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Abstract: We develop a bit manipulation technique for single precision floating point numbers
which leads to new algorithms for fast computation of the cube root and inverse cube root. It uses
the modified iterative Newton–Raphson method (the first order of convergence) and Householder
method (the second order of convergence) to increase the accuracy of the results. The proposed algo-
rithms demonstrate high efficiency and reduce error several times in the first iteration in comparison
with known algorithms. After two iterations 22.84 correct bits were obtained for single precision.
Experimental tests showed that our novel algorithm is faster and more accurate than library functions
for microcontrollers.

Keywords: floating point; cube root; inverse cube root; Newton–Raphson; Householder

1. Introduction

The operation of extracting a cube and inverse cube root is not as common as adding,
subtracting, multiplying, dividing [1,2], or taking a square root [1,3,4], but is basic in
many applications [1,3,5–13]. A large number of hardware units and software libraries
support this operation, including math.h, the Short Vector Math Library (SVML) [14], and
Integrated Performance Primitives (Intel® IPP) [15]. In most modern central processing
units (CPUs), the computation of the cube root is performed using the function of the fully
IEEE-compliant cbrt (24 bits of mantissa). However, this has a drawback—it requires a
significant number of CPU clocks for implementation [16]. In addition, the disadvantage
of this approach is its attachment to specific hardware platforms. In practice, there are
different methods for calculation of the cube root [1,11,17]. Here, the exponent and mantissa
of the input argument are processed separately after they are extracted by frexp(). The
exponent obtains the required value after integer division by three. The mantissa is
reduced to the range (0.125, 1), after which the initial approximation of the mantissa of
the cube root is obtained with the help of a quadratic polynomial. Then, the obtained
exponent value and the initial mantissa approximation are combined with ldexp() into a
floating point number. This serves as the initial approximation of the cube root function
for the whole range of floating-point numbers. This approximation is then refined using
two Newton–Raphson iterations to give full accuracy (24 bits for float numbers). The
weakness of this approach is the use of very slow frexp() and ldexp() operations. Moreover,
Newton–Raphson iterations with division operations (which are algorithmically much
more complex than multiplication) are used here, or another variant is fractional-rational
approximations of the cube root function. Most modern low-cost microcontrollers that
support floating-point computing only use slow (but accurate) C math.h library functions
such as cbrt and 1.0f/cbrt, see [18]. In this article, to increase the speed of computing
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the inverse cube root, we propose algorithms using the bit manipulation technique [19].
These are based on the fast inverse cube root of the method [3,5,6,13] in modified versions;
these are quite accurate and relatively fast. In this method, we first obtain the initial
approximation of the cube root for the whole number (and not separately for the mantissa
and the exponent) through integer operations, which is refined using Newton–Raphson or
Householder iterations. The aim of the work is to theoretically substantiate the operation
of algorithms to calculate the inverse cube root using the magic constant for floating-point
numbers in the single precision format of the IEEE-754 standard. Selecting such a constant
provides the minimum possible relative errors for the entire range of float values. Thus,
we derive optimal offsets for additive correction of Newton–Raphson formulas (order 1)
which reduce the relative errors. The values of the coefficients of the Householder formula
(order 2) are also optimized, which makes it possible to increase accuracy with only a slight
complication of the algorithms.

In Section 4 we present results of experimental test using several processors and micro-
controllers. Comparing our novel algorithm with the library function for microcontrollers,
we can see that our algorithm is two times faster and two times more accurate.

2. Review of Known Algorithms

To our knowledge, the idea of calculating the inverse cube root using a magic constant
for floating point numbers was presented for the first time by Professor W. Kahan [5].
In order to compute the inverse cube root, it was represented in the following form:
y = 2z, z = − log2(x)/3

If the argument x is given as a floating-point number, it can be read as an integer Ix,
corresponding to the binary representation of the number x in the IEEE-754 standard. Then,
after dividing by 3, the sign is changed to the opposite and a fixed integer (known as a
magic constant) is added. The result can be read as a floating-point number. It turns out
that this represents an initial (albeit inaccurate) approximation, which can be refined using
iterative formulas. Such an algorithm for calculating the cube and inverse cube root, based
on the use of the magic constant, is presented in [6].

Algorithm 1.

1: float InvCbrt1 (float x){
2: const float onethird = 0.33333333;
3: const float fourthirds = 1.3333333;
4: float thirdx = x * onethird;
5: union {//get bits from floating-point number
6: int ix;
7: float fx;
8: } z;
9: z.fx = x;
10: z.ix = 0x54a21d2a − z.ix/3; //initial guess for inverse cube root
11: float y = z.fx; //convert integer type back to floating-point type
12: y = y * (fourthirds − thirdx * y*y*y); //1st Newton’s iteration
13: y = y * (fourthirds − thirdx * y*y*y); //2nd Newton’s iteration
14: return y;
15: }

The above algorithm can be briefly described as follows. The input argument x is a
floating point number of type float (line 1). Next, the content of the z.fx buffer can be read as
an integer z.ix (line 7). Subtracting the integer Ix/3 from the magic constant R = 0x54a21d2a
results in obtaining the integer Iy0 (z.ix, line 7). Line 7 contains a division by 3 which can be
replaced by multiplying the numerator by the binary expansion 0.010101010101 . . . of 1/3
in fixed point arithmetic. For 32 bit numerators, we multiply by the hexadecimal constant
55555556 and shift the (64 bit) result down by 32 binary places. Therefore the line 7 of the code
can be written in the form [6]: z.ix = 0x54a21d2a− (int) ((z.ix * (int64_t) 0x55555556) >> 32);
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The contents of the z.ix buffer can be read as a float number. This is the initial
approximation y0 of the function y = 1/ 3

√
x (line 8). Then, the value of the function can be

specified by the classical Newton–Raphson formula:

y1 = y0

(
4
3
− 1

3
xy3

0

)
, (1)

y2 = y1

(
4
3
− 1

3
xy3

1

)
, (2)

(lines 9 and 10). In the general case:

yn+1 = yn

(
4
3
− 1

3
xy3

n

)
. (3)

The relative error of the calculation results after the two Newtonian iterations is
approximately |δ2max| = 1.09·10−5, or − log(|δ2max|) = 16.47 correct bits, see [6]. Then,
according to the author of [6], this algorithm works 20 times faster than the library function
powf (x, −1.0f/3.0f) of the C language.

The disadvantage of the Algorithm 1 is that it has a relatively low accuracy (only 16.47
correct bits). The lack of an analytical description of the transformation processes that
take place in this algorithm hindered a progress in increasing the accuracy of calculations
of both the inverse cube root and the cube root. This article eliminates this shortcoming.
Herein is a brief analytical description of the transformations that occur in algorithms of
this type. Ways to increase accuracy of calculations are specified and the corresponding
working codes of algorithms are presented.

3. The Theory of the Fast Inverse Cube Root Method and Proposed Algorithms

The main challenge in the theory of the fast inverse cube root method is obtaining
an analytical description of initial approximations. We acquire these approximations
through integer operations on floating-point argument x converted to an integer Ix. A
magic constant is used, which inversely converts the final result of these operations into
floating-point form (see, for example, lines 7, 8 of the Algorithm 1). To do this, we can use
the basics of the theory of the fast inverse square root method, described in [4].

To correctly apply this theory, it is sufficient to replace the integer division from
Ix/2 with Ix/3 and expand the range of values of the input argument from x ∈ [1, 4)
to x ∈ [1, 8). It is known that the behaviour of the relative error in calculating y0 in
the whole range of normalized numbers with a floating point can be described by its
behaviour for x ∈ [0.125, 1) or x ∈ [1, 8) [6,17]. According to [4], relating to the inverse
cube root, in this range there are four piecewise linear approximations of the function
y0 = {y01, y02, y03, y04} :

y01 =
5
6
− 1

6
x +

1
24

t, x ∈ [1, 2); (4)

y02 =
2
3
− 1

12
x +

1
24

t, x ∈ [2, 4); (5)

y03 =
1
2
− 1

24
x +

1
24

t, x ∈ [4, t) (6)

y04 =
1
2
− 1

48
x +

1
48

t, x ∈ [t, 8); (7)

where t = 4 + 12mR + 6Nm. Here, mR is the fractional part of the mantissa of the magic
constant R, and mR = N−1

m R−bN−1
m Rc and mR > 0. The maximum relative error of such

analytical approximations does not exceed 1/(2Nm) [4,20]. To verify their correctness, we
compare the values of y0 obtained in line 8 of the Algorithm 1 with the values obtained
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using Equations (4)–(7) in the corresponding ranges. The maximum relative error of the
results does not exceed 5.96·10−8 for any normalized numbers of type float for x ∈ [1, 8).

To further improve the accuracy of the Algorithm 1, we can apply the additive correc-
tion of the parameter k2 for each iteration, as proposed in [10,20,21]. In other words, the
first iteration should be performed according to the modified Newton–Raphson formulas

y1 = y0(k2 − k1xy0y0y0), (8)

where the product y0y0y0 is used instead of power of three and we assume k1 = 1/3. The
optimal values of k2 and t (which give minimum relative errors of both signs) have to be
found. In order to find the optimal values we use the algorithm proposed in [10]. We write
the expressions of the relative errors of the first iteration in the range x ∈ [1, 8) for four
piecewise linear approximations y0 = {y01, y02, y03, y04} :

δ1i =
y1i − 1/ 3

√
x

1/ 3
√

x
= y1i

3
√

x− 1 = (k2 − k1ci(x)) 3
√

x− 1, (9)

where ci(x) = xy0iy0iy0i, i = 1, 2, 3, 4) and y01, y02, y03, y04 are given by Equations (4)–(7).
Next, we find the values of x, at which functions δ1ij have maximum values (both positive

x+ij and negative x−ij ) To do this, we have to solve four equations dδ1i
dx = 0 with respect to

x. Their solutions (x+ij and x−ij ) have two indices and the first index denotes the interval
to which the solution belongs: i = 1 for [1, 2), i = 2 for [2, 4), i = 3 for [4, t) and i = 4 for [t,
8). The second index numerates solutions within the corresponding interval (in this paper
we consider cases with at most j = 1). One has to remember that boundary points of the
intervals also can be taken into account as possible positive or negative maxima. Then,
applying the alignment algorithm proposed in [10], we form two linear combinations of
selected positive and negative maximum values δ+1ij, δ

−
1ij, δ

+
b and δ−b (including suitable

boundary values) and equate them to zero. It is important that the number of positive and
negative items in each equation is the same. Finally, we solve this system of two equations
obtaining new values of t, k2 which yield a more accurate algorithm. In order to increase
further the accuracy one can repeat this procedure, starting with redefined values of t, k2 .

Now, we start from the code Algorithm 1, i.e., we set the following values of zero
approximations of parameters t, k1, k2 : t = 7.19856286048889160156250, corresponding to
the magic constant R = 0x54a21d2a (see [2]), k1 = 0.33333333333333, k2 = 1.334.

We selected the following five maximum points. For the first interval [1,2): x+11 =
1.2988420843950769435381686797159343, for the second interval [2,4): x−21 = 2.899820357561
1114501953125000000057, for the third interval [4,t): x+31 = 5.950383012140948644294759109
8675369, and two boundary points: x = 4 and x = t. At these points, we form five
expressions for the relative errors according to formulas (9). Next, we form two equations
from different combinations for positive and negative errors (the number of positive
and negative errors for each equation should be the same) [10]. We have not provided
analytical expressions for the equations because they are quite cumbersome. The best
option found that gives the lowest maxima of positive and negative errors is as follows:
t = 7.2086406427967456 (corresponding to the magic constant R = 0x54a239b9) and k2 =
1.3345156576807351.

Next, we make one more iteration of this procedure. The second approximation gives
the following results: t = 7.2005756147691136 (corresponding to the magic constant R =
0x54a223b4) and k2 = 1.3345157539616962.

Similarly, analytical equations for two modified iterations of Newton–Raphson can
be written and the corresponding values of the coefficients of the formula for the second
iteration can be found.

The code of the derived new algorithm is as follows:
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Algorithm 2.

1: float InvCbrt10 (float x){
2: float xh = x*0.33333333;
3: int i = *(int*) &x;
4: i = 0x54a223b4-i/3;
5: float y = *(float*) &i;
6: y = y*(1.33451575396f − xh *y*y*y);
7: y = y*(1.333334485f − xh*y*y*y);
8: return y;
9: }

Comparative graphs of relative errors of the Algorithm 1 and our Algorithm 2 for the
first iteration are shown in Figure 1, where error = y·10−4. Note that the maximum relative
errors for the first iteration are as follows:

Figure 1. The first iteration relative error graphs for the interval x ∈ [1,8) (red color: Algorithm 1,
blue color: Algorithm 2).

• Algorithm 1: |δ1max| = 2.336·10−3 or − log2(|δ1max|) = 8.74 correct bits;
• Algorithm 2: |δ1max| = 1.183·10−3 or − log2(|δ1max|) = 9.72 correct bits.

The maximum relative errors for the second iteration are

• Algorithm 1: |δ2max| = 1.0998·10−5 or − log2(|δ2max|) = 16.47 correct bits;
• Algorithm 2: |δ2max| = 1.846·10−6 or − log2(|δ2max|) = 19.06 correct bits.

The best results are given by the Algorithm 3 with the released (not equal to 1/3)
value of k1. The five points of maxima on the interval x ∈ [1, 8) are also controlled here,
but they are located differently than for Algorithm 2 (Figure 2), where error = y·10−4.

The algorithm for finding unknown parameters t, k1, k2 : is similar to the one de-
scribed above. At the maximum points of relative errors, we form five expressions of these
errors according to Equation (8). Then, we form not two but three equations (to find three
unknown parameters t, k1, k2 :) from different combinations for positive and negative
errors (as before, the number of positive and negative errors for each equation must be the
same). Solving the resulting system from these equations, we get the first approximation of
the parameters. Then, we use the found values as initial approximations and we repeat the
iteration once again, etc.
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Figure 2. The first iteration relative error graphs Algorithm 3 for the interval x ∈ [1,8).

As an example, we set the initial approximations of the parameters t, k1, k2 : t =
5.0013587474822998046875 (corresponding to the magic constant R = 0x548aae60), k1 = 0.55,
k2 = 1.512. We select the following five maximum points (see Figure 2). For the first interval
[1, 2):

x+11 = 1.0643720067216318545117069225172418,
x−11 = 1.5625849217176437377929687500000016,

for the second interval [2, 4):

x+21 = 3.5748550880488707008059220665584755,
x−21 = 2.6426068842411041259765624999999972,

and one boundary point x = t. Then, the first approximation gives the following values:

t = 5.1234715101106982878054945337942215,
(R = 0x548bfbd3),
k1 = 0.5384362738855964773578619540917762,
k2 = 1.5040684526500142722173589084203817.

The second approximation gives these values:

t = 5.1412469466865047480874277903326086
(R = 0x548c2c5c),
k1 = 0.53548262076207845495640510408749138,
k2 = 1.5019929400707382448275120237832709.

At the third approximation we obtained the final values:

t = 5.1461652964315795696493228918438855,
(R = 0x548c39cb),
k1 = 0.53485024938484233191364545015941228,
k2 = 1.5015480449170468503060851266551834.

Then, the code of the proposed algorithm was as follows:

Algorithm 3.

1: float InvCbrt11 (float x){
2: int i = *(int*) &x;
3: i = 0x548c39cb − i/3;
4: float y = *(float*) &i;
5: y = y*(1.5015480449f − 0.534850249f*x*y*y*y);
6: y = y*(1.333333985f − 0.33333333f*x*y*y*y);;
7: return y;
8: }
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The graph of the relative error for the first iteration of this code is shown in Figure 3,
where error = y·10−4. As can be seen, at the selected five points, the values of the relative
errors are equal to each other modulo. Note that the maximum relative errors of the
Algorithm 3 for the first iteration are:

|δ1max| = 8.0837·10−4 or − log2(|δ1max|) = 10.27 correct bits,
δ+1max = 8.0523·10−4, δ−1max = −8.0837·10−4.

Figure 3. The first iteration relative error graphs Algorithm 3 for the interval x ∈ [1,8).

Maximum relative errors for the second iteration are as follows:

|δ2max| = 8.0803·10−7 or − log2(|δ2max|) = 20.23 correct bits,
δ+2max = 7.698·10−7, δ−2max = −8.0803·10−7.

However, more accurate results are given by algorithms using formulas of higher
orders of convergence—for example, the Householder method of order 2, which has a
cubic convergence [1,10]. For the inverse cube root, the classic Householder method of
order 2 has the following form:

y1 = y0(k1 − c(k2 − k3c), c = xy0y0y0,
k1 = 14

9 , k2 = 7
9 , k3 = 2

9 ,

}
(10)

or:

y1 = y0

(
1 + r

(
1
3
+

2
9

r
))

, r = 1− c. (11)

Here is a simplified Algorithm 4 with the classical Householder method of order 2
and with a magic constant from Algorithm 1:

Algorithm 4.

1: float InvCbrt20 (float x){
2: float k1 = 1.5555555555f;
3: float k2 = 0.7777777777f;
4: float k3 = 0.222222222f;
5: int i = *(int*) &x;
6: i = 0x54a21d2a − i/3;
7: float y = *(float*) &i;
8: float c = x*y*y*y;
9: y = y*(k1 − c*(k2 − k3*c));
10: c = 1.0f − x*y*y*y;//fmaf
11: y = y*(1.0f + 0.3333333333f*c ;//fmaf
12: return y;
13: }
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Here and in the subsequent codes the comments “fmaf” mean that the fused multiply-
add function can be applied reducing the calculation error. We point out that this function
is implemented in many modern processors in the form of fast hardware instructions.

The maximum relative errors for the first and second iterations of this algorithm are:

|δ1max| = 1.8922·10−4, or − log2(|δ1max|) = 12.36 correct bits,
|δ2max| = 2.0021·10−7, or − log2(|δ2max|) = 22.25 correct bits.

However, the Algorithm 5 with the modified Householder method of order 2 has
a much higher accuracy. It consists of choosing the optimal values of the coefficients
k1, k2, k3 of the iterative formula and gives much smaller errors. For example, the first
iteration (as in the Algorithm 4) has the form:

y1 = y0(k1 − c(k2 − k3c), c = xy0y0y0, (12)

and contains six multiplication operations and two subtraction operations. The algorithm
for finding unknown parameters t, k1, k2, k3 is similar to the above. First, we set the zero
approximations of the parameters: t = 5.0680007152557373046875 (corresponding to the
magic constant R = 0x548b645a), k1 = 1.75183, k2 = 1.25, k3 = 0.509.

In this case, the graph of relative error for the first iteration has the form shown in
Figure 4, where error = y·10−5. Then, a system of four equations is constructed for nine
points of maxima on the interval x ∈ [1, 8) (see Figure 4) and the values of the parameters
t, k1, k2, k3 are refined (R =0x548b645a, k1 = 1.75183, k2 = 1.25, k3 = 0.509). After two
approximations, we obtain the following values:

t = 5.1408540319298113766739657997215219
(corresponding to the magic constant R = 0x548c2b4a),
k1 = 1.7523196763699390234751750023038468,
k2 = 1.2509524245066599988510127816507199,
k3 = 0.50938182920440939104272244099570921.

Figure 4. The first iteration relative error graphs Algorithm 5 for the interval x ∈ [1,8).

The algorithm code is as follows:
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Algorithm 5.

1: float InvCbrt21 (float x){
2: float k1 = 1.752319676f;
3: float k2 = 1.2509524245f;
4: float k3 = 0.5093818292f;
5: int i = *(int*) &x;
6: i = 0x548c2b4b − i/3;
7: float y = *(float*) &i;
8: float c = x*y*y*y;
9: y = y*(k1 − c*(k2 − k3*c));
10: c = 1.0f − x*y*y*y;//fmaf
11: y = y*(1.0f + 0.333333333333f*c);//fmaf
12: return y;
13: }

Figure 5 shows compatible graphs of relative errors for Algorithm 4 (red) and Algo-
rithm 5 (blue) algorithms after the first iteration, where error = y·10−5. From analysis of
Figure 5, it follows that in the Algorithm 5 there was a significant reduction in errors in the
first iteration (7 times). This results in second iteration improvement (1.5 times). Note that
the maximum relative errors of the Algorithm 5 for the first iteration are:

|δ1max| = 2.686·10−5 or − log2(|δ1max|) = 15.18 correct bits.
Maximum relative errors for the second iteration are:
|δ2max| = 1.3301·10−7 or − log2(|δ2max|) = 22.84 correct bits [1].
In order to calculate the cube root (Algorithm 6), the last lines of the algorithm codes

related to the second iteration (for example, Algorithm 5, as well as any of the above
algorithms).

Algorithm 6.

1: c = 1.0f − x*y*y*y;
2: y = y*(1.0f + 0.333333333333f*c);//fmaf
3: return y;
4: should be written as follows:
5: float d = x*y*y;
6: c = 1.0f − d*y;//fmaf
7: y = d*(1.0f + 0.333333333333f*c);//fmaf
8: return y;

Figure 5. The first iteration relative error graphs for the interval x ∈ [1,8) (red colour: Algorithm 4,
blue colour: Algorithm 5).
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4. Evaluation of Speed and Accuracy for Different Types of Microcontrollers

We researched the relative error of the aforementioned algorithms using a STM32F767ZIT6
microcontroller (manufacturer: STMicroelectronics) [22]. We determined the maximum neg-
ative and positive errors of two iterations for different algorithms (Table 1). These errors
were calculated according to the formula InvCbrtK(x)*pow((double)x,1./3.)-1. for all numbers
floating between [1,8], where K ∈ {1, 10, 11, 20, 21}. The maximum error was determined
by the formula δmax = max

(
δ+max,

∣∣δ−max
∣∣). Analysing the results of Table 1, we can see that

Algorithm 5 gives the most accurate results in both iterations. In the last column, we present
the results of errors which give the standard library function 1.f/cbrtf(). According to the
results (Table 1) our Algorithm 5 (1.3301·10−7) has more than twice less error than the error of
the library function (2.7947·10−7).

Table 1. The maximum negative and positive errors of two iterations for different algorithms.

Iteration I Iteration II

Algorithm δ−1max δ+
1max δ−2max δ+

2max

1 −2.3386·10−3 1.7063·10−7 −1.1032·10−5 1.8301·10−7

2 −1.1826·10−3 1.1828·10−3 −1.8355·10−6 1.2510·10−6

3 −8.0837·10−4 8.0523·10−4 −8.0803·10−7 7.6980·10−7

4 −1.8350·10−4 1.8922·10−4 −2.0021·10−7 1.3298·10−7

5 −2.6860·10−5 2.6825·10−5 −1.3276·10−7 1.3301·10−7

1.f/cbrtf() - - −2.6004·10−7 2.7947·10−7

In addition, the operating time of the algorithm was researched. Testing was per-
formed on four 32-bit microcontrollers with FPU.

• TM4C123GH6PM (manufacturer: Texas Instruments Incorporated, Austin, TX, USA)—
microcontroller with 80 MHz tact frequency; compilers used were arm-none-eabi-gcc
and arm-none-eabi-g++ (version 8.3.1).

• STM32L432KC (manufacturer: STMicroelectronics, Geneva Switzerland)—microcontroller
with 80 MHz tact frequency; compilers used were arm-none-eabi-gcc and arm-none-eabi-
g++ (version 9.2.1).

• STM32F767ZIT6 (manufacturer: STMicroelectronics)—microcontroller with 216 MHz
tact frequency; compilers used were arm-none-eabi-gcc and arm-none-eabi-g++ (ver-
sion 9.2.1).

• ESP32-D0WDQ6 (manufacturer: Espressif Systems, Shanghai, China)—microcontroller
with 240 MHz tact frequency; compilers used were xtensa-esp32-elf-gcc and xtensa-
esp32-elf-g++ [23].

We used two types of optimization for the -Os (smallest) and -O3 (fastest) microcon-
troller compilers. In all cases, the best optimization result was for -O3; therefore, we do not
cite the optimization results of -Os.

Table 2 shows average function calculation times of InvCbrt(x) for Iteration I, which
corresponds to 10,000,000 tests. Analysis of the results shows that the shortest calculation
time is for the Algorithm 3 for all types of microcontrollers. Similar results are shown in
Table 3 for Iteration II. In this table, we have added one more column with the results of the
library function 1.f/cbrtf(). For the first three microcontrollers, the gain of the Algorithm 5
function is more than twice that of the library function and nine times better in terms of
work gain for the microcontroller ESP32-D0WDQ6.
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Table 2. Average function calculation times of InvCbrt(x) for Iteration I.

Iteration I with Optimization -O3

Microcontroller t1 [ns] t2 [ns] t3 [ns] t4 [ns] t5 [ns]

1 TM4C123GH6PM 625.91 650.95 625.91 726.06 701.01

2 STM32L432KC 487.85 487.85 475.34 575.41 562.9

3 STM32F767ZIT6 166.7 166.7 162.07 203.75 199.12

4 ESP32-D0WDQ6 239.27 239.27 239.27 264.48 264.48

Table 3. Average function calculation times of InvCbrt(x) and fl() = 1.f/cbrtf() for Iteration II.

Iteration II with Optimization -O3

Microcontroller t1 [ns] t2 [ns] t3 [ns] t4 [ns] t5 [ns] fl()[ns]

1 TM4C123GH6PM 776.13 776.13 826.21 976.42 976.44 1953

2 STM32L432KC 612.93 637.95 650.46 763.05 763.05 1588

3 STM32F767ZIT6 231.54 231.54 226.91 291.74 287.11 625

4 ESP32-D0WDQ6 310.65 306.47 306.46 377.82 377.82 3479

If we compare microcontrollers, we can see that the STM32F767ZIT6 is the fastest.
Table 4 shows the results of algorithm performance on different microcontrollers for Itera-
tion I, which is defined as the product of time calculating the inverse cube root and the tact
frequency of the microcontroller (cycles).

pi = tiv, i = 1, 2, 3, 4, 5. (13)

Table 4. The results of algorithm performance on different microcontrollers for Iteration I.

Iteration I with Optimization -O3

Microcontroller v [MHz] p1 p2 p3 p4 p5

1 TM4C123GH6PM 80 50.1 52.1 50.1 58.1 56.1

2 STM32L432KC 80 39.0 39.0 38.0 46.0 45.0

3 STM32F767ZIT6 216 36.0 36.0 35.0 44.0 43.0

4 ESP32-D0WDQ6 240 57.4 57.4 57.4 63.5 63.5

Table 5 shows the results for Iteration II. In this table, we also have added one more column
for library function 1.f/cbtf(). According to this table, the productivity of the function Algorithm
5 is twice better than the library function. Regarding microcontroller ESP32-D0WDQ6, the
function Algorithm 5 works nine times better than the library function.

Table 5. The results of algorithm performance on different microcontrollers for Iteration II.

Iteration II with Optimization -O3

Microcontroller v [MHz] p1 p2 p3 p4 p5 1.f/cbrtf()

1 TM4C123GH6PM 80 62.1 62.1 66.1 78.1 78.1 156

2 STM32L432KC 80 49.0 51.0 52.0 61.0 61.0 127

3 STM32F767ZIT6 216 50.0 50.0 49.0 63.0 62.0 135

4 ESP32-D0WDQ6 240 74.6 73.6 73.6 90.7 90.7 835

5. Conclusions

This paper presents results of a systematic analytical approach to the problem of
increasing the accuracy of the inverse cube root code (including the optimal choice of magic
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constants). These provide minimum values of relative error for initial approximations
according to the Newton–Raphson formula when calculating the function for float numbers.
The optimal values of displacements for additive correction of Newton–Raphson formulas
are also determined. These make it possible to reduce the relative errors of calculations.
Thus, comparing the algorithms Algorithm 1 and Algorithm 2, the gain on the first iteration
is approximately 1.97 times, and six times on the second iteration. The values of the
coefficients of the Householder formula (order 2) were also optimized, making it possible to
increase the calculation accuracy seven times (after the first iteration) without complicating
the algorithm. In summary, we can conclude that the STM32F767ZIT6 microcontroller
with -O3 optimization showed the best performance, and the Algorithm 3 was the fastest.
Comparing the Algorithm 5 with the library function for microcontrollers, we can see that
our algorithm is not only twice as accurate, but it can also calculate the function more than
twice as fast (1/ 3

√
x). These algorithms can also be implemented on an Intel Cyclone 10 GX

(C10GX51001) FPGA [24].
In addition, the proposed algorithm can also be used to calculate the cubic root and

can be implemented on Intel FPGA devices as it done in [25].
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