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Abstract: The current transformers with split-core are used for installation in places where it is
impossible to install classic current transformers. Moreover, this design allows for any measurement
location change, and even switching one current transformer into several different shapes of bars
or cables. Power network operators, striving for more accurate current measurements, require
producers to provide current transformers with a special accuracy class 0.2S. Therefore, manufacturers
and designers try to meet the market requirements and, similarly to non-demountable current
transformers, i.e., with a toroidal core, design current transformers with split-core class 0.2S. To meet
the high metrological requirements, 3D analyses of electromagnetic fields were performed, taking
into account physical phenomena and not approximate analytical models. Two types of cores and
four different arrangements of the secondary windings of the measuring current transformers were
considered. The magnetic field distributions, current error, and phase displacement diagrams of all
current transformer models were analyzed, and the model of the transformer structure with the best
accuracy was selected. Computations were conducted based on the finite element numerical method,
and the results were compared with the real model tests.

Keywords: split-core; current transformers accuracy; finite element method

1. Introduction

The measuring current transformer as part of the measuring system must meet the
requirements of the International Electrotechnical Commission and the European Standard
(IEC/EN) [1,2]. IEC/EN Current transformer (CT) transformation errors influence mea-
surement errors. Therefore, manufacturers must strive to reduce the errors of the designed
current transformer. Through-hole CTs are usually built with the secondary winding evenly
distributed over the toroidal core and with a through-line primary conductor. This series
of current transformers is designed for distribution systems using cables or busbars. They
can be mounted both on the bar and on the wall.

The current error and the phase displacement of the current transformer indicate the
accuracy class of the designed current transformer. Table 1 shows the accuracy limits for
the different classes of current transformers.

The IEC/EN standards [1,2] define transformation errors as current error:

∆i =
IsKn − Ip

Ip
· 100% (1)

and phase displacement
δi = ϕis − ϕip (2)

where Ip and Is are the RMS values of the primary and secondary current, ϕip and ϕis are
the phase angles of these currents, respectively, and Kn is the CT ratio.
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Table 1. Standard classes of current transformers according to IEC/EN 61869-2.

Class

(±%) Ipn

Current Errors (±%) Phase Displacement (±min)

1 5 20 100 120 1 5 20 100 120

0.1 — 0.2 0.1 0.1 0.1 — 15 8 5 5

0.2S 0.75 0.35 0.2 0.2 0.2 30 15 10 10 10

0.2 — 0.75 0.35 0.2 0.2 — 30 15 10 10

0.5S 1.5 0.75 0.5 0.5 0.5 90 45 30 30 30

0.5 — 1.5 0.75 0.5 0.5 — 90 45 30 30

Instrument transformers are precision devices. Class 0.2 means that the current
error (1) at the rated value is less than 0.2%, and the phase displacement (2) is measured in
minutes; therefore, an error of 10 min means 0.17 degrees. In addition, the standard specifies
the permissible values of current and phase displacement at the measured primary current
equal to 5%, 20%, 100% and 120% of the rated current. The special class 0.2S additionally
determines the accuracy with a very low primary current of 1% of the rated value.

Currently, instead of ordinary class 0.2 class current transformers, the designers of
measurement systems, following the requirements set by network operators, provide the
installation of current transformers of special 0.2S accuracy classes. This situation is prac-
tically common for low voltage toroidal current transformers. The growing metrological
requirements for class S current transformers are accompanied by problems with designing
their magnetic circuits, which do not occur in the usual accuracy classes.

Split-core current transformers can measure the current without interrupting the
electrical supply. They are used in distribution panels or power centers for maintenance
or system expansion. They are easy to install, which saves a lot of time by avoiding bar
disconnection. Split-core CTs, which can be found in company catalogs, usually have a
class of at most 0.5 (and 1 and 3), while more accurate CTs with a higher class of 0.2 and
0.2S are also required.

Split-cores have been used for some time in electromagnetic interference (EMI) sup-
pressors as a sleeve core that encircles the cables. Two split parts manufacture this con-
struction, pressed together by a snap-on mechanism, which turns this into a quick, easy to
install solution [3]. Such solutions are also used in the case of wireless sensors in the power
system [4,5], transformers [6], and also current transformers [7–9].

In order to meet the high metrological requirements when creating device models, real
physical phenomena should be taken into account and not analytical approximate models
(equivalent circuits) should be used. Many authors use the 3D finite element method
when designing electromagnetic devices, such as motors [10], power transformers [11,12],
instrument transformers [13–18], and other types of transducers [19]. This method allows
determination of the properties of devices at the design stage, before making a prototype.
It gives much more accurate results than analytical methods. Therefore, three-dimensional
models of current transformers were used, and problems were solved using the numerical
field-circuit method.

A comparator based on a commonly used method was used to measure transformation
errors. The measurement is performed with the use of the scheme of a differential circuit for
AC compensation of 50 or 60 Hz, using a higher class standard current transformer with the
same ratio as the transformer under test. However, in the case of other types of transducers,
such as optoelectronic [20] or current-voltage transducers [19], other measurement methods
are of course used. Other measurement systems are also required to measure current
transformer transformation errors with distorted supply voltages [21,22]. By using these
circuits, it is also possible to measure transformation errors when supplying voltages with
only a basic harmonic, although it is not necessary.
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The purpose of the study was to evaluate in the design process how the transformation
errors would change when, instead of a toroidal core, we use a split-core with the same
cross-section and magnetization path but with a different secondary winding arrangement.

The accuracy of the applied method has been confirmed by tests performed for the
toroidal current transformer.

The rest of this paper is structured as follows.
Section 2 presents the geometric models of the 600 A/5 A current transformer con-

structions with a through-going primary cable and with the use of a split-core, as well as
the magnetization and loss characteristics of the transformer steel used at theses cores.

Section 3 describes the mathematical model and computer simulation data. Section 4
compares the results of the simulation and experimental tests. A comparison of transfor-
mation error calculations for various transformer models, their prototypes, and comments
on accuracy are presented. Finally, the practical conclusions of the research end this work
in Section 5.

2. Construction of CT

The research was carried out on four types of current transformers (600 A/5 A)
shown in Figure 1: one with a toroidal core and three with a split-core. Furthermore,
it was assumed that all four cores, with the same cross-section (S = 202.5 mm2) and the
same magnetization length (l = 178.3 mm), were made using the same transformer steel.
Figure 2 shows the geometric model 3 of a split-core current transformer when mounted
on a switchboard without disconnecting the bars. The magnetization characteristics and
the specific power loss characteristics of the steel used are shown in Figure 3. However,
different secondary winding arrangements with the same number of turns were used in
the CTs.

The secondary winding of the 600 A/5 A transformer had 120 turns wound with a
Φ1.2 mm wire. The secondary winding was centrally located in the:

• Toroid evenly around the circumference (Figure 1a);
• Model 1, centrally on one column, in 2 layers, 60 turns each (Figure 1b);
• Model 2, centrally on two columns, in one layer, 60 turns (Figure 1c);
• Model 3, centrally on four columns, in one layer, 30 turns each (Figure 1d).
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Figure 1. (a–d) 3D geometrical models of the measuring current transformers 600 A/5 A (number of turns = 120).

The toroidal current transformer’s magnetic core was coiled from the strip made of
cold-rolled steel sheets and formed one unit. Split-core current transformers have cores
made of cold-rolled steel sheets, consisting of two parts to be disconnected. Figure 2 shows
a 3D model of a split-core CT while mounted in a switchboard without disconnecting
the bars.
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Figure 2. 3D geometrical model 3 of a split-core current transformer while mounted in a switchboard
without disconnecting the bars.

Class S current transformers are intended for cooperation with measuring devices
adapted to correctly measure the current in the range from 1% to 120% of the rated current
(Table 1). This means that the metrologically defined range of secondary current for
transformers with a rated secondary current of 5 A is from 50 mA to 6 A.

Problems with designing class S current transformers’ magnetic circuits result from
the necessity to use the magnetization characteristics and core material losses for extremely
small values of magnetic flux density amplitude Bm. With currents of about 1% of the rated
measurement current of a class S current transformer, the magnetic flux density amplitude
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in the core is usually a few millitesla (mT), which requires knowledge of the core material
characteristics at such a low level of magnetic induction.

The use of an inappropriate magnetization curve for computation leads to large
discrepancies between the calculated and actual values of transformation errors. A linear
approximation of the magnetic permeability and loss values distorts the results of the
design calculations.

The ability to correctly determine the magnetization and core loss curves for the initial
range of their course determines the correct calculation of transformer transformation
errors, and the selection of the designed CT’s electromagnetic circuit.

Manufacturers typically do not list initial magnetic material properties in their catalogs.
Core manufacturers cannot guarantee that the magnetization and loss characteristics will
be identical for each core in a given batch.

Therefore, CT designers should first measure the magnetic material’s actual magnetic
characteristics for the core [23–26].

The magnetization and loss characteristics of the transformer steel cores were per-
formed for small-size ring samples ranging from a few milliteslas to the knee point induc-
tion, determined using the method described in the article [22]. Then, the Froelich method,
which was repeatedly verified by various authors, [24,25] was used to extend the curve to
the value of the saturation induction.
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It is not always possible to measure the magnetization characteristics to very high
currents in the laboratory, and manufacturers do not always provide the characteristics
in saturation. On the other hand, computer programs during iteration also move along
the characteristics in the saturation part. Therefore, a characteristic above the value at
which the device operates is required. Froelich’s mathematical method is based on the
approximation of the magnetization characteristics by approximating the 1/µ relationship
with a linear function. For any value of H, we approximate 1/µ with a linear function,
next calculate µ, and then B. The assumption is that the dynamics of µ should be close
to but less than 1. The accuracy of the approximation was defined by the coefficient of
determination R2.

3. Mathematical Model of CT

The problem of the accuracy of the operation of current transformers in the steady-
state concerns sinusoidal alternating currents. The quasi-stationary electromagnetic field
generated by these currents has a sine curve, i.e., harmonic field. This allows the use of
complex numbers and the description of the electromagnetic field with the Helmholtz
equation, resulting from the Maxwell equations, using the complex vector of the magnetic
potential A (B = ∇× A). As the standards [1,2] provide for testing transformation errors
of current transformers at rated load, it is necessary to use the field-circuit method. This
method consists of solving the field equations within the perimeter of the tested object
in conjunction with the circuit’s equation outside this area, i.e., the load connected to the
current transformer’s secondary terminals [13–19].

∇2A− µ∇
(

1
µ

)
×∇×A− jωµσA = −µJw (3)

Ψ =
ns

Ss

∫
Ωs

A · lsdv (4)

Us = jωΨ = (R + jω)Is (5)

where R and L are the resistance and inductance of the burden of the secondary winding of
the CT. ω is the angular frequency of the voltage. µ is the permeability. σ is the conductivity
of the materials. ψ is the magnetic flux passing through the secondary coil. ns and Ss are
the number of turns and the cross-sectional area of this coil, respectively. Ωs is the volume
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of the secondary winding, and ls is the unit tangential vector along the direction of the
secondary current in the winding.

The boundary conditions for magnetic vector potential are A× n = 0, which means that
at the boundary, only a tangential part of the magnetic flux density B appears, and V = 0
for electric scalar potential at the boundary of the entire system with the surrounding air.

The measured magnetization characteristic was used in field-circuit calculations.
A method was also applied which took into account the power losses in laminated
cores [20,22], based on the introduction of the core’s hypothetical specific conductivity γ.
This conductivity was calculated from the power lost in the real core.

The ELEKTRA STEADY-STATE module of the commercial software OPERA 3D (Ver-
sion 19, Manufacturer 3DS, Paris, FRANCE) was used to calculate the magnetic field
distribution and the secondary current. A division mesh of 9,415,326 elements was used
for the 3D model.

The number of subdivision mesh elements was determined based on the accuracy
analysis, when further mesh refinements did not change the solution and did not improve
the accuracy.

4. Results of Computations and Tests

Transformation errors for all current transformer models were obtained by calculating
the secondary currents using the field-circuit method and then using the definition formulas
(1) and (2) given in the standards [1,2]. Figure 4 presents magnetic field distributions in the
discussed cores of the current transformer models.
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Figure 4. Magnetic flux density distributions (T) of measuring current transformers 600 A/5 A at the
rated primary current 600 A for two core versions (a) toroid core, (b) split -core.

The magnetic field distributions in all three models’ rectangular cores are identical and
differ only slightly in the maximum magnetic flux density value. On the other hand, the
distribution of magnetic flux density in the rectangular and toroidal core differs significantly
in Figure 4a,b.

The toroidal core physical model was tested with a comparator to measure the current
error and phase displacement. The measurements were performed using a comparator
manufactured by the OLTEST Company type CA507 (Table 2 provides information on
the accuracy data of the CA507 comparator). Figure 5 shows the comparator used for
transformation error measurements.
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Table 2. The accuracy data of the CA507 comparator based on the user manual.

Secondary Current Range
(A)

Range of the Permissible Values of the Absolute Uncertainty ∆FDI
(%)

from 1 to 7 ±(0.005·|fDI|+ 2 × 10−4 + 0.03·|δDI/δDI max|)

from 0.05 to 1 ±(0.005·|fDI|+ 3 × 10−3 + 0.03·|δDI/δDI max|)

from 0.01 to 0.05 ±(0.005·|fDI|+ 1.5 × 10−2 + 0.03·|δDI/δDI max|)

Secondary current range
(A)

Range of the permissible values of the absolute uncertainty ∆δDI
(min)

from 0.25 to 7 ±(0.005·|δDI| + 0.03 + 0.7·|fDI/fDI max|)

from 0.01 to 0.25 ±(0.005·|δDI| + 0.5 + 0.7·|fDI/fDI max|)
where: fDI—measurement result of the relative difference of the secondary currents of two CTs, expressed in
percentages; δDI—measurement result of the phase difference of the secondary currents of two CTs, expressed in
minutes; fDI max—upper limit value of the measuring range for the relative difference of secondary currents of
two CTs, equal to 15%; δDI max—the upper limit value of the measurement range for the phase difference of the
secondary currents of two CTs, equal to 300 min.
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Figure 5. (a) Diagram and (b) picture of the system for measuring transformation errors of current
transformers: CA507 = comparator; PS = power supply system—current source, consisting of a
voltage regulator and a transformer; CTS = reference current transformer; CTX = tested current
transformer; Z = impedance—secondary winding burden of the tested transformer.

The characteristics of the current error and phase displacement error, obtained from the
calculations and measurements of the 600 A/5 A current transformer with a toroidal core,
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were compared under the same conditions. Figures 6 and 7 show a comparison of calculated
and measured transformation errors of the tested CT (Figure 8) at different burdens.
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Comparing the calculated and measured transformation errors of the tested current
transformer with the toroidal core gave similar results, which confirms the accuracy of the
applied field-circuit method.

The transformation accuracy of various current transformer models was tested under
the following conditions (compliant with the [1,2] standards): the primary winding was
supplied with a primary current of a different percentage of the rated current (600 A), and
the secondary winding was loaded with an impedance of 5 VA and cosϕ = 0.8 as well as
2.5 VA and cosϕ = 0.8.

The characteristics of the current error and phase displacement of four models of the
600 A/5 A current transformer with different cores and secondary winding arrangements
were compared under the same conditions. Figures 9 and 10 show the transformation
errors for all four tested current transformer models.
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The analysis results show that the arrangement of the secondary windings on rect-
angular split-cores impacts current measurement accuracy with this type of transformer.
Unfortunately, it is impossible to arrange the secondary winding evenly on such cores as
on a toroidal core. Even more so, it is not possible to divide the toroidal cores.

Model 1 of the current transformer with windings wound in two layers on one column
is the simplest to build (Figure 11). On the other hand, with the same load and power supply
conditions, it has the lowest measurement accuracy of current among all the considered
models. The characteristics of its current errors exceed the permissible limits of not only
the 0.2S class but also the 0.2 class, both when loaded with rated power Sn = 2.5 VA and
5 VA. With this accuracy, a current transformer is class 0.5, regardless of the load with the
rated power of 2.5 VA or 5 VA.
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(b), and its numerical Model 1 (c).

The Model 2 CT has a split secondary winding, wound in one layer, distributed over
two columns, and connected in series. Such a model is more difficult to make but may
have a split-core. (Figure 12)
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cal model.

The Model 3 CT has a secondary winding split into four parts, wound in one layer,
connected in series, and distributed over the four parts of the core. The accuracy of Model
2 also meets the 0.2S criteria, and its design is easier to manufacture and can therefore be
recommended for use in practice.

Model 3 achieves the best accuracy, not least because both the current error charac-
teristics and the phase displacement meet the conditions of class 0.2S at various rated
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power loads, but also almost achieve the accuracy of a current transformer with an evenly
distributed winding on the toroidal core. Both of these current transformers’ accuracy
under a load of 2.5 VA is close to class 0.1. They slightly exceed the limit of class 0.1 with
a primary current of 20% of the rated current. The obtained results indicate that voltage
errors and phase displacement values are appropriate for the accuracy class 0.2S.

Both Models 2 and 3 of the current transformers meet the accuracy class of 0.2S with a
rated load of Sn = 2.5 VA and 5 VA.

5. Conclusions

This article presents research results on such a split-core current transformer structure
that will ensure the high accuracy of this device during measurements (according to the
standards [1,2]).

Research conducted with numerical methods and physical tests on the same trans-
former’s real model gave convergent results. The accuracy of the field-circuit method used
has been confirmed. Constructors using the 3D field-circuit-method simulation method
can accurately predict the magnetic field distribution and transformation errors of different
transformer designs of current transformers. The computation and test results show this.

The application of split-cores with a specific design allows for a higher accuracy class of
this type of current transformer. As a result of the conducted research, the highest accuracy
transformer construction model was selected. Model 3 is the current transformer model
that gives the certainty of obtaining the best accuracy, similar to that of a non-demountable
current transformer, i.e., with a toroidal core.

Model 3 is also the most time-consuming to perform. The accuracy of Model 2 also
meets the 0.2S criteria, and its design is easier to manufacture and can, therefore, be
recommended for use in practice.

The use of 3D modeling to test the accuracy of spit-core current transformers is an
aspect that has not yet been addressed in the literature.

Failure to comply with the standards regarding the accuracy of measuring split-
core current transformers results in an increase in the measuring systems’ errors during
assembly, in distribution panels in places where it is impossible to install classic current
transformers.
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