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Abstract: How to measure the uncertainty of the basic probability assignment (BPA) function is an
open issue in Dempster–Shafer (D–S) theory. The main work of this paper is to propose a new belief
entropy, which is mainly used to measure the uncertainty of BPA. The proposed belief entropy is based
on Deng entropy and probability interval consisting of lower and upper probabilities. In addition,
under certain conditions, it can be transformed into Shannon entropy. Numerical examples are used
to illustrate the efficiency of the new belief entropy in measurement uncertainty.

Keywords: Dempster–Shafer (D–S) theory; belief entropy; Deng Entropy; measurement uncertainty;
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1. Introduction

With the sharply growing interest in data fusion, the evidence theory, also known as the
Dempster–Shafer (D–S) theory [1], which was first presented by Dempster [2] and then developed by
Shafer [3], has aroused great concern for its effectiveness in modeling and fusing uncertain information [4].
D–S theory assigns probabilities to the power set of events [5], so it has advantages of dealing with
uncertainty and unknown problems. In addition, it has wide applications, such as sensors’ network
analysis [6], classification and clustering [7–9], decision-making [10–12], knowledge reasoning [13,14],
risk assessment and evaluation [10,15], and others [9,11,16–18].

The D–S theory is used to combine belief functions [2,19,20]. However, in D–S theory, there is
an open issue on how to measure the uncertainty of belief functions [2,5,21,22]. Uncertainty plays a
significant role in some fields since it is the foundation and prerequisite to quantitatively study the
questions [3,23–25]. Shannon entropy has basically resolved the uncertainty of probability theory [26],
which is widely used in many application systems [27–29]. Inspired by ideas, many scientists are
devoted to studying uncertainty of belief function [30]. So far, there are some methods of uncertainties
in belief function [31]. We classify these methods according to additivity [32,33]. Deng entropy [34]
and Tsallis [35] entropy do not satisfy the additivity, which are non-extended entropy. In addition,
Yager’s specificity measure [31], Hartley entropy [36], Korner’s specificity definition [37], Höhle
confusion measure [38], discord measure [39] and conflict measure [40] satisfy additivity. Generally
speaking, the measures can reduce to Shannon’s entropy under certain conditions. However, in recent
studies, there is an important discovery that belief function theory is not a successful generalization
of probability theory [3,41]. The basic probability assignment (BPA) function is transformed into
probability distribution through conversion, which results in the loss of information. Hence, it is
unreasonable that uncertainty of belief functions was calculated by the evolution of Shannon entropy.
Therefore, it is very desirable to define a new way of measuring uncertainty to avoid the loss
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of information. Based on that, many people have made some attempts in the field, Deng [34]
has presented Deng entropy to simplify the calculation of uncertainty of BPAs by considering
total non-specificity and discord simultaneously without the conversion from BPA to probability.
Recently, the probability interval in BPA has aroused wide attention because it is also a key factor for
uncertainty. Yang and Han [41] have defined a distance-based total uncertainty measure for BPA based
on probability interval. Deng et al. [42] have improved this measure to avoid counter-intuitive
results caused by it. They overcome some shortcomings of traditional measurement; however,
the uncertainty of those methods is inconsistent with Shannon entropy when BPA is degenerated to
probability distribution.

In this paper, we analyze the uncertainty of BPA based on intervals which contain more
information than probability. We propose new belief entropy by combining probability interval and
Deng Entropy’s idea, which can degenerate Shannon entropy when there is probability distribution.
Thus, our proposed method can effectively measure uncertainty in BPA and probability distribution.
Since there is no switch between BPA and probability distribution, it can overcome these limitations
in traditional measures. Thus, it is feasible to define an uncertainty measure for a BPA based on
probability interval.

The paper is organized as follows. Basics of D–S evidence theory for BPA are briefly introduced
in Section 2. Section 3 presents and existing uncertainty measures and new belief entropy of BPA.
Some important examples are described in Section 4 in order to illustrate the efficiency of the new
belief entropy. Finally, this paper is concluded in Section 5.

2. Preliminaries

In this section, some preliminaries are briefly introduced.

D–S Evidence Theory

Some basic definitions of D–S theory are briefly introduced [2,3]:
A set of hypotheses Θ is the exhaustive hypotheses of variable θ [43]. The elements are mutually

exclusive in Θ [44]. Then, Θ is called the frame of discernment, defined as follows [2,3]:

Θ = {θ1, θ2, · · · , θi, · · · , θN}. (1)

The power set of Θ is denoted by 2Θ [45], and

2Θ = {∅, {θ1}, · · · , {θN}, {θ1, θ2}, · · · , {θ1, θ2, · · · , θi}, · · · , Θ}, (2)

where ∅ is an empty set [46].
A BPA function m is a mapping of 2Θ to a probability interval [0, 1], formally defined by [2,3]:

m : 2Θ → [0, 1], (3)

which satisfies the following conditions [47]:

m(∅) = 0 ∑
A∈2Θ

m(A) = 1 0 ≤ m(A) ≤ 1 A ∈ 2Θ. (4)

The mass m(A) represents how strongly the evidence supports A.
The belief function (Bel) is a mapping from set 2θ to [0, 1] and satisfied:

Bel (A) = ∑
B⊆A

m (B) . (5)
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When BPA is m (A) =

{
1 A = Θ
0 A 6= Θ

}
, the Bel is the simplest, Bel(m) =

{
1 A = Θ
0 A 6= Θ

}
, this bel is

called a vacuous belief function which is suitable for situations without any evidence.
The plausibility function (Pl): 2θ → [0, 1], and satisfied:

Pl (A) = ∑
B∩A 6=φ

m (B) = 1− Bel(Ā). (6)

The Pl indicates the degree to which is not suspected.
As can be seen from the above, ∀A ⊆ Θ,Bel (A) < Pl (A), Bel(A), Pl(A) are respectively the lower

and upper limits of A, namely [Bel(A), Pl(A)], which indicates uncertain interval for A.
For the same evidence, the different BPAs come from the different evidence resources.

The Dempster’s combination rule can be used to obtain the combined evidence [2,48]: m(∅) = 0

m(A) =
∑

B
⋂

C=A
m1(B)m2(C)

1−K ,
(7)

where K = ∑
B
⋂

C=∅
m1(B)m2(C). It is remarkable that, if K > 1, the Dempster’s rules can not apply to

two BPAs.

3. Uncertainty Measures for Belief Structures

3.1. Existing Uncertainty Measures for Belief Structures

There are many methods to handle uncertainty [49]. In 1948, Shannon pointed out: “Information
is used to eliminate random uncertainty” and proposed the concept of “information entropy” (using
the concept of entropy in thermodynamics) to solve the problem of information measurement [50].
The concept of entropy is derived from physics [50,51]; it has been a measure of uncertainty and
disorder [52]. A system with higher uncertainty has greater entropy, which also contains more
information [11].

The Shannon entropy H is derived as [26,53]:

H = −
N

∑
i=1

pilogb pi, (8)

where N is the number of basic states in a system, and pi is the probability of state i appears satisfying
∑N

i=1 pi = 1.
Shannon entropy plays a key role in handling a basic probability problem, and there are some

limitations of Shannon entropy [42]. The concept of entropy in the framework of D–S theory is an open
issue. Many researchers have extended many measured functions based on it, such as:

Dubois and Prade. Dubois and Prade weighted Hartley entropy of BPA was shown [54]:

Hdp(m) = − ∑
A⊆2Θ

m(A)log(|A|). (9)

Höhle. One of the earlier confusion measures for D–S theory was due to Höhle [38]:

Ho(A) = − ∑
A⊆2Θ

m(A)log(Bel(A)). (10)
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Yager. Dissonance measure of BPA was defined by Yager, as follows [31]:

Hy(m) = − ∑
A⊆2Θ

m(A)logPl(A). (11)

Klir and Ramer. Another discord measure of BPA was defined by Klir and Ramer, as follows [39]:

Hkr = − ∑
A⊆Θ

m(A)log ∑
B⊆Θ

m(B)
|A ∩ B|

B
. (12)

Klir and Parviz. Klir and Parviz defined entropy [40]:

Hkp(m) = − ∑
A⊆Θ

m(A)log ∑
B⊆Θ

m(B)
|A ∩ B|
|A| . (13)

George and Pal. George and Pal suggested a definition of conflict measure [55]:

Hgp(m) = ∑
A⊆Θ

m(A) ∑
B⊆Θ

m(B)|1− A ∩ B
A ∪ B

|. (14)

It can clearly be seen that these methods are all based on the Shannon entropy. There are also
some documents that give a detailed introduction to these functions [49,56,57], and these entropies
have their own basic properties, such as consistency with D–S theory semantics, non-negativity,
probability consistency, etc. and later Deng proposed the concept of Deng Entropy [34], which is a new
function of measuring uncertainty. The Deng entropy is described as follows [34]:

Hd(m) = − ∑
A⊆2Θ

m(A)log
m(A)

2|A| − 1
, (15)

where |A| is the cardinality of A. As the above, Deng Entropy is very similar to Shannon Entropy,
but Deng Entropy uses 2|A| − 1 to deal with the BPA of multifocal elements, which is more
advantageous than Shannon Entropy. In addition, additivity and boundary are expanded.

3.2. The New Belief Entropy

In D–S theory, the probability interval [Bel(A), Pl(A)] can be obtained more information based
on the basic probability assigned to each focal element. In this article, we use the probability interval
to extend new methods of measuring uncertainty, as follows:

Hbel(m) = − ∑
A⊆2Θ

Bel(A) + Pl(A)

2
log

Bel(A) + Pl(A)

2(2|A| − 1)
. (16)

As mentioned, this probability interval whose lower and upper bounds are the Bel and the Pl,
respectively [58,59]. For a probability distribution, there are some advantages, such as discord and
non-specificity [60]. Moreover, central values of probability interval can be used to compare uncertainty.
At length, we all know that cardinality of every BPA is very important for the measurement of
uncertainty. Hence, the new belief entropy which considers Deng entropy and the interval probability
can better measure the uncertainty of BPA. In addition, according to the the literature of Kirl and
Lewis [32], Kirl [33], the basic properties of the new belief entropy are explored as follows:

(P1) consistency with DS theory semantics: The new entropy is consistent with D–S theory
semantics. Thus, it satisfies the consistency with D–S theory semantics property.

(P2) non-negativity: We know that 0 < {Ble(x)+Pl(x)}
2 < 1, thus, Hbel (m) > 0. For Hbel (m) = 0 to

hold, only if m {(x)} = 1, Hbel (m) = 0 if and only if m is Bayesian. Thus, new entropy satisfies the
non-negativity property.
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(P3) probability consistency: If m is Bayesian, then m (x) = Ble (x) = Pl (x), for all xεX. Thus,
new entropy satisfies the probability consistency property.

(P4) subadditivity: To check that new entropy does not verify the subadditivity property,
we consider the following example:

Let X × Y be the product space of the sets X = {x1, x2, x3} and Y = {y1, y2}. We have that the
marginal BPAs on X×Y with masses

m ({z11, z12, z21}) = 0.5, m ({z31, z32}) = 0.1, m ({z21}) = 0.1, m (X×Y) = 0.3,
where zij =

(
xi, yj

)
. We have that the marginal BPAs on X × Y are the following ones: m1 and

m2, respectively
m1 (x1, x2) = 0.5, m1 (x3) = 0.1, m1 (x2) = 0.1, m1 (X) = 0.3,

m2 (y2) = 0.1, m2 (Y) = 0.9.

Thus:
Bel (x1, x2) = 0.6, Pl (x1, x2) = 0.9, Bel (x3) = 0.1, Pl (x3) = 0.4,

Bel (x2) = 0.1, Pl (x2) = 0.9, Bel (X) = 1, Pl (X) = 1,

Bel (y1) = 0.1, Pl (y1) = 1, Bel (Y) = 1, Pl (Y) = 1,

Bel ({z11, z12, z21}) = 0.6, Pl ({z11, z12, z21}) = 0.9, Bel ({z31, z32}) = 0.1, Pl ({z31, z32}) = 0.4,

Bel ({z21}) = 0.1, Pl ({z21}) = 0.9, Bel (X×Y) = 1, Pl (X×Y) = 1,

Hbel (m1) + Hbel (m2) = 7.36669, Hbel (m) = 9.79031.

Obviously,Hbel (m) > Hbel (m1) + Hbel (m2), and the subadditivity property is not satisfied.
(P5) additivity properties: The new entropy is also non-additive. It is easy to check, in general,

that 2mn − 1 6= (2m − 1)× (2n − 1). We can use the following counter example to prove it in a more
direct way:

Using the symbol of the previous example. Let X × Y be the product space of the sets X =

{x1, x2, x3} and Y = {y1, y2}. We have that the marginal BPAs on X × Y are the following ones: m1

and m2, respectively:

m1 (x1, x2) = 0.5, m1 (x3) = 0.1, m1 (x2) = 0.1, m1 (X) = 0.3,

m2 (y2) = 0.1, m2 (Y) = 0.9.

Now, we build the following BPA m
′
= m1 ×m2 on X×Y (the marginal BPAs of m

′
are m1 and

m2; and they are noninteractive). The BPA m
′

has the following masses:

m
′
({z11, z12, z21}) = 0.5, m

′
({z31, z32}) = 0.1, m

′
({z21}) = 0.1, m

′
(X×Y) = 0.3,

where zij =
(

xi, yj
)
. Thus,

Hbel (m1) + Hbel (m2) = 7.36669, Hbel

(
m
′)

= 9.79031.

Again, Hbel

(
m
′
)
> Hbel (m1) + Hbel (m2), and the additivity property is not satisfied by the new

belief entropy. Therefore, the new entropy satisfies the consistency with D–S theory semantics,
non-negativity, probability, and does not satisfy additivity properties, sub-additives. Therefore,
the basic properties of some current entropies are given in Table 1.

In addition, BPA reflects more information than probability distribution in D–S theory. There is a
classic example as follows:

Assume in a test that there are 32 students participating in a course examination. The teacher has
scores of these students. A teacher is only allowed to answer “Yes” or “No” to any questions, in order
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to know who is (are) the top student who gets (get) the highest score(s). How many times do we need
to ask at most? Assume that the time is t, and it is easy to answer the problem through calculating the
information volume by using information entropy t = log232 = 5 However, when we have been told
that there are two students tied for first. The entropy is still 5? In this case, how many times do we
need to ask at most to know who are the first ONES? In this case, obviously t ≥ 5.

It can be seen from this example that the uncertainty of BPA is greater than the probability
distribution. Thus, the uncertain measure boundary of probability distribution should be extended.

On the other hand, it can be found from recent research that the application of Tsallis entropy as
non-additive entropy is more and more extensive [61]. The additivity entropy is a special case of the
non-additivity entropy. As a result, the two requirements above, namely boundary and additivity,
should be improved.

Table 1. The above table is extracted from the article of Jiroušek and Shenoy [49], For the sake of
comparison, the last line adds the property of the new entropy.

Definition Cons.with D–S Non-neg Prob.cons Additivity Subadd

Höhle yes no yes yes no
Smets. yes no no yes no
Yager yes no yes yes no

Nguyen yes no yes yes no
Dubois–Prade yes no no yes yes
Lamata–Moral yes yes yes yes no

Klir–Ramer yes yes yes yes no
Klir–Parviz yes yes yes yes no

Pal et al yes yes yes yes no
Maeda–Ichihashi no no yes yes yes
Harmanec–Klir no no yes yes yes
Abellán–Moral no no yes yes yes
Jousselme et al no yes yes yes no

Pouly et al no yes yes yes no
Deng yes yes yes no no

New entropy yes yes yes no no

4. Numerical Experimental

In this section, some numerical examples are used to illustrate the application of our approach.

4.1. Example 1

Assume that the frame of discernment is Θ = {A} and we are given a BPA from a sensor as
m({A}) = 1. Thus, we can calculate the Bel and Pl by Equations (5) and (6):

Bel(A) = 1, Pl(A) = 1.

Moreover, their classical Shannon entropy and the new belief entropy was calculated as follows:

H(m) = H(m) = −1× log1 = 0, Hbel(m) = −1× log1 = 0.

From above, we can conclude that the new belief entropy will retrograde the Shannon entropy if
the frame of discernment has a single element. Under these circumstances, there is no uncertainty:
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4.2. Example 2

Given that the frame of discernment is Θ = {θ1, θ2, θ3, θ4}, for a mass function m(θ1) = m(θ2) =

m(θ3) = m(θ4) =
1
4 , then:

Bel(θ1) = Bel(θ2) = Bel(θ3) = Bel(θ4) =
1
4

,

Pl(θ1) = Pl(θ2) = Pl(θ3) = Pl(θ4) =
1
4

,

H(m) = −1
4
× log

1
4
+−1

4
× log

1
4
+−1

4
× log

1
4
+−1

4
× log

1
4
= 2,

Hbel(m) = −
1
4 + 1

4
2
× log

1
4 + 1

4
2× (21 − 1)

+−
1
4 + 1

4
2
× log

1
4 + 1

4
2× (21 − 1)

+−
1
4 + 1

4
2
× log

1
4 + 1

4
2× (21 − 1)

+−
1
4 + 1

4
2
× log

1
4 + 1

4
2× (21 − 1)

= 2.

Obviously, the Shannon entropy and the new belief Entropy are the same when dealing with a
mass function of a single element. It further demonstrates the feasibility of the new belief entropy.

4.3. Example 3

Given a frame of discernment Θ = {θ1, θ2, θ3, θ4}, for a mass function m(θ1, θ2, θ3, θ4) = 1, then:

Hbel(m) = −1 + 1
2
× log

1 + 1
24 − 1

= 3.90689.

In comparison of Example 2, the uncertainty of Example 3 is bigger than Example 2.
Because m(Θ) = 1 contains more information, that is to say, the mass function is totally unknown for
system. However, for Example 2, the probability distribution contains less information than m(Θ) = 1.
Therefore, the result is reasonable.

4.4. Example 4

Given a framework Θ = {θ1, θ2, θ3, θ4}, for a mass function m (θ1) =
1
4 , m (θ2) =

1
3 , m (θ1, θ2) =

1
6 , m (θ3) =

1
6 , m (θ4) =

1
12 , whose Hbel (m) are calculated as follows:

Bel(θ1) =
1
4

, Pl(θ1) =
5
12

,

Bel(θ2) =
1
3

, Pl(θ2) =
1
2

,

Bel(θ1, θ2) =
3
4

, Pl(θ1, θ2) =
3
4

,

Bel(θ3) =
1
6

, Pl(θ3) =
1
6

,

Bel(θ4) =
1

12
, Pl(θ4) =

1
12

,

Hbel = −
1
4 + 5

12
2

log
1
4 + 5

12
2(21 − 1)

+ (−
1
3 + 1

2
2

log
1
3 + 1

2
2(21 − 1)

) + (−
3
4 + 3

4
2

log
3
4 + 3

4
2(22 − 1)

)+

(−
1
6 + 1

6
2

log
1
6 + 1

6
2(21 − 1)

) + (−
1

12 + 1
12

2
log

1
12 + 1

12
2(21 − 1)

) = 3.28415.
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4.5. Example 5

Given a framework Θ = {θ1, θ2, θ3, θ4}, for a mass function m (θ1) = 1
4 , m (θ2) = 1

3 , m (θ3) =
1
6 , , m (θ1, θ2, θ3) =

1
6 , m (θ4) =

1
12 , whose Hbel (m) are calculated as follows:

Bel(θ1) =
1
4

, Pl(θ1) =
5
12

,

Bel(θ2) =
1
3

, Pl(θ2) =
1
2

,

Bel(θ3) =
1
6

, Pl(θ3) =
1
3

,

Bel(θ1, θ2, θ3) =
11
12

, Pl(θ1, θ2, θ3) =
11
12

,

Bel(θ4) =
1

12
, Pl(θ4) =

1
12

,

Hbel = −
1
4 + 5

12
2

log
1
4 + 5

12
2(21 − 1)

+ (−
1
3 + 1

2
2

log
1
3 + 1

2
2(21 − 1)

) + (−
1
6 + 1

3
2

log
1
6 + 1

3
2(21 − 1)

)+

(−
11
12 + 11

12
2

log
11
12 + 11

12
2(23 − 1)

) + (−
1

12 + 1
12

2
log

1
12 + 1

12
2(21 − 1)

) = 3.31977.

These are the two examples we randomly choose. It can be seen that m (θ1, θ2, θ3) =
1
6 in Example 5

is one more element than m (θ1, θ2) =
1
6 in Example 4, which will cause the entropy of Example 5 to be

larger than the entropy of Example 4. This result is reasonable.

4.6. Example 6

Given a frame of discernment Θ = {θ1, θ2, · · · , θN}, there are three special cases of mass function
as follows:

m1(A) =
2A − 1

∑B⊆Θ 2|B| − 1
, A, B ⊆ Θ,

m2(Θ) = 1,

m3(θ1, θ2, · · · , θN) =
1
N

.

Their associated new belief entropy accompanied by the change of N of m1, m2, m3 was shown
in Figure 1. It can be seen from Figure 1 that, with the increase of N, the mass function m1 has
the maximum uncertainty which grows very fast, while the Bayesian function m3 has the minimal
uncertainty. By comparison, we know that the m1 represents more information than m2, m3.

4.7. Example 7

Given a frame with 15 elements identifying A, the elements are from 1 to 15, and the basic mass
function is as follows:

m(3, 4, 5) = 0.05, m(7) = 0.05, m(A) = 0.8, m(Θ) = 0.1.

Table 2 reflects the trend of the new belief entropy when A changes, which can be seen from
Figure 2. The calculation results show that, as the elements in A continue to increase, the uncertainty
of BPA also increases. It is rational that there is more uncertainty with more elements.
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Figure 1. New belief entropy as a function of size of frame of discernment in three types of BPA.

Table 2. New belief entropy when A changes.

Cases New Belief Entropy

A={1} 16.1443
A={1, 2} 17.4916

A={1, 2, 3} 19.8608
A={1, 2, 3, 4} 20.8229

A={1, 2, · · · , 5} 21.8314
A={1, 2, · · · , 6} 22.7521
A={1, 2, · · · , 7} 24.1131
A={1, 2, · · · , 8} 25.0685
A={1, 2, · · · , 9} 26.0212

A={1, 2, · · · , 10} 27.1947
A={1, 2, · · · , 11} 27.9232
A={1, 2, · · · , 12} 29.1370
A={1, 2, · · · , 13} 30.1231
A={1, 2, · · · , 14} 31.0732

Furthermore, in the experiment, we also used different methods to measure the uncertainty of
the BPA, such as Dubois and Prade’s weighted Hartley entropy [54], Höhle’s confusion measure [38],
Yager’s dissonance measure [31], Klir and Ramer’s discord [39], Klir and Parviz’s strife [40], and George
and Pal’s conflict measure [55]. The experimental results are shown in Figure 3. It is obvious that only
the new belief entropy and Dubois and Prade’s weighted Hartley entropy increase constantly with
the rise of the size of A. On the contrary, it can be seen from the insert in Figure 3 that the uncertainty
obtained by other methods are reducing or changing irregularly when the A increases, which is
obviously unreasonable. Therefore, the uncertainty of the new entropy in BPA Measurements are
effective. Moreover, there are some differences between the new belief entropy and Dubois and Prade’s
weighted Hartley entropy, and Dubois and Prade’s weighted Hartley entropy is not degenerate into
Shannon entropy when the mass function is defined as a probability distribution. Therefore, the new
belief entropy is a reasonable measure among these given uncertainty measures, which combine
probability interval and cardinality of multiple elements of the BPA, and it is also more flexible.
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Figure 3. Different measurement of uncertainty with changes of A of BPA.

5. Conclusions

Shannon entropy can effectively measure uncertainty of probability distribution. For the BPA,
although many methods have appeared to measure the uncertainty, there is an open issue. The main
work of this paper is to propose a new belief entropy without the conversion from BPA to probability
based on probability interval and cardinality of multiple elements of BPA. The new belief entropy
would have more uncertainty than other entropies, and the boundary and additivity have been
improved. The new belief entropy is a generalization of the Shannon entropy, which can degenerate
into the Shannon entropy when the BPA is a probability distribution. Moreover, some numerical
examples are used to show the efficiency of the proposed new belief entropy.
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