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Abstract: Wind turbine towers produce significant scatterings when illuminated by radars.
Their reflectivity affects air traffic control, military surveillance, vessel tracking, and weather data
sensing processes. Reducing the radar cross-section (RCS) of wind turbines is an essential task
when building wind farms. It has been proved that round and bumpy structures can scatter
radar waves and reduce the RCS of a reflector. Other research showed that taper towers generate
smaller radar returns than cylindrical towers. In this research, we combine both strategies to devise
a more effective method for designing wind turbine towers in the hope that their RCS can be
further reduced. The test results reveal that the proposed method out-performs current reshaping
methods. Wind turbine towers possessing taper shapes and periodic surface bumps deflect incident
electromagnetic waves to insignificant directions. Thus, radar returns in the back-scattering directions
decrease. Other experiments also verify that the proposed method maintains its effectiveness for
radar waves with varying frequencies and polarization.

Keywords: RCS reduction; wind turbines; reshaping methods

1. Introduction

The massive metallic towers of wind turbines produce significant back scatterings when
illuminated by radar waves. Their radar cross-sections (RCS) are larger than those of Boeing
737 airplanes. Thus, wind turbines become a menace to the operations of air and sea traffic control,
weather monitoring, and military surveillance radars [1]. This hazard is the top reason for the
cancellation of wind farm installations [2]. The study in [2] surveyed the scattering capabilities of all
individual components of a wind turbine and concluded that 75% of the radar returns were produced
by the tower. If the radiation from the tower is decreased, the entire scattering of the wind turbine is
reduced too. Furthermore, the tower is used for supporting the electricity generator, blades, and nacelle.
It is a stationary structure and does not rotate as the blades do. Applying RCS alleviation processes
upon the tower is more economic and produces almost no negative effects on the electricity generation
capacity of the wind turbine. Thus, alleviating radar returns from the tower is the top priority for
decreasing the RCS of a wind turbine.

Some strategies have been proposed to reduce the radar returns caused by wind turbine towers.
In the work of [3,4], researchers proposed to coat these metallic structures with radar absorption
materials (RAM) to weaken their scatterings. RAM methods possess some engineering difficulties.
First, the thickness of the coating layer must be properly calculated so that radar waves of a specific
frequency can be absorbed. Secondly, RAMs are expensive, and their installation costs are high.
Third, their weights increase the load of the tower. Furthermore, the endurance of RAMs is another
problem since some wind turbines are installed off-shore and erosion can damage the coatings.

An alternative methodology is to change the shape of the tower to divert incident radar waves
toward insignificant directions so that the back scatterings are declined. Based on this rationale,
some reshaping methods have been proposed. In the paper of [2], Pinto et al. proposed to shape a wind
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turbine tower with tapering effect. The resultant tower has a larger base end and a smaller top end.
It has been proved that this tapered tower produces less radar returns than a cylindrical tower when
illuminated by S- and X-band radars. In [5], Ling et al. discovered that adding bump structures on the
surface of a reflector could effectively divert the reflected EM waves. Their approach was revised by
Ueng et al. to lower the RCS of wind turbines [6,7]. In the methods of [6,7], the surfaces of wind turbine
towers are augmented with horizontal or vertical periodic bumps to scatter incident radar waves.
Hence, radar returns from wind turbine towers are alleviated. The authors also published and analyzed
simulation results and verified that bumps in specific densities and heights significantly reduce RCS
of wind turbine towers. In a more recent work [8], Ueng and Chen proposed to combine the two
reshaping strategies of [2,6,7] to design a more efficient RCS reduction method. However, a pragmatic
algorithm for building wind turbine towers was absent from their paper.

Besides reshaping and RAM methods, some researchers proposed to use metasurfaces for RCS
reduction. In their methods, layers of metallic and dielectric slabs are adhered in specific arrangements.
The thicknesses and covering areas of these slabs are carefully selected to produce out-of-phase effects
in the reflected radar waves. Thus, the RCS of the surface is reduced because of the destructive
interferences between reflected beams [9]. In a similar search, Song et al. designed a hybrid RCS
alleviation method [10]. They created a graphene sheet upon the target surface. The space between the
graphene sheet and the target surface was filled with foams. Then, they attached grating structures
on the graphene sheet. As radar waves reach the target, the graphene layer absorbs some energy
from the incoming waves and the grating structures generate high order reflections to reduce the
back scatterings. In the work of [11,12], scientists employed artificial magnetic conductors (AMC) to
weaken the RCS of metallic surfaces. In these methods, specially designed AMC cells are designed and
fabricated on metallic surfaces. These AMC cells form a chessboard pattern. As metallic surfaces are
illuminated by radar waves, the ACM cells diversify the phase distribution of the reflected beams and
generate phase-cancellation effects. Thus, the RCS of the target is decreased. These methods do not
modify the shape of the target. However, they share some weaknesses with RAM methods. Their costs
are relatively high and the endurance of the coating layers in harsh environments is questionable.

In this research, we adopt the idea of [8] and develop an innovative reshaping method aiming
to design wind turbine towers producing a smaller RCS. Our method combines the tapering effect
method of [2] and the bump surface methods of [5–7] to model wind turbine towers. The resultant
towers possess tapered shapes and periodic surface bumps. Besides devising and formulating our
reshaping approach, numerous simulations have also been carried out to study the effectiveness of
the proposed method. The collected results show that our hybrid reshaping method is superior to
those previous reshaping methods presented in [2,5–7]. Furthermore, the achieved RCS reduction
exceeds the combination of the individual reshaping methods. Other experiments show that the
proposed strategy is applicable for a wide range of frequencies and different radar wave polarizations.
Thus, it can be used to decrease scatterings for various radar systems. We also conduct simulations to
find the optimal tapering angles and to study the combined effect of taper ratio and radar frequency
upon the proposed reshaping strategy. The results are also presented and analyzed in this article.

2. Materials and Methods

As the proposed RCS reduction method is a hybrid reshaping strategy, the resultant towers
possess tapered shapes and surface bumps. There are fine structures on the towers’ surfaces, and the
taper ratio of each individual tower may be different. Instead of designing these towers manually by
using geometric modelling tools, we deduce mathematic formulas to model them. The bump density,
bump height, bump direction, and taper ratio are regarded as control parameters in the formulas.
Thus, by altering these variables, towers with different appearances can be automatically created to
comply with the requirements of the users.
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2.1. Cylindrical, Taper, Bump, and Bamboo Tower Modelling

The reshaping methods for modelling towers with bumpy and tapering effects have been presented
in [5–7]. Based on these reshaping methods, we developed new geometrical formulations to create
hybrid towers. For the sake of completeness, the reshaping methods of [5–7] will be first introduced
in this subsection. The newly developed modeling algorithms for the hybrid towers is presented in
Section 2.2.

Our reshaping algorithm uses a cylinder tower as the template. Then, by deforming the cylindrical
tower, other types of towers are constructed. In this subsection, we will present the proposed modelling
formula step by step and case by case. We assume that, in the world coordinate system, the x- and
y-axes span the horizontal plane while the z-axis points vertically, and the height and radius of the
cylindrical tower are h and r. Then, the coordinates of all points on the cylindrical tower surface can
generated by the following formula:

x = r cos(α),
y = r sin(α),
−h
2 ≤ z ≤ h

2 ,
(1)

where α ranges from 0 to 2π. An image containing a cylindrical tower and the world coordinate system
is shown in Figure 1a.
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Figure 1. Wind turbine towers. Upper row, towers without tapering effect; lower row: towers with
tapering effect.

Based on Equation (1), we deduced a method to construct a tapered tower, assuming that the
radii of the bottom end and the top end of the tapered tower are rB and rT. The slope, i.e., the taper
ratio, of the tower surface is defined as:

T =
rB − rT

h
. (2)
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The radius of the tapered tower varies with the z-coordinate and can be expressed as a function of
z-coordinate:

r(z) = rB − T ∗ (z +
h
2
). (3)

By substituting r(z) of Equation (3) into Equation (1), we can generate a tapered tower with a taper
ratio T. An example taper tower is displayed in Figure 1d.

By adding perturbations to the x- and y-coordinates in Equation (1), we can generate bumps on a
cylindrical tower’s surface. These perturbations come from a wave function D(α), which is defined
as follows:

D(α) = A cos(kα), (4)

where A and k are the amplitude and wave number of this wave function, respectively, and α ranges
from 0 to 2π. Then, the x- and y-coordinates of the tower surface can be modelled by using the
following equation:

x(z,α) = (D(α) + r) cos(α),
y(z,α) = (D(α) + r) sin(α).

(5)

In Equation (5), the perturbation function alters the radius of the tower and transforms the tower
surface into a wavy surface. The crests divert incoming radar rays and reduce the RCS of the tower.
However, the troughs resemble parabolic reflectors. They may concentrate incident radar rays and
produce significant back scatterings. To preserve the crests and eliminate the troughs, we put the
following constraint upon D(α):

D(α) = max(A cos(kα), 0). (6)

Subsequently, D becomes a non-negative periodic function of α and generates a sequence of
convex bumps around the tower surface. The tower is named as the bump tower in this article. A bump
tower is shown in Figure 1b. The bumps are parallel to the z-direction.

By revising the periodic function D, we can reorient the bumps by 90 degrees and add equal-spaced
rings on the tower surface. Assuming that k rings are to be produced, the inter-ring space is computed by

λ =
h
k

. (7)

By using λ, we redefine D as a function of the z-coordinate:

D(z) = max(A cos(
2πz
λ

), 0). (8)

Consequently, D becomes a periodic and non-negative function of z-coordinate. By substituting D
of Equation (8) into Equation (5), the x- and y-coordinates of the tower surface are computed as below:

x(z,α) = (D(z) + r) cos(α),
y(z,α) = (D(z) + r) sin(α).

(9)

Since the tower possesses a series of convex rings and resembles a bamboo, we call it the bamboo
tower in this article. The image of a bamboo tower is contained in Figure 1c. Its surface contains
horizontal rings which are expected to reflect incident radar waves to the ground and the sky.

2.2. Hybrid Tower Modelling

It has been proved that towers possessing surface bumps or taper shapes produce less RCS than
cylindrical towers [2,5–7]. A reshaping method which combines both strategies would be of great
values to us. However, to our knowledge, no study has been carried out to investigate the RCS
reduction capability using both methods at the same time. Thus, we created two types of hybrid towers
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which have surface bumps and tapering shapes in hope to further alleviate back scatterings from wind
turbine towers.

First, we mixed the bump tower with the taper tower to create a taper bump tower. To achieve
this goal, we deduced the following function to control the radius r of the tower:

r(α, z) = (rB + D(α)) − T ∗ (z + h
2 ),

−h/2 ≤ z ≤ h/2,
0 ≤ α ≤ 2π,

(10)

where T and D(α) are defined in Equations (2) and (6), respectively. Thus, the radius is maximized at
the base and linearly decreases along with the z-coordinate. Furthermore, the radius is disturbed by
the periodic function D in each cross-section of the tower to create convex bumps. By using the radius
function r(α, z), the x- and y-coordinates of the tower surface are modelled by

x(α, z) = r(α, z) ∗ cos(α),
y(α, z) = r(α, z) ∗ sin(α).

(11)

The image of a taper bump tower is displayed in Figure 1e. As the image shows, the tower has a
taper shape and a sequence of bumps surrounding its surface.

Then, by using Equations (7) and (8), we vary the radius along with the z-coordinate

r(α, z) = (rB + D(z)) − T ∗ (z + h
2 ),

−h/2 ≤ z ≤ h/2,
0 ≤ α ≤ 2π,

(12)

The radius fluctuates with the z-coordinate and linearly shrinks as the z-coordinate increases.
Then, the x- and y-coordinates of the tower surface are calculated by:

x(α, z) = r(α, z) ∗ cos(α),
y(α, z) = r(α, z) ∗ sin(α).

(13)

The resultant tower is called the taper bamboo tower in the following context. An image of the
tapered bamboo tower is displayed in Figure 1f. This tower has a tapering shape as well as horizontal
convex rings on its surface.

3. Results

Several sets of experiments were conducted to evaluate the proposed reshaping methods. In the
first set of tests, we computed the RCS values of the wind turbine towers mentioned in the previous
section. Then, we analyzed the test results to find out effective tower shapes. In the second set
of experiments, we studied how taper ratio and radar frequency affected the RCS of these towers.
The efficiencies of these towers, when illuminated by radar waves of various frequencies, were also
compared. In the third set of simulations, we polarized the radar waves both vertically and horizontally
and then computed the RCS of these towers. These simulations reveal the influence of polarization
upon the performances of the proposed reshaping methods.

In order to save costs, all the experiments were carried out using a simulation program. We used
the geometric modelling methods presented in Section 2 to construct virtual wind turbine towers,
including a cylindrical tower, a bump tower, a bamboo tower, a taper tower, a taper bump tower,
and a taper bamboo tower. The origin of the world coordinate system is located at the tower centers,
as shown in Figure 1a. To speed up the computations, the tower height was truncated to six meters.
Initial geometrical parameters of the reshaping procedures are listed in Table 1. The radii of the towers
were 1.5 m. The taper ratios of the taper tower, the taper bump tower, and the bamboo tower are 0.4/60.
Eight bumps were created on the surfaces of the bump tower, the bamboo tower, and the two hybrid
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towers. The bump height was 0.1 m. These data represent default values of the geometric parameters
but may be changed in experiments to enhance specific effects and tower characteristics.

Table 1. Geometric parameters of the towers.

Base Radius Number of Bumps Bump Height Taper Ratio

1.5 m 8 0.1 m 0.4/60

Unlike RAM methods, the total energy of scattering is not reduced in reshaping methods. The RCS
of a target declines because most of the reflected rays are guided to unimportant directions and less
energy is sent back toward the transmitting antenna. Evaluating the effectiveness of towers based on
their mono-static RCS may result in missing key features of individual reshaping strategies. In this
research, we used bi-static RCS to manifest the diversification of energy caused by the tapering effect
and bumps. Thus, the characteristics of the towers were better revealed. Furthermore, scatterings in
all directions may cause multiple interactions among nearby wind turbines or other objects and
interfere radar operations. If the bi-static RCS is decreased, multiple interactions can be alleviated.
Therefore, we rely on bi-static RCS to analyze the performances of towers.

3.1. Effectiveness of Hybrid Towers

In the first set of experiments, bi-static RCS values of the hybrid towers were computed.
The fundamental radar parameters are depicted in Table 2. The radar was located at the x-axis
and was 3000 m away from the origin. Hence, the zenith angle θ of the incident radar waves was
90 degrees while the azimuth angle φ of the incident radar waves was zero degrees. One hundred
and eighty-one receivers were used to sense scatterings from towers. These receivers were evenly
distributed in the boundary of a semicircle. This semicircle was located on the xy-plane and has a
radius of 3000 m. The zenith and azimuth angles of these receivers were θ = 90◦ and −90◦ ≤ φ ≤ 90◦.
A computer program based on the shooting and bouncing rays (SBR) method [5,13] was employed to
compute the RCS of these towers. In the evaluation process, the RCS of the cylinder tower was served
as the baseline to verify the efficiencies of the hybrid towers.

Table 2. Radar parameters.

Frequency Polarization Radar Distance Incident Angle

3.0 GHz H/H 3000 m θ = 90◦, φ = 0◦ (x-axis)

3.1.1. Effectiveness of the Tapered Bump Tower

The RCS values of the cylinder tower, the bump tower, the taper tower, and the taper bump tower
are displayed in Figure 2. The RCS of the cylinder tower is rendered in green color and used as the
baseline. The RCS values of the bump tower, taper tower, and the taper bump tower are shaded in red
color. In the left part, the bi-static RCS values of the cylinder tower and the bump tower are depicted.
The bump tower produced less RCS around the backscattering directions (θ = 90◦, −20◦ ≤ φ ≤ 20◦).
The difference is about 5 dB. In the middle part, the RCS values of the cylinder tower and the taper
tower are rendered. The taper tower reduced the radar returns by 10 dB around the backscattering
directions. The RCS of the taper bump tower is shown in the right part. This hybrid tower reduced the
RCS value by about 20 dB in the backscattering directions. The results show that the taper bump tower
is superior to the bump tower and the taper tower. It produces additive improvement. The reduction
in RCS gained by the taper bump tower exceeds the sum of the RCS reductions contributed by the
taper tower and the bump tower.
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The bump tower and taper bump tower generated stronger scatterings around the directions
−70

◦

≤ φ ≤ −50
◦

and 50
◦

≤ φ ≤ 70
◦

and deteriorated their performances. The incident angle of the
radar waves is φ = 0

◦

. After hitting the bumps, their reflections concentrate within these two ranges.
Thus, the bistatic RCS at these directions is worsened.

3.1.2. Effectiveness of the Tapered Bamboo Tower

The bi-static RCS values of the taper bamboo tower are displayed in the right part of Figure 3.
For reference, the bi-static RCS values of the bamboo tower and taper tower are shown in the left and
middle parts of the same figure. The bamboo tower and the taper could reduce the back scatterings by
10 dB. However, the taper bamboo tower reduced the RCS value by 20 dB. Thus, the hybrid reshaping
method is superior to the other two towers.
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Figure 3. (Left) RCS of the bamboo tower. (Middle) RCS of the taper tower. (Right) RCS of the taper
bamboo tower.

Comparing the RCS of the taper bump tower and the taper bamboo tower, we find that the taper
bamboo tower can alleviate scatterings in all the azimuth angles. This phenomenon also appears in the
RCS of the bamboo tower. We believe that the taper bamboo tower inherits this property from the
bamboo tower. Its horizontal bumps scatter the incident radar waves toward the sky and the ground
and decrease the bi-static RCS in all azimuth angles.

3.2. Taper Ratio and RCS

If we fix the radius of the tower base, the shape of a tower is decided by the bump height,
bump density, bump direction (vertical or horizontal), and taper ratio. Thus, there are four parameters
for modelling a tower. The influence of the bump height and bump density on RCS has been reported
in the previous research of [6]. The results showed that a feasible bump height for bump towers should
be within 0.1 and 0.9 of the radar wavelength. On the other hand, the most effective bump height
for bamboo towers is about 0.2~1.4 times that of the radar wavelength. If the bumps are too short,
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they cannot effectively scatter the incident radar waves. However, if the bumps are too high, the bump
bases and the tower surface form corners, which produce significant back-scatterings and enhance RCS.

The reasonable number of bumps is usually between four and eight. Bumps reflect radar
waves toward insignificant directions. As the number of bumps increases, the radar returns
are gradually weakened. Nonetheless, if the bump density is too high, the space between two
bumps resembles a concave reflector and generates a strong reflection toward the receivers,
thus, RCS increases. Extra experiment results, analysis, and explanation have been presented
in the paper of [6]. Thus, these two factors, bump height and density, will not be investigated in
this work. Instead, this research focuses on the influences of taper ratio and bump direction on RCS
alleviation. High frequency electromagnetic waves carry higher energies and enhance scatterings [7,9].
Furthermore, their wavelengths are shorter and so they can interact with fine structures on tower
surfaces more effectively and produce complicated reflections. Thus, the relationship between radar
frequency and RCS will also be studied in the tests.

In preparation for the tests, we varied the taper ratio to create towers. The radar distance,
polarization, and direction were not altered, though the radar frequency was varied in the simulations.
The RCS of each tower was calculated by using the SBR program mentioned above. In each
simulation, this program computed bi-static RCS values in all 181 azimuth directions. To emphasize
the backscattering strength, we computed the average value of the bi-static RCS within the range of
−20◦ ≤ φ ≤ 20◦ and used it to evaluate the performances of the towers. Though we did not take RCS
in all directions into account, this range of azimuth angles covers the major back scatterings sensed
by a mono-static radar. Thus, the average radar return of this range is a reasonable measurement for
comparing the efficiencies of the towers.

3.2.1. Fixed Radar Frequency

To uncover the relation between taper ratio and RCS, we created five taper towers with taper ratios
of 0.2/60, 0.4/60, 0.6/60, 0.8/60, and 1.0/60. Then, we computed their RCS by using the SBR program.
The settings of the simulation were the same as those tests in Section 3.1. The results are illustrated
in Figure 4. The green curves represent the RCS of the cylinder tower while the red curves show the
RCS of these tapered towers. By examining these five results, we found that the higher the taper ratio,
the lower the RCS. Therefore, to alleviate radar returns, we should build towers with high taper ratios.
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However, if the taper ratio is 1/60, the difference of diameter between the top and base ends in a
60-m-tall tower is two meters. If the diameter of the top end is three meters, the diameter of the base
end will be five meters. Fixing the size of the top end and increasing the taper ratio will widen the
difference and the taper tower will have a very large base. In the aspect of building costs, this tower
will become impractical. Thus, we suggest that the taper ratio should not exceed 1/60.

3.2.2. Varied Radar Frequency

In following tests, we studied the influence of radar frequency on the RCS of towers. At first,
we created six taper towers, six taper bump towers, and six taper bamboo towers. The taper ratios
of these towers were 0.0/60, 0.7/60, 1.1/60, 1.3/60, and 1.5/60, respectively. Then, we illuminated each
tower by using radar waves of six different radar frequencies (1~6 GHz). The average bi-static RCS of
the directions, θ = 90◦ and −20◦ ≤ φ ≤ 20◦, were calculated and used as the metrics for comparisons.

The results are illustrated in Figure 5. The RCS of towers with a 0.0/60 taper ratio is represented
by red curves. The RCS of other towers are rendered in green, blue, purple, cyan, and brown colors.
In part (a), the test results of the taper towers are displayed. As the image shows, the RCS of the taper
tower with a 0.0/60 taper ratio increased along with the radar frequency. On the other hand, the RCS
values of other taper towers slightly decreased as the radar frequency increases. Higher frequency
radar waves are more similar to light rays than lower frequency radar waves. Scatterings caused by
the tapering surfaces become important, and thus more energy of the incident electromagnetic waves
is reflected toward insignificant directions.
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The simulation results reveal that taper bump towers and taper towers are effective in reducing
RCS. However, taper bump towers generate a lower RCS than taper towers. The bumps on their
surfaces help to scatter more energies of the incident electromagnetic waves. Hence, their RCS is further
decreased. The RCS of the taper bamboo towers are presented in part (c) of Figure 5. As the radar
frequency increases from 1 GHz to 3 GHz, their RCS values decrease. Then, their RCS magnitudes
increase as the radar frequency increases. This phenomenon is more obvious for taper bamboo towers
with higher taper ratios. In the taper bamboo towers, the bumps are horizontal rings. As the taper
ratio increases, the reflections from one ring will be further reflected by neighboring rings and cannot
be directed to the sky or the ground straightly. Thus, more energy is sensed by the receivers. As the
radar frequency exceeds 4 GHz, these scatterings become more important and the RCS of the bamboo
towers are enlarged.

3.3. Tower Type and RCS

In another study, we compared the performances of taper towers, taper bump towers, and taper
bamboo towers. The simulation settings and measurement metrics were the same as the previous
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experiments. The results are depicted in Figure 6. The RCS of the taper towers, the taper bump towers,
and the taper bamboo towers are represented by the red, green, and blue curves, respectively.
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As the results show, taper bamboo towers outperform taper towers and taper bump towers if the
taper ratio is less than or equal to 0.7/60. However, as the pater ratio exceeds 1.1/60, the effectiveness of
taper bamboo towers deteriorates, especially for higher radar frequencies. In these cases, taper bump
towers are the best reshaping method for the RCS reduction process. This result verifies the analysis
presented in Section 3.2.2. As the radar frequency increases, the radar waves resemble planar light
rays. The inter-ring reflections enlarge the back scatterings and damage the performance of the taper
bamboo towers.

3.4. Radar Frequency and RCS

The results presented in Section 3.3 show that taper bamboo towers become less effective on
alleviating average bi-static RCS as the radar frequency increases. To further study the influence of
radar frequency upon the proposed reshaping methods, we performed another set of tests. In the
simulations, the initial radar frequency was 1.0 GHz. Then, the radar frequency was gradually
increased until it reached 10.0 GHz. The incremental value was 0.25 GHz. The taper ratios were set
to 0.4/60, 0.7/60, 1.4/60, and 1.8/60, respectively. The number of bumps on the tower surfaces was
decreased to six. Thus, the gaps between bumps were widened to prevent the creation of cavities.
However, the bump height was increased to 10 cm to enhance scatterings. There were four towers used
in this study, including a cylinder tower, a taper tower, a taper bump tower, and a taper bamboo tower.

The tests results are plotted in Figure 7. The average bi-static RCS of the cylinder, taper, taper bump,
and taper bamboo tower are drawn in purple, green, blue, and yellow color, respectively. For lower
taper ratios, 0.4/60 and 0.7/60, the taper bamboo tower is the most effective tower for reducing
back scatterings. Nonetheless, as the taper ratio increases, its performance decreases. It generates
peak average bi-static RCS at some radar frequencies. For taper ratio equals to 1.0/60, 1.4/60, and
1.8/60, the peak RCS occurs at the radar frequencies of 9.0 GHz, 6.5 GHz, and 5.0 GHz, respectively.
We conjecture that the sudden increasing of average bi-static RCS is caused by the coupling effects
of radar wavelength, taper ratio, and bump height. In this set of tests, the bump height was 10 cm.
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The radar frequency, causing peak average bi-static RCS, decreased as the taper ratio increases. A similar
phenomenon can be found in the results of Figure 6d–f, though the bump height is shorter, 8 cm,
in these simulations. The magnitude of the peak average RCS is smaller.Energies 2020, 13, x FOR PEER REVIEW 11 of 14 
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Figure 7. Average RCS of cylinder, taper, taper bump, and taper bamboo towers illuminated by radar
with 1.0~10.0 frequencies.

The average bi-static RCS of the taper and taper bump tower fluctuate with radar frequency.
The fluctuation becomes more frequently as the taper ratio grows. Globally, their efficiencies improve
as the taper ratio and radar frequency increase. These two towers offer stable RCS reductions for all the
radar frequencies and taper ratios. It is hard to compare their performances because of the fluctuation.
However, in general, the taper bump tower is superior to the taper tower.

3.5. Polarization and RCS

In the previous computations, the radar waves were horizontally polarized. In order to explore
the influence of polarization, we computed the RCS of towers by using not only HH but also VV
polarization in another set of the experiments. The testing models included cylinder, taper, taper bump,
and taper bamboo towers. The geometric parameters were fixed as follows: the taper ratio was 1.0/60;
the number of bumps was six; and the bump height was 10 cm. Nonetheless, the radar frequency was
set to 3, 6, and 9 GHz to study the combined effect of radar frequency and polarization. The directions
and locations of the radar and the receivers were the same as the settings in Section 3.1.

The performances of the towers were evaluated by using their bi-static RCS. The bi-static RCS of
the HH and VV polarization are shown in Figures 8 and 9. The bi-static RCS of the cylinder, taper, taper
bump, and taper bamboo towers are rendered in purple, green, blue, and yellow color, respectively.
These figures show that the bi-static RCS under HH and VV polarization are similar, especially for the
cylinder, taper, and taper bamboo tower. Only the bi-static RCS of the taper bump tower are affected
by the polarization method. To uncover the difference, we draw the HH and VV bi-static RCS of the
taper bump tower in Figure 10. The data obtained by using HH- and VV-polarization are shaded in
purple and green curves. The RCS of HH-polarization is better than that of the VV-polarization for
radar frequencies equal to 3 and 9 GHz. However, the difference is not significant within the major
back-scattering directions, −20

◦

≤ φ ≤ 20
◦

.



Energies 2020, 13, 5078 12 of 14
Energies 2020, 13, x FOR PEER REVIEW 12 of 14 

 

.

 

Figure 8. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo towers, illuminated by 

VV-polarized radar waves. 

 

Figure 9. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo tower, illuminated by 

HH-polarized radar waves. 

 

Figure 10. Bi-static RCS of the taper bump tower illuminated by HH- and VV-polarized radar waves. 

The purple and green curve represent HH- and VV-polarization bi-static RCS. 

3.6. Discussion 

In the experiments, the heights of the targets were relatively short compared with real wind 

turbine towers. The RCS values cannot be used to represent the radar returns of wind turbine towers. 

Since the main themes of this research focus on developing reshaping methods and studying the 

effectiveness of the proposed RCS reduction strategies, computing the RCS of a wind turbine is out 

of the scope of this research. However, assuming a tower is divided into N sections, the RCS values 

of the tower can be computed as follows: 

1

,
N

i

i

B B


  (14) 

where Bi is the RCS of the i-th section. 

Figure 8. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo towers, illuminated by
VV-polarized radar waves.

Energies 2020, 13, x FOR PEER REVIEW 12 of 14 

 

.

 

Figure 8. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo towers, illuminated by 

VV-polarized radar waves. 

 

Figure 9. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo tower, illuminated by 

HH-polarized radar waves. 

 

Figure 10. Bi-static RCS of the taper bump tower illuminated by HH- and VV-polarized radar waves. 

The purple and green curve represent HH- and VV-polarization bi-static RCS. 

3.6. Discussion 

In the experiments, the heights of the targets were relatively short compared with real wind 

turbine towers. The RCS values cannot be used to represent the radar returns of wind turbine towers. 

Since the main themes of this research focus on developing reshaping methods and studying the 

effectiveness of the proposed RCS reduction strategies, computing the RCS of a wind turbine is out 

of the scope of this research. However, assuming a tower is divided into N sections, the RCS values 

of the tower can be computed as follows: 

1

,
N

i

i

B B


  (14) 

where Bi is the RCS of the i-th section. 

Figure 9. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo tower, illuminated by
HH-polarized radar waves.

Energies 2020, 13, x FOR PEER REVIEW 12 of 14 

 

.

 

Figure 8. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo towers, illuminated by 

VV-polarized radar waves. 

 

Figure 9. Bi-static RCS of the cylinder, taper, taper bump, and taper bamboo tower, illuminated by 

HH-polarized radar waves. 

 

Figure 10. Bi-static RCS of the taper bump tower illuminated by HH- and VV-polarized radar waves. 

The purple and green curve represent HH- and VV-polarization bi-static RCS. 

3.6. Discussion 

In the experiments, the heights of the targets were relatively short compared with real wind 

turbine towers. The RCS values cannot be used to represent the radar returns of wind turbine towers. 

Since the main themes of this research focus on developing reshaping methods and studying the 

effectiveness of the proposed RCS reduction strategies, computing the RCS of a wind turbine is out 

of the scope of this research. However, assuming a tower is divided into N sections, the RCS values 

of the tower can be computed as follows: 

1

,
N

i

i

B B


  (14) 

where Bi is the RCS of the i-th section. 

Figure 10. Bi-static RCS of the taper bump tower illuminated by HH- and VV-polarized radar waves.
The purple and green curve represent HH- and VV-polarization bi-static RCS.

3.6. Discussion

In the experiments, the heights of the targets were relatively short compared with real wind
turbine towers. The RCS values cannot be used to represent the radar returns of wind turbine towers.
Since the main themes of this research focus on developing reshaping methods and studying the
effectiveness of the proposed RCS reduction strategies, computing the RCS of a wind turbine is out of
the scope of this research. However, assuming a tower is divided into N sections, the RCS values of the
tower can be computed as follows:

Bθ =
N∑

i=1

Bi , (14)

where Bi is the RCS of the i-th section.
In the experiments, the incident radar waves travelled horizontally at θ = 90. Their direction

was orthogonal to the z-axis and parallel with the xy-plane. In reality, radar waves may hit the wind
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turbines at smaller zenith angles if the radar is located at higher altitudes and shorter distances. In our
reshaping methods, the top end of each individual tower was modelled as a flat surface. If we decrease
the zenith angle, some of the rays will hit the top end and produce radar returns. This reflectivity will
be included in the resultant RCS values and obscure the contributions produced by the tapering effect
and bumps. In order to prevent this problem, the zenith angle was fixed at θ = 90 in this study.

The bumps on the surface of a tower cause extra drag forces and increase the load of the tower.
However, these structures enhance the mechanical strength of the tower (similar effects can be found
on bamboos and tall man-made buildings). Towers can bear the added load and drag forces. In the
reshaping methods, the bumps resemble waves without crests. We can generate a bumpy tower by
using a flat metal sheet. At first, we press the sheet to produce vertical or horizontal bumps on the
sheet surface. Then, we roll the sheet to form a bumpy tower.

4. Conclusions

Bumps and tapering effects are efficient strategies for reducing the RCS of wind turbine towers.
When separately applied on the towers, each of these approaches is capable of decreasing radar
returns. In this research, we combined these two methods and created hybrid wind turbine towers.
These hybrid towers out-perform towers with only tapering effects or only bumpy surfaces. Test results
prove that these two RCS mitigation strategies are not in mutual conflict. Instead, being put together,
they produce additive effects on RCS reduction.

The taper ratio of a tower significantly influences its RCS. The higher the taper ratio, the lower the
RCS. However, for a pragmatic tower, the taper ratio should be within a limit. Otherwise, the costs to
build the tower would be too high. Taper bump towers possess effective RCS reduction capabilities for
various radar frequencies and taper ratios. The performance of taper bamboo towers may deteriorate
if the radar frequency exceeds four GHz and the taper ratio is larger than 1.0/60. However, in other
cases, it is the best tower shape to reduce RCS.

The efficiencies of the taper tower and taper bamboo tower are not affected by radar polarization.
On the other hand, the taper bump tower produces different bi-static RCS if we alter the
polarization method. When the radar waves are horizontally polarized, its bi-static RCS are lower.
However, this phenomenon is not obvious in the major back scattering directions.
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