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Abstract: Rain falling from the sky is viewed as a clean energy source with a great potential, owing to
the large amount of it and its zero pollution nature, the fact that it has scattered raindrops, and its
characteristic rainfall concentration that promotes extensive research on harvesting and utilization.
Here, we introduce a new approach to harvest rainwater on rooftops called the Rain-Power Utilization
System, which is composed of an initial rainwater disposal system and multistage energy conversion
system. Initial rainwater is discharged into a split-flow pipe due to its poor quality and impurities.
Additionally, clean rainwater is accumulated in a storage pipe until the water level reaches a specified
height, triggering siphonage for energy conversion. The same process is repeated in other storage
pipes connected in series. Function relations among physical and dimension parameters have been
established for further studies. A kind of simplified optimization algorithm has been proposed
considering the maximum instantaneous power under the constraint of a permitted vacuum and
maximum energy generation per unit length to find the model with an optimal height combination
(hu, hd). The experimental prototype developed in proportion is used to verify theoretical research and
conduct error analysis to establish an equation of annual energy generation for a high-rise building.
Without building extra tanks, this paper presents an innovative approach to maximizing the use of
energy in rain for high-rise buildings based on a siphon.

Keywords: rainwater energy; siphon; rain-power utilization system; vacuum; optimization algorithm;
experimental validation

1. Introduction

Rainwater is an abundant and widespread natural source with kinetic and potential energy
and has considerable prospects in energy generation as a renewable energy source causing little
contamination. Rain energy has many of the same characteristics as wind energy, such as intermittence
and an inhomogeneous density, and is superior to wind energy since water is 900 times denser than air.
Furthermore, rain belt regions are common all over the world, e.g., plum rain over the middle and
longer reach of the Yangtze River from June to August represents the major summer rainfall in China.
However, it is difficult to harvest significant and available rain energy, since rain is strongly scattered
with a great initial dropping height. As a result, how to harvest the energy of rain in an efficient and
convenient manner is an urgent problem that needs to be solved.

In recent years, some studies have focused on harvesting the energy of raindrops by relying
on material whose technologies are generally divided into piezoelectric, triboelectric, and chemical
types [1]. Wong [2] introduced a kind of smart piezoelectric beam for harvesting raindrop impact
energy based on an electrostatic induction mechanism, which could convert vibrations into electricity,
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and studied how rain parameters such as the rain rate and drop size distribution influence the output
energy. The energy harvester is more applicable in abundant annual rainfall regions due to its unique
property. Zheng [3] replaced the regular protection layer on a solar panel with a special transparent
polymer material, with the aid of the opposite triboelectric polarities on two surfaces, and could
generate a periodic potential difference driven by raindrop kinetic energy to produce an alternating
current. Such a hybrid solar cell achieves the simultaneous or individual harvesting of both solar energy
and raindrop energy. Duan [4] presented a chemical model to capture rain energy by a polyaniline
film via chemical bath deposition, owing to the general principle of graphene. However, these energy
harvesters generate a very low energy and unsteady current, have expensive devices, and have high
requirements for the rainfall intensity and rain rate. Most of them are limited to laboratory testing,
without providing practical insight on implementation.

Indeed, there is an efficient way to convert the mechanical energy of rain into electrical energy.
The basic idea is to first accumulate rainwater to a specified volume and release it to drive water
turbines for generating energy, and this has been widely studied. Hydropower contributes to
approximately 85% of global renewable electricity and plays a strategic essential role that has moved
beyond other renewable sources, such as wind, solar, and biomass, due to some significant benefits,
including the low cost of installation, proven technology, and high reliability and stability [5,6].
Nowadays, hydroelectricity generation provides serviced community independence from global
fossil fuel contamination and fluctuation [7,8]. With the process of urbanization, the capacity and
devices of hydropower have moved towards a small scale to adapt to different working conditions.
The Micro Hydro Power System (MHPS), as one of the cleanest renewable energy sources and the
most cost-effective energy technology, being approximately three times cheaper than small wind
electric generators, four times cheaper than diesel and natural gas engines, and eight times cheaper
than a photovoltaic system, is becoming more and more popular in modern society. The Pico Hydro
Power System (PHPS) has also become a hot topic due to its environmental friendliness and strong
practicability [9–12].

The practices of the Rain Energy Harvesting System, Water Supply System, and other water
infrastructure require new management strategies and solutions for energy recovery purposes, which
need MHPS or PHPS to be innovative, cost-effective, and environmentally friendly. Installing a water
turbine in a gravity pipe takes advantage of the excess and otherwise unutilized available hydraulic
energy and converts it into electricity, without interfering in the water supply service and without
having significant adverse environmental impacts [13]. After accumulating in a giant storage tank
for a whole day, treated sewage is discharged to impact the hydro turbine with a high pressure and
velocity [14]. An in-pipe hydro system can produce electricity by exploiting excess pressure of the
water supply. It is able to operate across a broad range of head and flow conditions, and can be installed
in an urban, industrial water supply grid, as well as waste drainage networks. This system has started
being tested in several cities, such as Hong Kong and Portland [15].

The Rooftop Rainwater Harvesting System (RRHS) is quite promising and has been proposed
as one of the techniques that can be employed for rainwater utilization, including rain harvesting,
energy accumulation, energy generation, and the secondary use of available rainwater. Hydroelectric
generation, as the core part of the system, provides a mechanism of converting solar into electrical
energy with the aid of water circulation, and is a perpetual energy source combined with green energy
technology widely applied in multi-story buildings and high-rise buildings, especially for populated
communities [16]. Scholars have contributed to studies of RRHS from different perspectives. Monteiro,
based on an estimation of the turbine performance, maximized the energy production by giving the
available head and flow rate values over one year for a specific energy recovery technology [17].
Alnaimi demonstrated that the stability of RRHS can be guaranteed by force analysis to help select
durable material under pressure. The result of stress-strain on the structure caused by an external force,
internal water pressure, and hammering can be obtained by simulation [18,19]. In order to accumulate
rainwater, a water storage tank installed on rooftops has been proposed by most scholars. Subsequently,
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tanks on a ground level have also been proposed to store rainwater and pump rainwater from the
ground to roof for producing electricity during high peak demands on non-rainy days [20]. However,
the power pump consumption cannot be made up by turbine production. Moreover, the installation
of water tanks uses up available space, as well as increases the quantity of construction work and
investment, resulting in an application that is significantly difficult. Besides, considering the function
of discharging water automatically, a water level sensor and a valve the sensor actuated need to be
installed, which leads to more investment and adds complexity [5]. On the whole, the studies on
energy potential in rainwater are very few, do not highlight and optimize calculations, and mostly
focus on selection of the turbine type and the installation of water tanks, without discussing novel
energy harvesters of rain.

The turbine is an important part of the Rooftop Rainwater Harvesting System that most literature
has related to harvest rain energy, with a focus on hydropower, and broadly classified into impulse
and reaction turbines. Impulse turbines have a high efficiency area at a high head and low flow and
generally include the Pelton turbine and Turgo turbine. Reaction turbines perform well on a low
head and high flow and have primary types, such as the Francis turbine and Kaplan turbine [21].
Selection of the turbine requires a comprehensive consideration of the head and designed flow. Based
on an experimental analysis and theoretical prediction, a simple reaction turbine with a smaller
diameter tends to rotate faster, generating more energy [22]. Moreover, a further study confirmed that
a simple reaction turbine can operate under a very low hydro-static head to achieve a high conversion
efficiency with a very small diameter [23]. Cobb [24] compared two types of impulse water turbine
for pico-hydropower—the Turgo turbine and Pelton turbine. The greatest difference is that the Turgo
turbine can handle a significantly higher flow rate, allowing for an efficient operation at lower head
ranges than the Pelton turbine. For a given low head and variable flow specification, Williamson
proposed a new methodology based on quantitative and qualitative analyses to select a pico-hydro
turbine, rather than traditional views based on a specific speed of a water turbine [25]. As for the
generator, an induction generator is a great choice for a micro-hydropower system due to its low cost,
small size, and self-production against overloads and circuits. Bhargav [26] presented a generator that
can be replaced by a dynamo, which might allow for a greater efficiency. Research on the performance
of turbines and generators is extensive and comprehensive, so this article will not discuss it further.

Siphonage is a kind of force produced by a water level difference, whose essence is caused by
atmospheric pressure. A siphon is mostly applied in building drainage, municipal drainage, and water
engineering. With the development of interdisciplinary research, siphonage has been well-applied in
many fields in recent years. Furushima [27] replaced the traditional auxiliary pumping device with a
siphon cooling device as a cooling water system of a photovoltaic model, producing an obvious result
in energy conservation. Lu [28] introduced continuous siphonage flow as a renewable fluid driving
force to improve the detection reproducibility for trace analytes in quantitative and sensitive assays.

In this study, a novel methodology for capturing energy from rainwater is proposed and the
Rain-Power Utilization System is developed. Rain is collected on rooftops, taking advantage of large
roof areas without building other rainwater harvesting devices. Secondly, it presents the feasibility
of designing several hydro energy conversion units connected vertically in series and installed in
an original rainwater down pipe, realizing electricity production simultaneously and repeatedly.
In addition, further work focuses on the relationships among physical and dimension parameters,
including the instantaneous velocity, volume flow rate, power, and time variation with head in the
pipe, which are described in the form of theoretical formulations. Different design conditions are
constructed by changing the dimension parameters. A kind of simplified optimization algorithm
is proposed to find the optimal height combination (hu, hd), with a consideration of the maximum
instantaneous power under the constraint of a permitted vacuum and maximum energy generation per
unit length. Finally, a reduced-scale model prototype has been developed and tested. The experimental
data obtained are compared with a theoretical calculation to prove the feasibility and rationality of the
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design and to introduce the reduction coefficient used in the equation of the practical annual power
generation of high-rise buildings.

2. Methodology

2.1. System Composition and Structure

The overall framework of the Rain-Power Utilization System is shown in Figure 1, which is
composed of two subsystems—an initial rainwater disposal system and a multistage energy conversion
system—and further subdivided into six parts, including rainwater harvesting on a rooftop, initial
rainwater separation and discharge, energy accumulation, power generation, power utilization,
and rainwater reclamation. All six parts are represented in the diagram in the form of a rounded
rectangle symbol. Studies and technologies of micro-hydro power and pico-hydro power have been
well-established, and different schemes have been proposed to improve the availability of power
utilization and rainwater recycling. Accounting for the utilization potential and considerable energy
in rainwater, this paper attempts to propose an innovative solution based on high-rise buildings for
alleviating the energy crisis and developing new energy.

Figure 1. Overall framework of the Rain-Power Utilization System, including two subsystems and
six parts.

Given the advantages of both height and area, the rooftop of a building, as a naturally available
rain harvesting platform, can collect scattered rainwater with the aim of energy concentration. It is
notable that the initial rainwater collected from rooftop catchments, due to the poor quality affected by
the atmosphere and catchment surface, cannot be used to generate power directly and is generally
discarded. To begin with, rain flows into the initial rainwater disposal system shown on the right
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side of Figure 2a via a rainwater hopper. On completion of the separation and discharge of initial
rain, comparatively cleaner rainwater, via an inclined pipe, flows to a multistage energy conversion
system composed of several identical hydro energy conversion units connected in series. Each unit is
composed of a storage pipe, a siphon pipe placed inside the storage pipe, an exhausted pipe, and a
hydro turbine, as shown in Figure 2b. Rainwater first accumulates in the storage pipe, until the water
level exceeds a specified height, which triggers siphonage and propels the water into the siphon
pipe toward the turbine installed below the outlet of the siphon, so that the generator can be driven.
The tail water flows down along the rainwater down pipe to the next storage pipe and repeats the same
process until the last process is finished and the tail water is discharged. Furthermore, the exhaust pipe
connects the outlet of the siphon pipe with the outside atmosphere, allowing for equalizing pressure.
Electricity produced by the Rain-Power Utilization System is stored in batteries or directly used in
lighting staircase bulbs and charging electric motorcycles after rectification. Captured rainwater is
drained into a tank for reclamation and reuse, such as providing water for domestic, commercial,
and industrial purposes, as well as groundwater recharge, greenbelt irrigation, and as an emergency
supply for firefighting [18].

Figure 2. Geometric model of the overall system: (a) Rain-Power Utilization System; (b) hydro energy
conversion unit.
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A floating ball is placed inside the split-flow pipe and matches the float valve switch on the
pipe, as shown in Figure 3. Initial rainwater is accumulated in the split-flow pipe until the float valve
switch closes automatically, marking the end of discharge. Clean rain flows into the storage pipe via
the inclined pipe. Given the need for rainwater discharge in the split-flow pipe to make room for
the next rain, a section of the circular sidewall made of epoxy resin microporous permeable material
has a slow-permeable characteristic whose permeation rate is extremely low, but not equal to zero.
The bottom closing proximity to the sidewall of the split-flow pipe is hermetically sealed and forms a
dismountable structure to regularly clear silt and other debris.

Figure 3. Main body and local details of the initial rainwater disposal system.

A multistage energy conversion system is composed of several hydro energy conversion units, as
shown as Figure 4. A siphon pipe whose longer side penetrates the partition plate in the next unit is
fixed in the storage pipe by a bracket. To ensure the occurrence of siphonage and guarantee a smooth
water flow, the exhausted pipe connects the outlet of the siphon pipe with the atmosphere. Generating
devices, including a hydro turbine and generator, are installed under the siphon outlet. The adjacent
storage pipes are separated and sealed by the partition plate and connected by the flang to form room
independently of one another and accumulate rainwater in each unit, without interference.

Figure 4. Main body and local details of the hydro energy conversion unit.

As the core process of the Rainwater-Powered Utilization System, the operation principle of
siphoning is as shown in Figure 5. The water level in the storage pipe continuously rises with rainwater
accumulation until the water rises to the top of the siphon pipe. Due to siphonage, rainwater flows
from the short end of the siphon to the long end at a high speed to strike the hydro turbine vertically.
Subsequently, this portion of water is accumulated in the next storage pipe as well, and the same
process will be repeated until the last one. There are a couple of orifices on the storage pipe wall
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higher than the top of the siphon pipe, which play an imperative role in maintaining a normal pressure
for producing a smooth flow and mitigation of the rainwater load in the case of excessive rainfall.
Remarkably, rather than discharging all of the water completely between siphoning, a section of the
permanent water layer on the bottom is reserved parallel to the short end of the siphon pipe, so as to
rapidly meet the demands for water accumulation and energy generation efficiently.

Figure 5. Introduction to the working principle, application to energy accumulation, and conversion of
the siphon: (a) The permanent water layer on the bottom is reserved; (b) the water level in the storage
pipe continuously rises with rainwater accumulation; (c) siphonage is triggered when the water rises to
the top of the siphon pipe; (d) rainwater flows from the short end of the siphon to the long end at a
high speed to strike the hydro turbine vertically.

2.2. Geometric Dimensions

In terms of the siphon pipe, as a crucial part of the hydro energy conversion unit, the difference
in height between the inlet, outlet, and top has an essential impact on the head loss. The gross head
is closely related to the flow velocity, volume flow rate, generation capacity, and efficiency, and is
ultimately determined by water level variation in the storage pipe. A vacuum, as the driving force of
siphoning, under the limitation of maximum suction, exists throughout the siphon pipe and reaches
the maximum value at the top. Consequently, for a rather better running performance, the optimum
dimensions of the hydro energy conversion unit are supposed to consider both the generating efficiency
and the maximum vacuum in the siphon pipe.

The height dimensions of a simplified siphon pipe are shown in Figure 6. h1 is the height difference
between the short end, i.e., the 1-1 cross-section and water surface in the storage pipe, and h2 is from
the water surface to the top of the siphon pipe. The difference in height between the 1-1 cross-section
and top is denoted by hu, hu = h1 + h2; similarly, between the inlet and outlet of the siphon pipe,
corresponding to the 1-1 cross-section and 3-3 cross-section, is denoted by hd. The total height of the
siphon pipe is (hu + hd). The lengths of straight pipes on both sides are lt and lg, with lt < lg.

Unplasticized polyvinyl chloride (uPVC) pipes have been widely implemented in drainage systems
owing to their appreciable advantages of a high strength, corrosion resistance, anti-scaling ability,
long-term durability, and low cost [29,30]. uPVC has been selected as the material of both the storage
pipe and the siphon pipe, whose geometric dimensions are presented in Figure 7. The dimensions of
the original rainwater down pipe are not changed, and the inner diameter, D1, and outer diameter,
D2, are equal to 105 mm and 110 mm. For the siphon pipe, the inner diameter, d1, outer diameter,
d2, and turning radius, R, are 28 mm, 30 mm, and 35 mm, respectively. Consequently, the distance
between the inner wall of the storage pipe and the outer wall of the siphon pipe is 2.50 mm.
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Figure 6. Height marks and cross-sections marked in a simplified siphon pipe.

Figure 7. Local geometric dimensions of the siphon pipe and the storage pipe.

2.3. Variable Parameters

As the inner wall of uPVC pipes is extremely smooth, the friction loss coefficient is calculated
by an explicit formula belonging to the turbulent smooth region [31,32]. Friction loss always exists
throughout the pipes and finally results in head loss. Hence, it is of great significant to take the internal
flow solution into account.

λ = 6.1963 (lnRe)−2.3884 (1)

where Re is the Reynolds number at the maximum flow velocity and the minimum resistance, whereby
Re = 10−4 and λ = 0.00184.

Local head loss exists at the inlet and bend of the siphon pipe, whose local resistance coefficients
are ζin = 0.464 and ζ180 = 1.400.

From the beginning of the siphon, the head (h1 + hd) will drop continuously over time, causing
changes in the flow velocity, volume flow rate, and power, constantly. Furthermore, all parameter
changes arise from h1, and are directly impacted by and varied with variable h1. Both the volume flow
rate and flow velocity of the incompressible fluid in the siphon pipe are constant everywhere at the
exact same moment, as the diameter of pipes is constant. The average velocity of the 3-3 cross-section,
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i.e., the siphon outlet, can be obtained by setting up and transforming Bernoulli’s Energy Equation
relating to cross-sections 1-1 and 3-3, presented as Equation (2):

v(h1) = v3(h1) =

√
2g(hd + h1)

α3 + ζin + ζ180
(2)

where α3 is the kinetic energy correction factor of the 3-3 cross-section.
Based on Equation (3), the other parameters, such as the instantaneous flow, Q, instantaneous

power, P, and time, ti, varied with h1, are presented in Equations (3)–(5):

Q(h1) = Av =
πd1

2

4

√
2g(hd + h1)

α3 + ζin + ζ180
(3)

P(h1) = γQ(h1 + hd) =
γπd1

2

4
(h1 + hd)

√
2g(hd + h1)

α3 + ζin + ζ180
(4)

t(h1) =

∫ a

0

As

Q
dh1 =

4(D2
− 2d2

1)

πd2
1

√
α3 + ζin + ζ180

2g(hd + h1)
dh1 (5)

where As is the flow area of the storage pipe and a is the value of h1 at time t (0 ≤ a ≤ hu).
As one of the necessary conditions for realizing siphoning, it is unreasonable and not allowed for

the maximum vacuum occurring at the top of the siphon pipe to be over the permitted vacuum. By
adopting the absolute pressure, the Bernoulli Equation relating to cross-section 1-1 and cross-section
2-2 is set up. The vacuum Hp of cross-section 2-2 is obtained, with 1-1 cross-section chosen as the
reference plane, and simplified as Equation (6):

Hp(h1) =
Pa

γ
−

P2

γ
= hu +

v2

2g
√
α2 + ζin + ζ90

− h1 (6)

where α2 is the kinetic energy correction factor of the 2-2 cross-section, Pa is the atmospheric pressure,
P2 is the absolute pressure of the 2-2 cross-section, γ is the volume-weight of water, and ζ90 is the local
head loss of the 90 degree bend pipe.

Equation (6) confirms that the vacuum in the siphon pipe is also varied with h1, and has function
relations with variable h1.

2.4. Optimization Algorithm

By analyzing the above Equations (4) and (6), the maximum instantaneous power, Pmax, is obtained
when h1 = hu. Similarly, the minimum instantaneous power, Pmin, occurs at h1 = 0 and the maximum
vacuum, Hpm, occurs at h1 = 0.

Pmax =
γπd1

2(hu + hd)
√

2g(hu + hd)

4
√
α3 + λ 2hu+hd−2R

d1
+ ζin + ζ180

(7)

Pmin =
γπd1

2hd
3
2 ·

√
2g

4
√
α3 + λ 2hu+hd−2R

d1
+ ζin + ζ180

(8)
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Pint =
∫ hs

0
γπd1

2(h1+hd)
√

2g(h1+hd)

4

√
α3+λ

2hu+hd−2R
d1

+ζin+ζ180

dh1

=
γπd1

2
√

2g

4

√
α3+λ

2hu+hd−2R
d1

+ζin+ζ180

[(hd
3
2 )hu +

3
4 (hd

1
2 )hu

2 + 1
8 (hd

−
1
2 )hu

3
−

1
64 (hd

−
3
2 )hu

4]
(9)

Hpm =

(
Pa

γ
−

P2

γ

)
m

= hu +
hu

(
α2 + λ hu−R

d1
+ ξin + ξ90

)
α3 + λ 2hu+hd−2R

d1
+ ξin + ξ180

(10)

where α3 is the kinetic energy correction factor of the 3-3 cross-section and α2 is the kinetic energy
correction factor of the 2-2 cross-section.

The relationships among the maximum instantaneous power, Pmax, minimum power, Pmin,
maximum vacuum, Hpm, and heights hu and hd are shown in Figure 8a,b,d. Nevertheless, the variation
trends of instantaneous power Pmax and Pmin are converse when hu is changing. Totally different
optimization results are obtained according to Pmax and Pmin, separately, and neither is representative.
For a given hu and hd, the integral of instantaneous power in variable h1 from the beginning to end of
siphoning is introduced as Pint to assess the system power, which is more accurate and representative
than Pmax and Pmin. Pint varies with hu and hd, as shown in Figure 8c.

Figure 8. Relationships among Pmax, Pmin, Pint, and Hpm vs. hd and hu: (a) The maximum instantaneous
power, Pmax; (b) the minimum instantaneous power, Pmin; (c) the integral of instantaneous power, Pint;
(d) the maximum vacuum, Hpm.

The average power of the system and energy efficiency will increase with a rather higher
instantaneous power. The vacuum at the top of the siphon pipe is commonly not allowed more than
8.0–9.0 m head.

In order to obtain an optimum model and simplify algorithm implementation, since the complex
relationships between variables are difficult to solve, both hd and hu have values from 1 to 10 in steps of
0.5 to form arithmetic sequences, separately. Pint and Hpm, corresponding to the values in sequences,
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are obtained by the calculations in Equations (9)–(10). The results are listed in Tables 1 and 2, only from
3.0 m to 8.0 m, as the entire dataset is too large to present. The optimum values of hd and hu should be
selected with the maximum Pint under the limitation of the permitted vacuum.

Table 1. Integral of instantaneous power, Pint, at different hu and hd.

hu/m
hd/m

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

8 1017 1123 1227 1331 1435 1541 1647 1753 1861 1970 2079
7.5 926 1023 1121 1218 1316 1415 1514 1615 1716 1818 1922
7 837 928 1018 1109 1200 1293 1386 1480 1575 1671 1768

6.5 752 836 919 1003 1089 1175 1262 1349 1438 1528 1618
6 671 747 824 902 981 1061 1141 1223 1305 1388 1472

5.5 593 663 733 805 877 951 1025 1100 1176 1253 1330
5 519 582 646 712 778 845 913 982 1051 1121 1192

4.5 448 505 563 622 682 743 805 867 930 994 1058
4 382 433 485 537 591 646 701 757 813 870 927

3.5 320 364 410 456 504 552 601 650 700 750 801
3 261 300 339 380 421 462 504 547 590 633 677

Table 2. Maximum vacuum, Hpm, at different hu and hd.

hu/m
hd/m

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

8 9.45 9.66 9.85 10.04 10.22 10.40 10.57 10.73 10.89 11.04 11.18
7.5 8.95 9.15 9.35 9.53 9.71 9.88 10.05 10.21 10.36 10.51 10.65
7 8.44 8.65 8.84 9.02 9.20 9.37 9.53 9.69 9.84 9.98 10.12

6.5 7.94 8.14 8.33 8.51 8.69 8.85 9.01 9.16 9.31 9.45 9.58
6 7.44 7.64 7.82 8.00 8.17 8.33 8.49 8.64 8.78 8.92 9.05

5.5 6.94 7.13 7.31 7.49 7.66 7.81 7.97 8.11 8.25 8.38 8.50
5 6.43 6.62 6.80 6.98 7.14 7.29 7.44 7.58 7.71 7.84 7.96

4.5 5.93 6.12 6.29 6.46 6.62 6.77 6.91 7.04 7.17 7.29 7.41
4 5.42 5.61 5.78 5.94 6.10 6.24 6.38 6.51 6.63 6.75 6.86

3.5 4.92 5.10 5.27 5.42 5.57 5.71 5.84 5.97 6.08 6.19 6.30
3 4.41 4.59 4.75 4.90 5.04 5.18 5.30 5.42 5.53 5.63 5.73

For each given hd, all values of Pint and Hpm are calculated in turn within Equations (9) and (10).
Under the constraint of the maximum vacuum Hpm ≤ 8 m, the combination (hu, hd) corresponding
to the maximum Pint is selected as the optimal height combination. For instance, when hd = 7.0 m,
all values of Pint and Hpm can be calculated as shown in Figure 9, in order to select the maximum
Pint meeting the condition of Hpm ≤ 8 m. For hd = 7.0 m, hu = 5.0 m is the best choice and the height
combination (7.0, 5.0) is finally screened.
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Figure 9. Simplified algorithm that can be used to select the optimal height combination (hu, hd) when
hd = 7 m.

All values of hd in the arithmetic sequence are traversed, and 19 optimal combinations (hu, hd) are
screened by the above algorithm. They are the result of preliminary screening and optimization and
listed as follows: (1.0, 7.0), (1.5, 7.0), (2.0, 6.5), (2.5, 6.5), (3.0, 6.5), (3.5, 6.0), (4.0, 6.0), (4.5, 6.0), (5.0, 5.5),
(5.5, 5.5), (6.0, 5.5), (6.5, 5.0), (7.0, 5.0), (7.5, 5.0), (8.0, 5.0), (8.5, 4.5), (9.0, 4.5), (9.5, 4.5), and (10.0, 4.5).

For the 19 height combinations (hu, hd), the curve of the instantaneous power over time, P(t),
is drawn, based on which relations between the instantaneous power and time with variable h1 are
calculated. The energy generation of one siphon is obtained by an integral and denoted by Eo.

Eo =

∫ tn

0
P(t)dt (11)

where tn is the end time of siphoning.
The height combination (4.5, 6.0), for instance, whose P(t) integral interval is 0–21.59, can generate

energy Eo = 3195 J. The average energy generation per unit length of siphon pipe Em is calculated as
Equation (12):

Em =
Eo

hd + hu
=

3195.6
4.5 + 6

= 304.34J/m (12)

Similarly, Em for all combinations is calculated and scatter plots are drawn with the results, as
illustrated in Figure 10. The height combination (4.5, 6.0) with the maximum Em = 304.34 J/m is selected,
whereby hd = 4.5 m and hu = 6.0 m, which is the result of further screening and optimization.

Figure 10. Average energy generation per unit length Em at different height combinations (hu, hd).
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The above process is an overview of the simplified optimization algorithm used to select the
optimum model, and presented in the flow chart in Figure 11. Based on the process, considering the
maximum energy generation as the ultimate goal, the main dimension parameters of the hydro energy
conversion unit are determined and listed in Table 3.

Figure 11. Flow chart of the simplified optimization algorithm used to select the optimum model and
optimal height combination (hd, hu).

Table 3. Main dimension parameters of the hydro energy conversion unit.

Type Parameters

Symbol Meaning Value

Height

hd/(m) \ 4.5
hu/(m) \ 6.0

hsip/(m) Siphon 10.5
hsto/(m) Storage pipe 11.0

Length
lg/(m) Long straight edge 4.965
lt/(m) Short straight edge 11.465
l/(m) Whole straight edge 16.43
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Table 3. Cont.

Type Parameters

Symbol Meaning Value

Vacuum, power,
and energy

Pmax/(W) Maximum instantaneous power 245.24
Pmin/(W) Minimum instantaneous power 64.31
Pint/(Wm) Integral of instantaneous power 804.84
Hpm/(m) Maximum vacuum 8.0

Eo/(J) Energy generation of siphoning once 3195.6
Em/(J/m) Average energy generation per unit length 304.34

3. Empirical Results

3.1. Experimental Scheme and Design

According to the Rain-Power Utilization System, the experimental prototype developed in
proportion is shown in Figure 12.

Figure 12. Experimental prototype of the Rain-Power Utilization System developed in proportion.

In order to observe the process of initial water discharge, energy generation, and siphoning clearly,
the split-flow pipe, water storage pipe, and siphon pipe are made of transparent Perspex. The floating
ball is replaced by a table tennis ball, and rainwater is simulated by water with an appropriate velocity.
The hydro turbine, generator, and LED light were installed below the outlet of the siphon, forming
a loop.

After the split-flow pipe is full and the water valve switch is turned off, the water flows into the
storage pipe via the incline pipe and rises to the maximum water level, i.e., the top of the siphon,
beyond which, siphonage is triggered. It is significant that water flowing out of the short end of the
siphon pipe drives the pico-turbine and lights up the LED light to prove the reasonability and verify
the feasibility of the device.

3.2. Instantaneous Flow Rate Measurement

This part seeks to experimentally validate the consistency in the instantaneous flow rate for both
the theoretical calculation and experimental results. Regarding the ease of operation and accuracy of
tests as the basic requirement, while given the simplified method for calculation and the limitations of
experimental devices, the calculated volume, Vc, and metrical volume, Ve, are directly compared.

The starting point and end point are the times when the water level in the storage pipe is flush
with the top and short end of the siphon pipe, respectively. The vertical height from the start point to
end point is evenly divided into nine parts by 10 mark points, and each part is 0.05 m. The time, ti

(i = 0, 1, 2... n), is recorded when the water level is as high as each mark point, and t0 is the time to
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start. By adopting the time-average method to measure the flow velocity, red points are marked at 0.01
m above and below each mark point, separately. For each mark point, the time when the water level
drops from the red point to the other is ∆ti (i = 0, 1, 2, 3... 9). Three groups of experiments were carried
out and the experimental data recorded are shown in Figure 13a.

Figure 13. Experimental result and comparison with calculated results for the flow rate, Q: (a) Three
groups of experiments conducted to record the time and calculate ∆ti; (b) comparison of calculated and
experimental results of the flow rate, Q.

The flow rate of each mark point, Qi, was calculated using Equation (13), where ∆ti is the average
value of three groups of experiments. Based on the experiment and optimization algorithm, the scatter
diagram (ti, Qi) and Q-t curve were compared, as shown in Figure 13b.

Qi =
0.02π

(
D2

1 − 2d2
2

)
4∆ti

(13)

The same trend in the volume flow rate can be seen for both the experiment and algorithm.
The water volumes Ve and Vc are equal to 0.0027 m3 and 0.003 m3 respectively, by fitting and integrating
the scatter plot and curve, which can be used for error analysis.

3.3. Error Analysis and Correction

The deviation in flow rate between the measurement and calculation directly influences the
magnitude of power, determines whether it can accurately evaluate energy generation, and is likely to
result from system error and measuring error in the course of experiments, as well as ignoring fluid
resistance and the deviation in calculation. Considering the requirement that two kinds of data results
need to match each other better to elevate the precision of experiments, the reduction coefficient, ηr,
is proposed and is equal to (Vc − Ve)/Vc = 10%. Since the roughness of the prototype device for the
Rain-Power Utilization System is smaller than the experimental device, the reduction coefficient is
equal to ηr = 92%. Hence, the optimal actual energy generation is Ea = Eo × ηr = 2939.95 J.

4. Discussion

High-rise buildings for residential purposes have an average height of more than 27 m above
the surface [30]. The Rain-Power Utilization System is composed of several hydro energy conversion
units connected in series. The total annual energy output of each rainwater down pipe is used to
multiply the energy output of the hydro energy conversion unit by the number of units connected in
series, and the number of units is employed to divide the height of the building by the height of the
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unit. The Pico Pelton wheel turbine is considered as a generating device of the system. The electricity
production equation is modified by efficiency coefficients.

Ey = Eo
Vy

Vo
η = Eo

ψ · α · β ·A · h
π
4 (D1

2 − 2d22)hη
· ηr · ηe · ηt (14)

where Vy is the annual total volume of rain, Vo is the maximum volume of the storage pipe, A is
the roof area of the harvested rainwater, h is the annual rainfall depth, the mean runoff coefficient is
denoted by ψ, equal to 0.9, α is the seasonal reduction coefficient, equal to 0.7, β is the initial runoff

coefficient, equal to 0.94, ηr is the reduction coefficient, equal to 0.92, ηe is the generator efficiency,
equal to 0.8, and ηt is the turbine efficiency, equal to 75%, considering that the low head and water
head cannot be fully used [33].

The annual total electricity production of the Rain-Power Utilization System is

Et = no · Ey =
⌊ H

hsto

⌋
· Ey (15)

where H is the height of the building, no is the number of units, and hsto is the height of the storage
pipe.

5. Conclusions

Based on the rainwater down pipe of high-rise buildings, the Rain-Power Utilization System
was designed and is composed of an initial rainwater disposal system and energy conversion system.
According to theoretical analysis and experimental research, the main conclusions that can be drawn
are as follows:

(1) Rain harvesting on rooftops has great potential energy, without taking up extra space. A hydro
energy conversion unit connected in series is suitable for high-rise buildings, achieving power
generation with rainwater.

(2) The function relations among the flow velocity, flow rate, and power with the dimensions of the
siphon pipe have been deduced, according to the theory of fluid mechanics. Considering the
maximum Pint (integral of instantaneous power) under the limitation of the maximum vacuum,
Hpm, and maximum Em (average energy generation per unit length of the siphon pipe), a kind of
optimization algorithm has been proposed to find the model with the optimal height combination
(6, 4.5).

(3) After all of the physical and dimension parameters of a hydro energy conversion unit are
determined, in theory, the total energy generation of one siphoning process is 3195.6 J. A small
error exists between the calculation and experiment with the analysis of experimental data results.
As a result, the reduction coefficient, ηr, is introduced to make the results accurate. Therefore,
the actual energy generation of one siphoning process is 2959.95 J. It is of guiding significance
for the practical application of the Rain-Power Utilization System to verify the feasibility of
theoretical research and perform error analysis.

(4) For high-rise buildings, the annual energy generation equation of the hydro energy conversion
unit modified by the efficiency coefficient can be calculated. Additionally, for the Rain-Power
Utilization System, the annual total electricity production can be obtained accordingly.
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