
PSOWM are both heuristic algorithms and will not change the original problem. The nonlinear model
searches for the optimal solution on the basis of the original nonlinear model, so the calculation time of
the two is longer than CEOM, but the objective value is not affected by the linearization error. But at
the same time, it is difficult to ensure that the global optimal solution can be obtained by applying
heuristic algorithms, so it is necessary to improve its search performance by using multiple clusters,
mutations, stretching, and hybridization. PSOWM introduces mutation operation on the basis of
conventional PSO. Compared with PSO, the calculation time is similar, but it can improve the final
objective value to a certain extent.

Table 5. Performance with applying CEOM, PSO, and PSOWM in CESO.

Optimization Objective
CCEMA

Calculation Time (s) Calculation Accuracy 1

CEOM 4673.95 16.51 98.22%

PSO 4725.77 171.36 99.32%

PSOWM 4758.27 171.71 100.00%
1 Calculation accuracy is obtained by the ratio of optimal value to the maximum of the optimal value among the
three algorithms.

Tables 6 and 7 depict the costs of different agents and the respective execution time during PORA.
Within one of the intermediate iterations, the final cost of each MGA decreases compared with the
initial cost during prescheduling, implying that energy coordination helps the MGA cut down on the
internal cost, and consequently, MGAs are willing to accept the matchmaking scheme formulated by
the CEMA. From iteration 0 to iteration 2, the social benefit calculated by the CEMA increases while
the internal cost of each MG decreases. It can be seen that MGs work in a cooperative way that forms a
tight association from the view of the network. When iteration = 3, the internal operation cost of MGA2
increases compared with the one in iteration 2, with which MGA2 is unsatisfied. Hence, MGA2 is
unwilling to participate in the next matchmaking and regards its matchmaking with MGA1 and MGA3
as the final output, while MGA1 and MGA3 continue to derive a better matchmaking scheme without
MGA2 (i.e., iteration 4 and 5). The execution time of internal energy scheduling within different MGs
is at the second level, which could meet the requirement of real-time energy scheduling within the MG.
Meanwhile, the execution time of coordinated energy scheduling optimization implemented by the
CEMA is at the minute level, which coincides with the actual coordinated control.
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Table 6. Cost analysis during PORA.

No MGA1 MGA2 MGA3 CEMA No MGA1 MGA2 MGA3 CEMA

I 1 S CMG1(¥) CMG2(¥) CMG3(¥) CCEMA (¥) I S CMG1(¥) CMG2(¥) CMG3(¥) CCEMA (¥)

0 P
2 −13,959 −19,493 −11,087 —

3
R −14,516 −19,911 −16,416 —

1
O — — — 4434.3 A Y N Y —
R −14,503 −19,840 −15,521 —

4
O — — — 4320.4

A Y Y Y — R −14,513 — −16,130 —

2
O — — — 4739.1 A Y — Y —
R −14,510 −19,914 −16,053 —

5
O — — — 4400.7

A Y Y Y — R −14511 — −16238 —
3 O — — — 4752.1 A N — Y —

1 I is the abbreviate of iteration while S is the abbreviate of Stage. 2 P is the abbreviate of “Prescheduling”; O is
the abbreviate of “Coordinated Optimization”; R is the abbreviate of “Rescheduling”; A is the abbreviate of
“Participation Analysis”, where Y means MGA agree on the matchmaking while N means MGA is unsatisfied with
the matchmaking.

Table 7. Execution time during PORA.

Execution Time (seconds) Execution Time (seconds)

Agents MGA1 MGA2 MGA3 CEMA Agents MGA1 MGA2 MGA3 CEMA

0 P 2.710 2.689 2.777 — 3 R 3.241 3.340 3.568 —

1
O — — — 170.92

4
O — — — 165.05

R 3.344 2.929 3.034 — R 3.449 — 3.531 —

2
O — — — 167.49

5
O — — — 164.15

R 3.061 3.090 3.379 — R 3.425 — 3.569 —
3 O — — — 172.79

Table 8 demonstrates the power flow distribution for all cases, where r = 0 means that there is no
information sharing within the MMG system, whereas r = 1 means that there is an open system of
fully shared information, and 0 < r< 1 means that there is a limited-information-sharing-based system.
When r = 0, since there is no CEMA and CCA, the distributed MGAs exchange power with the main
grid. This is why the utilization of the line between the MG and the main grid reaches the maximum in
MGA2. In addition, the CCAs give the line loss feedback to the CEMA, which makes the line loss lower
in comparison with the mode (r = 0). With the increase of information sharing, the CCA provides an
optimal power flow distribution scheme to cut down the line loss.

Table 8. Utilization of line and line loss.

Mode
Utilization of Line between MG and Main Grid (%)

Line Loss (kW)0-MG1 0-MG2 0-MG3

r = 0 100% 97.3% 100% 7.72
0 < r< 1 100% 50.4% 100% 6.01

r = 1 100% 51.4% 100% 5.92

4.2.3. Different Degrees of Information Sharing

The operation costs of MGAs and the social benefit with different degrees of information sharing
within the MMG system are shown in Figure 5. It can be found that with the increase of the information
sharing degree, the social benefit in the MMG system increases and achieves the maximum value when
r = 1, which means the CEMA is aware of the information of all the MGAs without considering the
PW of MGs. At the same time, some MGAs’ profits are damaged compared with other situations.
Furthermore, with the increase of the data sharing degree, the profit of each MGA first increases
and then decreases. It shows that there is a trade-off between distributed MGAs and the whole
MMG system.
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5. Conclusions

Considering the different ownerships and their autonomy of MGs, we develop a multi-stage
framework for the coordinated energy scheduling problem within the MMG system, where the
MGA is responsible for the internal operation, and the CEMA and the CCA are responsible for the
coordination. The interaction model between agents is constructed based on the limited information
sharing. In contrast to other methods, the matchmaking PW of MGs is considered in the coordination
model between the CEMA and the MGA. In addition, the CCA is introduced to keep the MMG
system operating within the physical network constraints and assists the CEMA in achieving global
optimization from the view of the whole MMG system. The hierarchical schemes are proposed for the
coordination of the MMG system with multiple stages, namely, PORA, where the upper layer is a MILP
model addressing the distributed internal operation optimization and the lower layer is the energy
coordination model solved by PSO. The simulation results verify the improvement effect that decreases
the MG’s dependence on the main grid and increases the utilization of renewable energy. The results
also show that the cooperation of MGAs guided by the proposed method can yield a better trade-off

between the whole MMG system and each MGA while respecting the autonomy of each MGA.
The above investigations on the proposed MAS-based coordinated energy scheduling for the

MMG system reveal that the further explorations in the following directions would be worthwhile:

• Analyze the information sharing willingness and characteristics of different types of MGs, and
quantitatively characterize the degree of information sharing of microgrids;

• Analyze the impact of the different degrees of information sharing between different MGs
on the coordinated energy scheduling of the MMG system, and consequently propose
corresponding strategies.
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Abbreviations

MGs Microgrids PSO Particle swarm optimization
MMG Multi-microgrid DR Demand response
MAS Multi-agent system DRE Distributed renewable energy
MGA Microgrid agent ESS Energy storage systems

CEMA Central energy management agent CDG Controllable distributed generation
CCA Coordination control agent PW Participation willingness
MILP Mixed integer linear programming

Nomenclature

I Set of MGs Pi
DRE,t DRE output of the i-th MG at time t

Ji Consumer set inside the i-th MG Pi
LD,t

Total adjusted load demand within
the i-th MG at time t

T Schedule periods ∑
k∈{I−i}

Pik
MG,t

Total power traded between the i-th
MG and others.t Index for time intervals

Ce Energy payment Pi,min
CDG/Pi,max

CDG
Minimum/ maximum output of
CDG

Cd Discomfort cost Pi,min
DRE /Pi,max

DRE,t Minimum/ maximum output of DRE

Ci
u, j

Total cost of the j-th consumer
in the i-th MG

Pi,min
ESS /Pi,min

ESS Minimum/ maximum output of ESS

CCDG Operation cost of CDG
Pi,min

line,t /P
i,max
line,t

Minimum/ maximum transmitted
power of the tie line of the i-th MGCR Replacement cost of ESS

CPG Cost of the tie line power transaction
SOCi

t
State-of-charge of ESS within the
i-th MG at time tCMG Cost of the power transaction

Xij

Adjusted electricity consumption
distribution of the j-th consumer
in the i-th MG

SOCi,min/ SOCi,max Minimum/ maximum SOC of ESS in
the i-th MG

Yij
Arranged electricity consumption
of the j-th consumer in the i-th MG

β

Constant coefficient considering the
discomfort experience impact on the
cost

xijt
Adjusted energy consumption of Xij
at time t

ai, bi, ci Cost coefficients in the MGi

yijt
Arranged energy consumption of
Yij at time t

kf The equivalent daily coefficient

xmin
i j /x

max
i j

Minimum/maximum level of
adjusted energy consumption

ce The unit energy capacity cost of ESS

µit
Price imposed by the i-th
MG at time t

cp The unit power capacity cost of ESS

Pi
CDG,t

Output of CDG in i-th MG
at time t

Nrep The rated cycle number

Bi
ESS

Rated capacity of the ESS in the
i-th MG

µB The purchasing price

Pi
ESS

Rated power of the ESS in the
i-th MG

µS The selling price

Si Status of ESS in the i-th MG
µik

MG,t
The transaction price between the
i-th MG and k-th MG at time tPi

ESS,t Charging/discharging power at time t

Pi
line,t

Transmitted power of the tie line of
the i-th MG at time t

ηc The charging efficiency of ESS

Pik
MG,t

Power traded between the i-th
MG and k-th MG at time t

ηd The discharging efficiency of ESS
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