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Entropies and entropy-like quantities are playing an increasing role in modern non-linear data
analysis and beyond. Fields that benefit from their application reach from diagnostics in physiology, for
instance, electroencephalography (EEG), magnetoencephalography (MEG) and electrocardiography
(ECG), to econophysics and engineering. During the last few years, classical concepts as approximate
entropy and sample entropy have been supplemented by new entropy measures, like permutation
entropy and its variants. Recent developments are focused on multidimensional generalizations of the
concepts with a special emphasis on the quantification of coupling and the similarity between time
series and system components behind them. One of the main future challenges in the field include
finding a better understanding of the nature of the various entropy measures and their relationships,
with the aim of adequate application including good parameter choices. The utilization of entropy
measures as features in automatic learning and their application to large and complex data for such
tasks as classification, discrimination and finding structural changes requires fast and well-founded
algorithms. This issue is facing a different aspect of the use of entropy measures for data analysis in a
wide sense, including those described.

Papers 1–3 discuss the problem of parameter choice mentioned and aspects related to it. Ahmadi
et al. [1] investigate the sensitivity of sample entropy with respect to different parameters like,
for example, tolerance size and sampling rate for gait data. Cuesta-Frau et al. [2] study parameter
choice for permutation entropy, particularly embedding dimension and time series length, in the
context of a lot of synthetic and real data sets. Here special emphasis is put on practical aspects of
data analysis. In particular, the authors point out that in many cases permutation entropy can be used
for shorter data sets than reported by other authors. In a certain sense complementary to the paper
of Cuesta-Frau et al. [2], Piek and Keller [3] investigate parameter choice for permutation entropy
and, more generally, ordinal pattern-based entropies from a computational and theoretical viewpoint.
Fast algorithms are presented, possibilities and limits of the estimation of the Kolmogorov–Sinai
entropy are discussed. A further aspect of the paper is the generation of artificial data for testing
ordinal pattern methods.

The main objective of papers 4 and 5 is entropy-based feature extraction. Lu et al. [4] utilize
approximate entropy, sample entropy, composite multiscale entropy and fuzzy entropy for identifying
auditory object-specific attention from single-trial EEG signals by support vector machine (SVM)-based
learning. For circuit fault diagnosis, He et al. [5] propose a new feature extraction method, which
is mainly based on a measure called joint cross-wavelet singular entropy and a special dimension
reduction technique. The obtained features are entered into a support vector machine classifier in order
to locate faults. Besides feature extraction, direct applications of entropy for automatic learning is also
addressed in this issue. Bukovsky et al. [6] discuss and further develop the recently introduced concept
of learning entropy (LE) as a learning-based information measure, which is targeted at real-time
novelty detection based on unusual learning efforts. For assessing the quality of data transformations
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in machine learning, Valverde-Albacete et al. [7] introduce an information-theoretic tool. They analyze
performance of the tool for different types of data transformation, among them principal component
analysis and independent component analysis.

Papers 8–10 are devoted to the aspect of coupling and similarity analysis. For studying the
Chinese stock market around the 2015 crash, Wang and Hui [8] utilize effective transfer entropy (ETE),
which is an adaption of transfer entropy to limited and noisy data. From this base, they discuss and
compare dependencies of 10 Chinese stock sectors during four characteristic time periods near the
crash. In [9], Craciunescu et al. introduce a new measure for describing coupling in interconnected
dynamical systems and test it for different system interactions. Besides such in model systems,
real-life system interactions like between the El Niño Southern Oscillation, the Indian Ocean Dipole,
and influenza pandemic occurrence are considered. Here, coupling strength is quantified by entropies
of adjacency matrices associated to networks constructed. Wang et al. [10] use entropy-based similarity
and synchronization indices for relating postural stability and lower-limb muscle activity. Their study
is based on two types of signals, one measuring the centre of pressure (COP) in dependence on time
and one being an electromyogram (EMG). The authors show high correlation of COP and the low
frequency EMG and that the cheaper COP contains much information on the EMG.

The other four papers touch further interesting aspects of entropy measure use. Selvachandran
et al. [11] consider complex vague soft sets (CCVS), defined as a hybrid model of vague soft sets and
complex fuzzy sets, which is, for example, useful for the description of images. Some distance and
entropy measures for CCVSs are axiomatically defined and relations between them are investigated.
The work [12] of Pan et al. focuses on Dempster–Shafer evidence theory, which can be considered as a
generalization of probability theory. A new belief entropy, measuring uncertainty in this framework,
and its performance are discussed on the base of numerical experiments. García-Gutiérrez et al. [13]
introduce a new model for the particle size distribution (PSD) of granular media, which relates two
models known for a long time. For this purpose, a differential equation involving the information
entropy is used. The interesting point is that experimental data can be considered as an initial condition
for simulating a PSD. Last but not least, Liu et al. [14] demonstrate that entropy methods also can be
helpful in solving nonlinear and multimodal optimization problems. They develop an algorithm based
on the firefly algorithm and the cross-entropy method and report its good performance, especially
powerful global search capacity precision and robustness for numerical optimization problems.
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