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Abstract: This essay addresses Cartesian duality and how its implicit dialectic might be repaired 

using physics and information theory. Our agenda is to describe a key distinction in the physical 

sciences that may provide a foundation for the distinction between mind and matter, and between 

sentient and intentional systems. From this perspective, it becomes tenable to talk about the physics 

of sentience and ‘forces’ that underwrite our beliefs (in the sense of probability distributions 

represented by our internal states), which may ground our mental states and consciousness. We will 

refer to this view as Markovian monism, which entails two claims: (1) fundamentally, there is only 

one type of thing and only one type of irreducible property (hence monism). (2) All systems 

possessing a Markov blanket have properties that are relevant for understanding the mind and 

consciousness: if such systems have mental properties, then they have them partly by virtue of 

possessing a Markov blanket (hence Markovian). Markovian monism rests upon the information 

geometry of random dynamic systems. In brief, the information geometry induced in any system—

whose internal states can be distinguished from external states—must acquire a dual aspect. This 

dual aspect concerns the (intrinsic) information geometry of the probabilistic evolution of internal 

states and a separate (extrinsic) information geometry of probabilistic beliefs about external states 

that are parameterised by internal states. We call these intrinsic (i.e., mechanical, or state-based) and 

extrinsic (i.e., Markovian, or belief-based) information geometries, respectively. Although these 

mathematical notions may sound complicated, they are fairly straightforward to handle, and may 

offer a means through which to frame the origins of consciousness. 

Keywords: consciousness; information geometry; Markovian monism 

 

1. Introduction 

The aim of this essay is to emphasise a couple of key technical distinctions that seem especially 

prescient for an understanding of the beliefs and intentions that underpin pre-theoretical notions of 

consciousness. What follows is an attempt to describe constructs from information theory and physics 

that place certain constraints on the dynamics of self-organising creatures, such as ourselves. These 

constraints lend themselves to an easy interpretation in terms of beliefs and intentions; provided one 

defines their meaning carefully in relation to the mathematical objects at hand. The benefit of 

articulating a calculus of beliefs (and intentions) from first principles has yet to be demonstrated; 

however, just having a calculus of this sort may provide useful perspectives on current philosophical 

debates. Furthermore, trying to articulate pre-theoretical notions in terms of maths should, in 
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principle, expand the scope of dialogue in this area. To illustrate this, we will try to license talk about 

physical forces causing beliefs in a non-mysterious way – a way that clearly identifies systems or 

artefacts that are and are not equipped with processes that can ground mental capacities and 

consciousness. 

To make a coherent argument along these lines, it will be necessary to introduce a few technical 

concepts. The formal basis of the arguments in this – more philosophical – treatment of sentience and 

physics can be found in [1]. The current paper starts were Friston (ibid.) stops; namely, to examine 

the philosophical implications of Markov blankets and the ensuing Bayesian mechanics. For readers 

who are more technically minded, the derivations and explanations of the equations in this paper can 

be found in [1] (using the same notation). We have attempted to unpack the derivations for non-

mathematical readers but will retain key technical terms, so that the lineage of what follows can be 

read clearly. To avoid cluttering the narrative with definitions, a glossary of terms and expressions is 

provided at the end of the paper. In brief, we first establish the basic setup used to describe physical 

systems that evince the phenomenology necessary to accommodate pre-theoretical notions of 

consciousness. This will involve the introduction of Markov blankets and the distinction between the 

internal and external states of a system or creature. 

Having established the distinction between external and internal states, we introduce the notion 

of information length and information geometry. This is the first key move in the theoretical analysis 

on offer. Crucially, information geometry allows us to establish a calculus of beliefs in terms of 

probability distributions. This calculus enables a distinction to be made between the probability 

distribution about things and the probability distribution of things. This distinction is then treated as 

one way of describing an account that (literally) maps belief states onto physical states; here, beliefs 

about external states that are parameterised, represented, encoded or coherent with internal states. 

We shall call the ensuing view Markovian monism because it is predicated on the existence of a Markov 

blanket.  

This brings us to a modest representationalism1, which allows one to talk about flows, energy 

gradients and forces that shape the dynamics of internal states and, necessarily, the beliefs they 

parameterise. The next section considers the nature of these beliefs and, in particular, beliefs about 

how internal states couple to external states; namely, beliefs about action upon the world ‘out there’. 

To do this formally, we have to look at two distinct ways of describing the dynamics and introduce 

the notion of trajectories via the path integral formulation. Having done this, we can then associate 

intentions with beliefs about action—that, in turn, depend upon beliefs about the consequences of 

action. At this point, we can make a distinction between systems that have a rudimentary information 

geometry of a reflexive, instantaneous sort—and systems that hold beliefs about the future. It is this 

quantitative distinction that may provide a spectrum of intentional or agential systems, ranging from 

protozoa to people. We conclude with a brief discussion of related formulations—and how the central 

role of sentience, observation, measurement, or inference opens the door for further developments of 

a sentient physics. In particular, we will discuss how Markovian monism can be interpreted in terms 

of existing theories regarding the relationship between mind and matter, such as neutral monism and 

panprotopsychism. 

The primary target of this paper is sentience. Our use of the word “sentience” here is in the sense 

of “responsive to sensory impressions”. It is not used in the philosophy of mind sense; namely, the 

capacity to perceive or experience subjectively, i.e., phenomenal consciousness, or having ‘qualia’. 

Sentience here, simply implies the existence of a non-empty subset of systemic states; namely, sensory 

states. In virtue of the conditional dependencies that define this subset (i.e., the Markov blanket 

partition), the internal states are necessarily ‘responsive to’ sensory states and thus the dictionary 

definition is fulfilled. The deeper philosophical issue of sentience speaks to the hard problem of tying 

down quantitative experience or subjective experience within the information geometry afforded by 

the Markov blanket construction. We will return to this below. 

 
1 The important point is that such systems can be described ‘as if’ they represent probability distributions. More 

substantial representationalist accounts can be built on this foundation, see Section 13. 
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While most of this paper deals with sentience in the sense just specified, it may shed light on the 

origins of consciousness. First, applying the concept of subjective, phenomenal consciousness to a 

system trivially presupposes that this system can be described from two perspectives (i.e., from a 

third- and from a first-person perspective). Second, the minimal form of goal-directedness and ‘as if’ 

intentionality—that one can ascribe to sentient systems—provide conceptual building blocks that 

ground more high-level concepts, such as physical computation, intentionality, and representation, 

which may be useful to understand the evolutionary transition from non-conscious to conscious 

organisms, and thereby illuminate the origins of consciousness. 

2. Markov Blankets and Self-Organisation 

Before we can talk about anything, we have to consider what distinguishes a ‘thing’ from 

everything else. Mathematically, this requires the existence of a particular partition of all states a 

system could be in into external, (Markov) blanket and internal states. A Markov blanket comprises 

a set of states that renders states internal to the blanket conditionally independent of external states. 

The term was originally coined by Pearl in the context of Bayesian networks [2]. For a Bayesian 

network (i.e., a directed acyclic graphical model) the Markov blanket comprises the parents, children, 

and parents of the children of a state or node. For a Markov random field (i.e., an undirected graphical 

model), the Markov blanket comprises the parents and children, i.e., its neighbours. For a 

dependency network (i.e., a directed cyclic graphical model) the Markov blanket comprises just the 

parents. For treatments of Markov blankets in the life sciences, please see [3–8]. The three-way 

partition induced by the Markov blanket enables one to distinguish internal and external states via 

their conditional independence, given blanket states. The blanket states themselves can be further 

partitioned into sensory and active states, where sensory states are not influenced by internal states 

and active states are not influenced by external states [9]. Note that all we have done here is to 

stipulatively define a ‘thing’ in terms of its internal states (and Markov blanket) in terms of what does 

not influence what. The requisite absence of specific influences are precisely those described above; 

namely, internal states and external states only influence each other via the Markov blanket, while 

sensory states are not influenced by internal states, a similar relationship is true for active and external 

states. A key insight here is that structure emerges from influences that are not there, much like a 

sculpture emerges from the material removed. There are lots of interesting implications of defining 

things in terms of Markov blankets (please see Figure 1 for a couple of intuitive examples); however, 

we will place the notion of a Markov blanket to one side for the moment and consider how systemic 

states behave in general. After this, we will then consider the implications of this generic behaviour, 

when there is a Markov blanket play. 
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Figure 1. (Markov blankets): This schematic illustrates the partition of systemic states into internal 

states (blue) and hidden or external states (cyan) that are separated by a Markov blanket – comprising 

sensory (magenta) and active states (red). The upper panel shows this partition as it would be applied 

to action and perception in the brain. The ensuing self-organisation of internal states then corresponds 

to perception, while action couples brain states back to external states. The lower panel shows the 

same dependencies but rearranged so that the internal states are associated with the intracellular 

states of a Bacillus, while the sensory states become the surface states or cell membrane overlying 

active states (e.g., the actin filaments of the cytoskeleton). 

3. The Langevin Formalism and Density Dynamics 

Starting from first principles, if we assume that a system exists, in the sense that it has 

measurable characteristics over some nontrivial period of time,2 then we can express its evolution in 

terms of a random dynamical system. This just means that the system can be described in terms of 

changes in states over time that are subject to some random fluctuations: 

( ) ( , )x f x    . (1) 

We will be interested in systems that have measurable characteristics, which means that they 

must converge to some attracting set or manifold, known as a random or pullback attractor [13].3 

After a sufficient period of time, as the system evolves, it will trace out a trajectory – in state space – 

that circulates, usually in a highly itinerant fashion, on the attracting manifold. This means that if we 

observe the system at random, there is a certain probability of finding it in a particular state. This is 

known as the nonequilibrium steady-state density [12]. 

 
2 In the sense that anything just is a Markov blanket, the relevant timescale is the duration over which the thing 

exists. Generally, smaller things last for short periods of time and bigger things last longer. This is a necessary 

consequence of composing Markov blankets of Markov blankets (i.e., things of things). In terms of sentient 

systems, the relevant time scale is the time over which a sentient system persists (e.g., the duration of being a 

sentient person). 
3 Technically, Equation (1) only holds on the attracting set. However, this does not mean the dynamics collapse 

to a single point. The attracting manifold would usually support stochastic chaos and dynamical itinerancy – 

that may look like a succession of transients. 
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This is a completely general specification of (Langevin) dynamics that underwrites nearly all of 

physics [10–12]. In brief, the dynamics in (1) can be described in terms of two equivalent 

formulations—the dynamics of the accompanying probability density over the states and the path 

integral formulation.4 

It is natural to ask whether a single attracting manifold is an appropriate construct to describe a 

system or creature over its lifetime; especially when certain ‘life-cycles’ have distinct developmental 

stages or indeed feature metamorphosis. From the perspective of the current argument, it helps to 

appreciate that the attracting manifold is itself a random set.5 In other words, a particle or person is 

never ‘off’ their manifold – they just occupy states that are more or less likely, given the kind of thing 

they are (i.e., something’s characteristic states are an attracting set of states that it is likely to occupy). 

Technically, this peripatetic itinerancy corresponds to stochastic chaos, where excursions from the 

attracting set—driven by random fluctuations—are an integral aspect of the dynamics. These 

excursions are repaired through the flow that counters the effects of random fluctuations and 

underwrites the information geometry of self-organisation. This formulation can, in principle, 

accommodate slow changes to the attracting set—and implicit Markov blanket – that may require the 

notion of wandering sets [14]. 

The reason that this is interesting is that one can use standard descriptions of density dynamics 

to express the flow of states as a gradient flow on something called self-information or surprisal [15–

18]. Without going into details, this is the steady-state solution to the Fokker Planck equation [19–23]. 

This equation says that, on average, the states of any system with an attracting set must conform to a 

gradient flow on surprisal; namely, the negative logarithm of the probability density at 

nonequilibrium steady state [24,25].  

( ) ( ) ( )

( ) ln ( )

f x Q x

x p x

  

 
 (2) 

This is the solution to the Fokker-Planck equation when the system has attained nonequilibrium 

steady-state. It says that the average flow of systemic states has two parts. The first (gradient) 

component involves surprisal gradients, while the second circulates on iso-probability contours. The 

gradient flow effectively counters the dispersion due to random fluctuations, such that the 

probability density does not change over time. See Figure 2 for an intuitive illustration of this 

solution. 

The key move now is to put the Markov blanket back in play. The above equation holds 

(nontrivially) for the internal, blanket, and external states, where we can drop the appropriate states 

from the gradient flows, according to the specification of the Markov blanket in Figure 1. In particular, 

if we just focus on internal and active states—which we will refer to as autonomous states—we have 

the following flows6 (see p. 17 and pp. 20,21 in [1]). 

( ) ( ) ( )

{ , }

{ , }

f Q

a

s

    

 

 

    





 (3) 

 
4 In turn, this leads to quantum, statistical and classical mechanics, which can be regarded as special cases of 

density dynamics under certain assumptions. For example, when the system attains nonequilibrium steady-

state, the solution to the density dynamics (i.e., Fokker Planck equation) becomes the solution to the Schrödinger 

equation that underwrites quantum electrodynamics. When random fluctuations become negligible (in large 

systems), we move from the dissipative thermodynamics to conservative classical mechanics. A technical 

treatment along these lines can be found in [1] with worked (numerical) examples. 
5 Note that the attracting set is in play throughout the ‘lifetime’ of any ‘thing’ because, by definition, a ‘thing’ 

has to be at nonequilibrium steady-state. This follows because the Markov blanket is a partition of states at 

nonequilibrium steady-state. 

6 Note that as in (2) Q  and   denote antisymmetric and leading diagonal matrices, respectively. 
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This means anything that can be measured (i.e., a system with a Markov blanket and attracting 

set) must possess the above gradient flows. In turn, this means that internal and active states will look 

as if they are trying to minimise exactly the same quantity; namely, the surprisal of states that 

constitute the thing, particle, or creature. These are the internal states and their Markov blanket; i.e., 

particular states.7 This means that anything that exists must, in some sense, be self-evidencing [37]. 

 

Figure 2. (density dynamics and pullback attractors): This figure illustrates the fundaments of density or 

ensemble dynamics in random dynamical systems – of the sort described by the Langevin equation. 

The left panel pictures some arbitrary random attractor (a.k.a., a pullback attractor) that can be 

thought of in two ways: first, it can be considered as the trajectory of (two) systemic states as they 

evolve over time. For example, these two states could be the depolarisation and current of a nerve 

cell, over several minutes. At a larger timescale, this trajectory could reflect your daily routine, getting 

up in the morning, having a cup of coffee, going to work and so on. It could also represent the slow 

fluctuations in two meteorological states over the period of a year. The key aspect of this trajectory is 

that it will—after itinerant wandering and a sufficient period of time—revisit particular regimes of 

state space. These states constitute the attracting set or pullback attractor. The second interpretation 

is of a probability density over the states that the system will be found in, when sampled at random. 

The evolution of the probability density is described by the Fokker-Planck equation. Crucially, when 

any system has attained nonequilibrium steady state, we know that this density does not change with 

time. This affords the solution to the Fokker-Planck equation—a solution that means that there is a 

lawful relationship between the flow of states at any point in state space and the probability density. 

This solution expresses the flow in terms of gradients of log density or surprisal and the amplitude of 

random fluctuations. In turn, the nonequilibrium steady-state solution can always be expressed, via 

the Helmholtz decomposition, in terms of two orthogonal components. One component is a gradient 

flow that rebuilds probability gradients in a way that is exactly countered by the dispersion of states 

 
7 In itself, this is remarkable, in the sense that it captures the essence of many descriptions of adaptive behaviour, 

ranging from expected utility theory in economics [26–28] through to synergetics and self-organisation [21,29]. 

See Figure 3. To see how these descriptions follow from the gradient flows in (3), we only have to note that the 

mechanics of internal and active states can be regarded as perception and action, where both are in the service of 

minimising a particular surprisal. This surprisal can be regarded as a cost function from the point of view of 

engineering and behavioural psychology [30–32]. From the perspective of information theory, surprisal 

corresponds to self-information, leading to notions such as the principle of minimum redundancy or maximum 

efficiency [33]. The average value of surprisal is entropy [17]. This means that anything that exists will—appear 

to—minimise the entropy of its particular states over time [29,34]. In other words, it will appear to resist the 

second law of thermodynamics (which is again remarkable, because we are dealing with open systems that are 

far from equilibrium). From the point of view of a physiologist, this is nothing more than a generalised 

homoeostasis [35]. Finally, from the point of view of a statistician, the negative surprisal would look exactly the 

same as Bayesian model evidence [36].  
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due to random fluctuations. The other component is a solenoidal or divergence-free flow that 

circulates on isoprobability contours. These two components are shown in the schematic on the right, 

in terms of a curl-free gradient flow—that depends only on the amplitude of random fluctuations Γ– 

and a divergence-free solenoidal flow—that depends upon an antisymmetric matrix Q. This example 

shows the flow around the peak of a probability density, with a Gaussian form. Please see [1,25] for 

details. 

 

Figure 3. (Markov blankets and other formulations): This schematic illustrates the various interpretations 

of a gradient flow on surprisal. Recall that the existence of a Markov blanket implies a certain lack of 

influences among internal, blanket, and external states. At nonequilibrium steady-state, these 

independencies have an important consequence; internal and active states are the only states that are 

not influenced by external states, which means their dynamics (i.e., perception and action) are a 

function of, and only of, particular states; i.e., a particular surprisal.8 This surprisal has a number of 

interesting interpretations. Given it is the negative log probability of finding a particle or creature in 

a particular state, minimising particular surprisal corresponds to maximising the value of a particle’s 

state. This interpretation is licensed by the fact that the states with a high probability are, by definition, 

attracting states. On this view, one can then spin-off an interpretation in terms of reinforcement 

learning [30], optimal control theory [31] and, in economics, expected utility theory [39]. Indeed, any 

scheme predicated on the optimisation of some objective function can now be cast in terms of 

minimising a particular surprisal—in terms of perception and action (i.e., the flow of internal and 

active states). The minimisation of particular surprisal leads to a series of influential accounts of 

neuronal dynamics; including the principle of maximum mutual information [40,41], the principles 

of minimum redundancy and maximum efficiency [33] and—as we will see later—the free energy 

principle [42]. Crucially, the average or expected surprisal (over time or particular states of being) 

corresponds to entropy. This means that action and perception look as if they are minimising a 

particular entropy. The implicit resistance to the second law of thermodynamics leads us to theories 

of self-organisation, such as synergetics in physics [29,43,44] or homoeostasis in physiology [35,45,46]. 

Finally, the probability of any particular states given a Markov blanket (m) is, on a statistical view, 

 
8 Note that in going from equation (3) to the equations in Figure 3, we have assumed that the solenoidal coupling 

(Q) has a block diagonal form. In other words, we are ignoring the solenoidal coupling between internal and 

active states [9]. The interesting relationship between conditional independence and solenoidal coupling is 

pursued in a forthcoming submission to Entropy [38]. 
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model evidence [18,47]. This means that all the above formulations are internally consistent with 

things like the Bayesian brain hypothesis, evidence accumulation and predictive coding; most of 

which inherit from Helmholtz's motion of unconscious inference [48], later unpacked in terms of 

perception as hypothesis testing in 20th century psychology [49] and machine learning [50]. In short, 

the very existence of something leads in the natural way to a whole series of optimisation frameworks 

in the physical and life sciences that lends each a construct validity in relation to the others. 

4. Bayesian Mechanics 

Thus, if we can describe anything as self-evidencing – in the sense of possessing a dynamics that 

tries to minimise a particular surprisal – or maximise a particular model evidence, what is the model? 

It is at this point we get into the realm of inference and Bayesian mechanics, which follows naturally 

from the density dynamics of the preceding section. The key move here rests upon another 

fundamental but simple consequence of possessing a Markov blanket. 

Technically, the stipulative existence of a Markov blanket means that internal and external states 

are conditionally independent of each other, when conditioned on blanket states. This has an 

important consequence. In brief, for every given blanket state there must exist a density over internal 

states and a density over external states. The former must possess an expectation (i.e., average) or 

mode (i.e., maximum). This means for every conditional expectation of internal states there must be 

a conditional density over external states. In short, the mapping between the expected (i.e., average) 

internal state (for any given blanket state) and a conditional density over external states (i.e., a 

Bayesian belief about external states) inherits from the conditional independencies that define a 

Markov blanket. In turn, anything that exists is defined by its Markov blanket. A more formal 

treatment of this can be found on p. 84 of [1]. See also [3,38] for further discussion. 

Therefore, if internal and external states are conditionally independent, then for every given 

blanket state there is an expected internal state and a conditional probability density over external 

states. In other words, there must be a one-to-one relationship between the average internal state of 

a particle (or creature) and a probability density over external states, for every given blanket state.9 

This means that we can express the posterior or conditional density over external states as a 

probabilistic belief that is parameterized by internal states: 

( ) ( | ) ( | )

( ) argmax ( | )

q p b p

b p b

   



 μ

μ 
 (4) 

On the assumption that the number or dimensionality of internal states is greater than the 

number of blanket states, the dimensionality of the internal (statistical) manifold—defined by the 

second equality in (4)—corresponds to the dimensionality of blanket states (which ensures an 

injective and surjective mapping). This is important because it means there is a subspace (i.e., 

statistical manifold) of internal states whose dimensionality corresponds to dimensionality of the 

blanket state (e.g., cardinality of sensory receptors). Heuristically, this means that many external 

states of affairs can only be represented probabilistically; in a way that depends upon the number of 

blanket states. Furthermore, the states parameterising this conditional density are conditional 

expectations; namely, the average internal state, for each blanket state—please see Figure 18 in [1] for 

a worked (numerical) example. 

  

 
9 �(�) could also be defined as the expected value of �(�|�) – which will we approximated by ensemble 

averages of internal states.  
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This is important from a number of perspectives. First, it allows us to interpret the flow of 

(expected) autonomous states (i.e., action and perception) as a gradient flow on something called 

variational free energy.10 



( ) ( ) ( )

( ) ( )

( ) [ ( , )] [ ( )]

( ) [ ( ) || ( | )]

[ ( | )] [ ( ) || ( )]

q

entropyenergy

surprisal bound

q

complexityinaccuracy

f Q F

F

F E H q

D q p

E D q p

   







 

 

   

   

   

  

 

 

  

  








 (5) 

The second thing that (4) brings to the table is an information geometry and attending calculus of 

beliefs. From now on, we will associate beliefs with the probability density above that is 

parameterised by (expected) internal states. Note that these beliefs are non-propositional, where 

‘belief’ is used in the sense of ‘belief propagation’ and ‘Bayesian belief updating’ that can always be 

formulated as minimising variational free energy [51,58,52]. To license a description of this 

conditional density in terms of beliefs, we can now appeal to information geometry [23,59,60,61]. 

5. Information Geometry and Beliefs 

Information geometry is a formalism that considers the metric or geometrical properties of 

statistical manifolds. Generally speaking, a collection of points in some arbitrary state space does not, 

in and of itself, have any geometry or associated notion of distance, e.g., one cannot say whether one 

point is near another. To equip a space with a geometry, one has to supply something called a metric 

tensor–such that small displacements in state space can be associated with a metric of distance. For 

familiar Euclidean spaces, this metric tensor is the identity matrix. In other words, moving one 

centimetre in this direction means that I have moved a distance of 1 cm. However, generally speaking, 

metric spaces do not have such a simple tensor form11. Provided the metric tensor is symmetrical and 

positive (for all dimensions of the states in question), the geometry is said to be Riemannian. So, what 

is special about the Riemannian geometry of statistical manifolds? 

A statistical manifold is a special state space, in which the states represent the parameters of a 

probability distribution. For example, a two-dimensional manifold, whose coordinates are mean and 

precision, would constitute a statistical manifold for Gaussian distributions. In other words, for every 

point on the statistical manifold there would be a corresponding Gaussian (bell shaped) probability 

 
10 This functional can be expressed in several forms; namely, an expected energy minus the entropy of the 

variational density, which is equivalent to the self-information associated with particular states (i.e., surprisal) 

plus the KL divergence between the variational and posterior density (i.e., bound). In turn, this can be 

decomposed into the negative log likelihood of particular states (i.e., accuracy) and the KL divergence between 

posterior and prior densities (i.e., complexity). In short, variational free energy constitutes a Lyapunov function for 

the expected flow of autonomous states. Variational free energy, like particular surprisal, depends on, and only 

on, particular states. Without going into technical details, it is sufficient to note that working with the variational 

free energy resolves many analytic and computational problems of working with surprisal per se; especially, if 

we want to interpret perception in terms of approximate Bayesian inference. It is perhaps sufficient to note that 

this variational free energy underlies nearly every statistical procedure in the physical and data sciences [51–56]. 

For example, it is the (negative) evidence lower bound used in state of the art (variational autoencoder) deep 

learning [53,55]. In summary, the variational free energy is always implicitly or explicitly under the hood of any 

inference process, ranging from simple analyses of variance through to the Bayesian brain [57]. 
11 For example, if I set off in a straight line and travelled 40,075 km, I will have moved exactly no distance, 

because I would have circumnavigated the globe. 
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density. The important thing here is that any statistical manifold is necessarily equipped with a 

unique metric tensor, known as the Fisher information metric [23,59,62].12 

2

( ) [ ( ) || ( )] | [ ln ( ) ln ( )]

i j
ij

q

d g d d

g D q q E q q         

 

       



    


 (6) 

Here, d is the information length associated with small displacements on the statistical 

manifold d     induced by a probability density ( )q  . It is not important to understand 

the details of this metric; other than to note that it must exist. In brief, the distance between two points 

on the statistical manifold obtains by accumulating the Kullback-Leibler divergence between the 

probability distributions encoded as we move along a path from one point to another. In other words, 

the information length scores the number of different probabilistic or belief states encountered in 

moving from one part of a statistical manifold to another. The path with the smallest length is known 

as a geodesic. So why is this interesting? 

If we return to the independencies induced by the Markov blanket, Equation (4) tells us 

something fundamental. The (expected) internal states have acquired an information geometry, 

because they parameterise probabilistic beliefs about external states. This geometry is uniquely 

supplied by the Fisher information metric specified by the associated beliefs. In short, we now know 

that there is a unique geometry in some belief space that can be associated with the internal (physical) 

state of any particle or creature. Furthermore, we also know that the gradient flows describing the 

dynamics of internal states can be expressed as a gradient flow on a variational free energy functional 

(i.e., function of the function) of beliefs: see (5). All this follows from first principles and yet we have 

something quite remarkable in hand: if anything exists, its autonomous states will (appear to) be 

driven by gradient forces established by an information geometry or, more simply, probabilistic 

beliefs.13 From (5): 

( ) ( )

( ) [ , ( )]

f Q F

F F s q

   





 

  


 (7) 

We will call the information geometry that follows from this an extrinsic information geometry 

because it rests upon probabilistic (Bayesian) beliefs about external states. Bayesian beliefs are just 

conditional probability distributions that are manifest in the sense of being encoded by the (internal) 

states of a physical system. This means it would be perfectly sensible to say that a bacterium has 

certain Bayesian beliefs about the extracellular milieu—that are encoded by intracellular states. 

Similarly, in a brain, neuronal activity in the visual cortex parameterizes a Bayesian belief about some 

visible attribute of the sensorium. Clearly, these kinds of beliefs are not propositional in nature. 

Things get even more interesting when we step back and think about the density dynamics of 

the internal states. Recall from above, that an information geometry is a necessary property of any 

statistical manifold constituted by parametric states. So, are there any parameters of the probability 

 
12 The notion of a metric is very general; in the sense that any metric space is defined by the way that it is 

measured. In the special case of a statistical manifold, the metric is supplied by the way in which probability 

densities change as we move over the manifold. In this instance, the metric is the Fisher information. Technically, 

the Fisher information metric can be thought of as an infinitesimal form of the relative entropy (i.e., the Kullback-

Leibler divergence between the densities encoded by two infinitesimally close points on the manifold). 

Specifically, it is the Hessian of the divergence. Heuristically, this means the Fisher information metric scores the 

number of distinguishable probability densities encountered when moving from one point on the manifold to 

another. 
13 In turn, this flow will, in a well-defined metric sense, cause movement in a belief space. This is just a statement 

of the way things must be – if things exist. Having said this, one is perfectly entitled to describe this sort of 

sentient dynamics (i.e., the Bayesian mechanics) as being caused by the same forces or gradients that constitute 

the (Fisher information) metric in (6). This is nothing more than a formal restatement of Johann Friedrich 

Herbart’s “mechanics of the mind”; according to which conscious representations behave like counteracting 

forces [63]. 
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density over the internal states themselves? The answer here is yes. In fact, these parameters are 

thermodynamic variables (e.g., pressure) that underwrite thermodynamics or statistical mechanics 

[62,64]. An important parameter of this kind is time itself. This follows because if we start the internal 

states from any initial probability density, it will evolve over time to its non-equilibrium steady-state 

solution. Crucially, this means that we can parameterise the density over internal states with time – 

and time becomes our statistical manifold. This leads to the challenging intuition, that distance 

travelled in time can change as we move into the future. In virtue of the existence of the attracting 

set, the increase in this information length will eventually slow down and stop (as the probability 

density in the distant future approaches its nonequilibrium steady state)14. In turn, the information 

length furnishes a useful measure of distance from any initial conditions to nonequilibrium steady-

state–that has been exploited in characterising self-organisation in random, chaotic dynamical 

systems [23,62]. We will refer to the accompanying information geometry as an intrinsic geometry, 

because it is intrinsic to the density dynamics of the states per se.15 From our point of view, this means 

there are two information geometries in play with the following metrics:  

( ) [ ( ) || ( )] | intrinsic

( ) [ ( ) || ( )] | extrinsic

g D p p

g D q q

     

     

  

  
   

   

 

 
 (8) 

First, there is an intrinsic information geometry inherent in the information length based upon 

time-dependent probability densities over internal states. This information length characterises the 

system or creature in terms of itinerant, self-organising density dynamics that forms the basis of 

statistical mechanics in physics, i.e., a physical, material, or mechanical information geometry that is 

intrinsic to the system. At the same time, there is an information geometry in the space of internal 

states that refers to belief distributions over external states. This is the extrinsic information geometry 

that inherits from the Markovian conditions that define, stipulatively, autonomous states (via their 

Markov blanket). The extrinsic geometry is conjugate to the intrinsic geometry but measures 

distances between beliefs. Both are measurable, and both supervene on the same Langevin dynamics.  

Again, this is not mysterious it is just a mathematical statement of the way things are. What is 

interesting here is that internal states have a dual aspect information geometry that seems to be 

related to the dual aspect monism—usually advanced to counter Cartesian (matter and mind) 

duality. On a simple interpretation, one might associate the information length of internal states with 

the material behaviour of particles or creatures, while the mindful aspects are naturally associated 

with the probabilistic beliefs that underwrite the extrinsic information geometry of internal states. 

However, the existence of a dual aspect information geometry does not, in and of itself, give a system 

mental states and consciousness, but only computational properties (including probabilistic beliefs). 

Furthermore, the extrinsic information geometry is ultimately reducible to the intrinsic information 

geometry (and the other way around), in the sense that there is a necessary link between them cf. [65], 

pp. 11–13. Still, physical, and computational properties are not identical.16 

 
14 An intuition here, can be built by considering what you will be doing in a few minutes, as opposed to next 

year. The difference between the probability over different ‘states of being’ between the present and in 2 min 

time is much greater than the corresponding differences between this time next year and this time next year, 

plus two min. 
15 Another way of thinking about the distinction between the intrinsic and extrinsic information geometries is 

that the implicit probability distributions are over internal and external states, respectively. This means the 

intrinsic geometry describes the probabilistic behaviour of internal states, while the extrinsic geometry describes 

the Bayesian beliefs encoded by internal states about external states. 
16 This is also how the following statement could be interpreted: “We are dualists only in asserting that, while 

the brain is material, the mind is immaterial” [66]. Technically, the link between the intrinsic and extrinsic 

information geometries follows because any change in internal states implies a conjugate movement on both 

statistical manifolds. However, these manifolds are formally different: one is a manifold containing parameters 

of beliefs about external states, while the other is a manifold containing parameters of the probability density 

over (future) internal states; namely, time (or appropriate statistical parameter apt for describing 

thermodynamics). 



Entropy 2020, 22, 516 12 of 31 

An interesting special case arises if we assume that the conditional beliefs are Gaussian in form 

(denoted by � in equation (9) below). In this instance, the Fisher information metric becomes the 

curvature or ‘deepness’ of free energy minima, which is the same as the precision (i.e., inverse 

covariance) of the beliefs per se.  

1( ) ( ) ln ( )

( ) ( ( ), ( ))

g F q

q

  



  

   

     

 �
 (9) 

In other words, distances in belief space depend upon conditional precision or the confidence 

ascribed to beliefs about external states of affairs ‘out there’. We will return to this interesting case in 

the conclusion. At the moment, notice that we have a formal way of talking about the ‘force of 

evidence’ in moving beliefs and how the degree of movement depends upon conditional precision, 

confidence, or certainty [67,68,69]. 

6. A Force to Be Reckoned with 

To make all this concrete, it is perfectly permissible to express the gradient flows in terms of 

forces supplied by the extrinsic, belief-based information geometry. This just requires a specification 

of the units of the random fluctuations in terms of Boltzmann's constant. This means that we can 

rewrite (7) in terms of a thermodynamic potential ( )U   and associated forces ( )mf  , where, at 

nonequilibrium steady-state (see pp. 65–67 in [1]): 
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 









 

(10) 

The last equality is known as the Einstein–Smoluchowski relation, where m  is a mobility 

coefficient. This means, we have factorised the amplitude of random fluctuations m Bk T    

into mobility and temperature [12]. Nothing has changed here. All we have done is assign units of 

measurement to the amplitude of random fluctuations, so that we can interpret the ensuing flow as 

responding to a force, which can be interpreted as a gradient established by a thermodynamic 

potential. This thermodynamic potential is just (scaled) surprisal or our free energy functional of 

beliefs. 

These equalities cast the appearance of Cartesian duality in pleasingly transparent terms. The 

forces that engender our physical dynamics can either be expressed as thermodynamic forces or as 

self-evidencing; in virtue of the extrinsic information geometry supplied by variational free energy. 

Mathematically, this duality arises from the fact that the surprisal and variational free energy are 

conjugate: one rests upon the probability of particular states, while the other is a functional of blanket 

states and beliefs that are parameterised by internal states. They are conjugate in that they refer to 

probability densities over conditionally independent (i.e., orthogonal) states; namely, internal and 

external states. 

The point here is that there is no difficulty in moving between descriptions afforded by statistical 

thermodynamics and self-evidencing (i.e., minimising variational free energy). On this reading, 

variational free energy is a feature of an extrinsic information geometry induced by beliefs encoded 

by internal states that have an intrinsic information geometry. This free energy has gradients that 
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exert forces on internal states so that they come to parameterise new beliefs. These new beliefs depend 

upon blanket (e.g., sensory) states; thereby furnishing a mathematical image of perception. 

Furthermore, the same Bayesian mechanics applies to active states that change external states—and 

thereby mediate action upon the world. So, is there anything more to the story? 

7. Active Inference and the Future 

Active inference will become a key aspect of the arguments below, when thinking about different 

kinds of generative models; specifically, generative models of the consequences of action. On the 

above arguments, anything (that exists in virtue of possessing a Markov blanket) can be cast as 

performing some elemental form of inference—and possessing an implicit generative model. 

However, not all generative models are equal; in the sense that no two things are the same. Later, we 

will look at special kinds of generative models that underwrite active inference. 

Above, we introduced variational free energy as an expression of particular surprisal. This 

variational form is a functional of sensory states and a conditional density or belief distribution 

encoded by internal states. However, the variational free energy also depends upon the surprisal of 

joint particular and external states, ( , ) ln ( , )p      , see (5). On a statistical view, the 

corresponding nonequilibrium steady-state density ( , )p    is known as a generative model. In other 

words, it constitutes a probabilistic specification of how external and particular states manifest. It is 

this generative model that licenses an interpretation of particular surprisal in terms of Bayesian 

mechanics and self-evidencing [37]. So, what does this mean for our formulation of beliefs and 

intention?  

Note that we can always describe the dynamics of internal states in terms of a gradient flow on 

variational free energy. This means that the dynamical architecture of any particle or creature can 

also be expressed as a functional of some generative model that, in some sense, must be isomorphic 

with the nonequilibrium steady-state density. This has some interesting implications: from the point 

of view of self-organisation, it tells us immediately that if we interpret the action of a particle or 

creature in terms of self-evidencing, it says that the implicit generative model—which supplies the 

forces that change internal and active (i.e., autonomous) states – must be a sufficiently good model 

of systemic states. This is exactly the good regulator theory that emerged in the formulations of self-

organisation at the inception of cybernetics [45,70].17  

8. Active Inference and the Path Integral Formulation 

We will first preview, heuristically, the final argument in this essay. Because active states depend 

upon internal states (and the beliefs that they parameterise)—but active states do not depend upon 

external states—it will look as if particles or creatures are acting on the basis of their beliefs about 

external states. Furthermore, if a particle or creature acts in a dextrous, precise and adaptive way to 

fluctuations in its blanket states, it will look as if it is acting to minimise its particular surprisal (or 

variational free energy). In other words, it will look as if it is trying to minimise the surprisal, expected 

following an action. This means, it would look as if it is behaving to minimise expected surprisal or 

self-information, which is uncertainty or its particular entropy.  

 
17 There are many interesting issues here. For example, it means that the intrinsic anatomy and dynamics (i.e., 

physiology) of internal states must, in some way, recapitulate the dynamical or causal structure of the outside 

world [71–73]. There are many examples of this. One celebrated example is the segregation of the brain into 

ventral (‘what’) and dorsal (‘where’) streams [74] that may reflect the statistical independence between ‘what’ 

and ‘where’. For example, knowing what something is does not, on average, tell me where it is. Another 

interesting example is that it should be possible to discern the physical structure of systemic states by looking at 

the brain of any creature. For example, if I looked at my brain, I would immediately guess that my embodied 

world had a bilateral symmetry, while if I looked at the brain of an octopus, I might guess that it's embodied 

world had a rotational symmetry [75]. These examples emphasise the ‘body as world’ in a non-radical enactive 

or embodied sense [76]. This begs the question of how the generative model—said to be entailed by internal 

states—shapes perception and, crucially, action. 
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Anthropomorphically, a creature will therefore (appear to) have beliefs about the consequences 

of its action, which means it must have beliefs about the future. So how far into the future? One can 

formalise a response to this question by turning to the path integral formulation of random dynamical 

systems [12,13,77,78]. In this formulation, we are not concerned with the probability density over 

states but rather over trajectories or sequences of states. Specifically, we are interested in the 

probability of trajectories of autonomous states, often referred to as ‘policies’ in the optimal control 

literature [32]. So, what can one say about the probability of different courses of action in the future?  

We can now turn to the information length associated with the evolution of systemic states to 

answer this question (for a more detailed treatment, see pp. 86–88 in [1]). Recall from above, that the 

information length reflects the accumulated changes in probability densities as time progresses. If a 

system attains nonequilibrium steady state after a period of time, then the information length 

asymptotes to the distance between the initial (particular) state and the final (steady) state. This 

means that we can characterise a certain kind of particle (or creature) that returns to steady state in 

terms of the (critical) time τ  it takes for the information length to stop increasing: 

( ) 0 [ ( , ) || ( , )] 0d D q p     τ τ τ τ ττ  (11) 

The probability density ( , )q     is the predictive density over hidden and sensory states, 

conditioned upon the initial state of the particle and subsequent trajectory of autonomous states. In 

brief, particles with a short critical time18 will, effectively, converge to nonequilibrium steady-state 

quickly and show a simple self-organisation (e.g., the Aplysia gill and siphon withdrawal reflex) 

mathematically, these sorts of particles quickly ‘forget’ their initial conditions. Conversely, particles 

with a long critical time will exhibit itinerant density dynamics (e.g., you and me). Particles like you 

and me ‘remember’ our initial conditions and look as if we are pursuing long-term plans. 

Convergence to nonequilibrium steady state in the future allows us to relate the surprisal of a 

trajectory of autonomous states (i.e., a policy) to the variational free energy expected under the 

predictive density above: 
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(12) 

The expected free energy in (12) has been formulated to emphasise the formal correspondence 

with variational free energy in (5): where the complexity and accuracy terms become risk (i.e., 

expected complexity) and ambiguity (i.e., expected inaccuracy). This path integral formulation says 

that if the probability density over systemic states has converged to nonequilibrium steady state after 

some critical time, then there can be no further increase in information length. At this point, the 

probability of an autonomous path into the future becomes the variational free energy the agent 

expects to encounter.  

The equality in (11) is a little abstract but has some clear homologues in stochastic 

thermodynamics (in the form of integral fluctuation theorems) [12,79]. Here, it tells us something 

rather interesting. It means that creatures that have an adaptive response to changes in their external 

milieu will look as if they are selecting their long-term actions on the basis of an expected free energy. 

Crucially, this free energy is based upon a generative model that must extend at least to a (critical) 

time in the future when nonequilibrium steady state is restored. Conversely, if certain kinds of 

 
18 Note that time here does not refer to clock or universal time, it is the time since an initial (i.e., known) state at 

any point in a systems history. This enables the itinerancy of nonequilibrium steady-state dynamics to be 

associated with the number of probabilistic configurations a system will pass through, over time, when prepared 

in some initial state. 
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creatures select their actions on the basis of minimising expected free energy, they will respond 

adaptively to changes in external states.  

This formulation offers a description of different kinds of particles or creatures quantified by 

their critical time or temporal depth in (11). For example, if a certain kind of particle (e.g., a trial or 

protozoan) has a short temporal horizon or information length, it will respond quickly and reflexively 

to any perturbations – for as long as it exists. Conversely, creatures like us (e.g., politicians and 

pontiffs) may be characterised by deep generative models that see far into the future; enabling a move 

from homoeostasis to allostasis and, effectively, the capacity to select courses of action that consider 

long term consequences [80,81,82]. Given that the imperative for this action selection is to minimise 

expected free energy (i.e., expected surprisal or uncertainty), we now have a plausible description of 

intentional behaviour that will, to all intents and purposes, look like uncertainty resolving, 

information seeking, epistemic foraging [81,83,84,26,85,86,87,88,89,90]. Alternatively, on a more 

(millennial) Gibsonian view, action selection responds to long-term epistemic affordances [91,92,93].  

This temporal depth may distinguish between different kinds of sentient particles. Again, all of 

this follows in a relatively straightforward way from information theory and statistical physics. 

Furthermore, the equations above can be used to simulate perception and intentional behaviour. To 

illustrate the difference between short term (shallow) inference based upon Equation (5) and long-

term (deep) active inference based upon Equation (12), we provide two examples in Figures 4 and 5. 

The first uses simulated handwriting that is elicited purely on the basis of reflexive responses 

prescribed by a dynamic generative model (i.e., a pattern generator), while the second calls on the 

notion of epistemic affordance by simulating saccadic searches and active vision. In the present thesis, 

simulations of the second sort of active inference may offer a better account of intentional behaviour; 

namely, beliefs about the consequences of action and subsequent action selection. 

 

Figure 4. (autonomous movement). This figure shows the results of simulating active inference (i.e., 

writing), in terms of conditional expectations about hidden states of the world, consequent 

predictions about sensory input and the ensuing behaviour. The autonomous dynamics that underlie 

this behaviour rest upon prior expectations about states with Lotka-Volterra dynamics (c.f., a central 

pattern generator): these are the six (arbitrarily) coloured lines in the upper left panel. In this 

generative model, each state is associated with a location in Euclidean space that attracts the agent’s 

finger. In effect, the internal states then supply predictions of what sensory states should register, if 

these prior beliefs were true. Active states try to suppress the ensuing prediction error (i.e., sensory 

surprisal) by reflexively fulfilling expected changes in angular velocity, through exerting forces on 

the agent’s joints (not shown). The subsequent movement of the arm is traced out in the lower left 
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panel. This trajectory has been plotted in a moving frame of reference, so that it looks like synthetic 

handwriting (e.g., a succession of ‘j’ and ‘a’ letters). The lower left panels show the activity of one (the 

fourth attractor) conditional expectation under ‘action’, and ‘action-observation’. During action, 

sensory states register both the visual and proprioceptive consequences of movement, while under 

action observation, only visual sensations are available – as if the agent was watching another agent. 

The red dots correspond to the time bins during which this state exceeded an amplitude threshold of 

two arbitrary units. They key thing to note here is that this unit responds preferentially when, and 

only when, the motor trajectory produces a down-stroke, but not an up-stroke. Please see [94] for 

further details. Furthermore, with a slight delay, this internal state responds during action and action 

observation. From a biological perspective, this is interesting because it speaks to an empirical 

phenomena known as mirror neuron activity [95–97]. 

 

Figure 5. (epistemic foraging). This figure shows the results of a simulation in which a face was 

presented to an agent, whose responses were simulated by selecting active states that minimise 

expected free energy following an eye movement. The agent had three internal images or hypotheses 

about the stimuli she might sample (an upright face, and inverted face and a rotated face). The agent 

was presented with an upright face and her conditional expectations were evaluated over 16 (12 ms.) 

time bins, until the next saccade was emitted. This was repeated for eight saccades. The ensuing eye 

movements are shown as red dots at the end of each saccade in the upper row. The corresponding 

sequence of eye movements is shown in the insert on the upper left, where the red circles correspond 

roughly to the proportion of the visual image sampled. These saccades are driven by prior beliefs 

about the direction of gaze based upon the saliency maps in the second row. These saliency maps are 

the expected free energy as a function of policies; namely, where to look next. Note that these maps 

change with successive saccades as posterior beliefs about external states, including the stimulus, 

become progressively more precise or confident. Note also that salience is depleted in locations that 

were foveated in the previous saccade because these locations no longer have an epistemic affordance 

(i.e., the ability to reduce uncertainty or expected free energy). This is a nice illustration of a ubiquitous 

phenomenon, known as inhibition of return. Oculomotor responses are shown in the third row in 

terms of the two hidden oculomotor states, corresponding to vertical and horizontal eye movements. 

The associated portions of the image sampled (at the end of each saccade) are shown in the fourth 

row. The final two rows show the posterior beliefs in terms of their sufficient statistics and the 
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stimulus categories, respectively. The posterior beliefs are plotted here in terms of conditional 

expectations and the 90% confidence interval about the true stimulus. The key thing to note here is 

that the expectation about the true stimulus supervenes over its competing expectations and, as a 

result, conditional confidence about the stimulus category increases (the confidence intervals shrink 

to the expectation). This illustrates the nature of evidence accumulation when selecting a hypothesis 

or percept the best explains sensory data. Within saccade accumulation is evident even during the 

initial fixation with further stepwise decreases in uncertainty as salient information is sampled at 

successive saccades. Please see [98] for further details. 

9. Markovian Monism 

Above, we have shown that a duality—between two ways in which states of a system can be 

conceived of—already arises at a very fundamental level; namely, for all systems that possess a 

Markov blanket. Their internal states can both be associated with an intrinsic and with an extrinsic 

information geometry. What metaphysical implication does this have? Does it follow that all systems 

with a Markov blanket have a mind (because they have probabilistic beliefs about external states)? 

Are such systems conscious? The formalism itself does not answer these questions: different 

metaphysical interpretations of the existence of a dual information geometry are possible. In fact, one 

might ask whether it has any metaphysical significance whatsoever. For the existence of an extrinsic 

information geometry only means that one can map internal states to conditional probability 

distributions (over external states, given blanket states). It does not mean that the resulting 

descriptions refer to entities that actually exist (just as we can ascribe to a lectern the propositional 

belief that the best way to persist is to do nothing—which does not mean that the lectern actually has 

a propositional belief; see [99]). 

Hence, any metaphysical conclusions must be drawn with care. In what follows, we will first 

argue that the formalism speaks in favour of monistic views – if we assume that the existence of an 

extrinsic information geometry has any relevance for understanding the mind and consciousness in 

the first place. After that, we will discuss different interpretations of the dual perspective afforded by 

the two information geometries: panprotopsychism, neutral monism, dual-aspect theories, and 

physicalism. We will argue that physicalism provides the most plausible interpretation. However, 

we acknowledge that competing interpretations cannot conclusively be ruled out. Hence, we dub the 

resulting view ‘Markovian monism’. Markovian monism consists of two claims: (1) Fundamentally, 

there is only one type of thing and only one type of irreducible property (this is why it is a Markovian 

monism). (2) All systems possessing a Markov blanket have properties that are relevant for 

understanding the mind and consciousness: if such systems have mental properties, then they have 

them partly by virtue of possessing a Markov blanket (this is why it is a Markovian monism). 

Why do we rule out dualistic interpretations of the dual information geometry? First, note that 

dualism is still consistent with the existence of an extrinsic information geometry. However, consider 

any properties that a system has by virtue of the fact that its internal states encode probability 

distributions over external states. Since the dynamics that can be described with reference to these 

properties can equivalently be described without regarding internal states as representations of 

probability distributions, there is a sense in which both perspectives are reducible to one another. 

Hence, the dual information geometry itself does not entail property dualism. Therefore, if one 

believes that there are irreducible mental properties, one has to posit them in addition to, and largely 

independently of, properties entailed by the existence of an extrinsic information geometry. But this 

means that mental properties will not be instantiated (partly) by virtue of the existence of a Markov 

blanket (contradicting claim (2) above). In other words, dualism is more or less orthogonal to the 

formal treatment. 

However, we do believe that the existence of an extrinsic information geometry tells us 

something interesting about the origin of minds and consciousness. Under the assumption that 

properties entailed by the existence of a Markov blanket are relevant to understanding mental 

properties, we therefore have to reject dualism. This still leaves different metaphysical options open. 
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10. Markovian Monism as Panprotopsychism? 

According to panpsychism, mental properties are fundamental non-physical properties and are 

instantiated by all micro-level entities. Hence, this amounts to a form of property dualism, which we 

ruled out above. Note, again, that dualism is compatible with the formal treatment presented here, 

but it would not be an interpretation in which properties entailed by the existence of a Markov 

blanket have any explanatory relevance to the existence of minds and consciousness—because 

panpsychism already presupposes mentality as a fundamental part of reality. 

However, there is a variant of panpsychism, viz. panprotopsychism, that could, in principle, be 

described as a Markovian monism. In short, panprotopsychism is “the view that fundamental entities 

are proto-conscious, that is, that they have certain special properties that are precursors to 

consciousness and that can collectively constitute consciousness in larger systems.” [100], p. 259. 

These special, non-structural properties are protophenomenal properties that are not identical to 

(micro-)physical properties (otherwise, even physicalism could be considered as a form of 

panprotopsychism, [100], p. 260). There is nothing it is like to be a system that has just a single 

protophenomenal property. However, if a system displays a sufficiently large number of 

protophenomenal properties, or if they are arranged in the right way, then the system will also have 

phenomenal properties (which are constituted by collections of protophenomenal properties). 

From the point of view of Markovian monism, one could identify properties entailed by the 

existence of a Markov blanket with protophenomenal properties. An example is the property of 

encoding a conditional probability distribution over external states. However, it is unclear to us to 

what extent this could be regarded as a non-structural property. Furthermore, a robust version of 

panprotopsychism would have to presuppose that all systems with a Markov blanket actually 

represent probability distributions—as opposed to just being systems that can be described as if they 

represented such distributions. Below, we will suggest that a realist interpretation of descriptions 

afforded by the extrinsic information geometry should be contingent on further conditions. This is 

why we would not interpret Markovian monism as a version of panprotopsychism. 

11. Markovian Monism as Neutral Monism? 

Neutral monism is normally read as a family of views; according to which the fundamental layer 

of reality consists of ontologically neutral entities. Different versions of the theory make different 

claims about the sense in which basic entities are neutral (see [101], who lists five different options). 

The most popular options seem to be views according to which the basic entities are (a) intrinsically 

neither mental nor physical or (b) intrinsically both mental and physical. 

A great advantage of neutral monism is that it solves the mind-body problem without 

postulating two basic types of entity (mental and physical) – the significance of this is that worries 

about psycho-physical interaction (that plagued Cartesian dualism) disappear. The only causal 

interaction in question involves neutral entities (however, the problem of mental causation may 

reappear, in the sense that macro-level mental properties may still be causally irrelevant, see [102], 

pp. 33–34). 

Markovian monism could be specified as a version of neutral monism in which basic entities are 

intrinsically neither mental nor physical. There are two conjugate ways in which things that exist can 

be described: either from the perspective of the intrinsic information geometry or from the 

perspective of the extrinsic information geometry. Under the assumption that neither perspective is 

privileged, one would have to conclude that reality is, fundamentally, ontologically neutral. 

However, this would also presuppose a realist interpretation of descriptions in terms of the 

extrinsic information geometry (i.e., one would have to assume that all systems with a Markov 

blanket actually represent probability distributions and perform computations). Furthermore, it 

would have the consequence that even relatively simply systems, such as single-cell organisms, 

would have a mind (as suggested by [103]). For these reasons, we would not interpret Markovian 

monism as a version of neutral monism. 
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12. Markovian Monism as a Dual-Aspect Theory? 

Dual-aspect monism is the position that reality has two aspects: a mental and a physical aspect. 

Dual-aspect monism is very similar to neutral monism. Depending on how it is defined, it may even 

collapse into neutral monism (or into panpsychism, see [104], p. 366). For instance, if dual-aspect 

monism is defined as the view that reality is, at a fundamental level, both physical and mental, then 

this comes extremely close to the view that basic entities are intrinsically both mental and physical – 

and hence to a version of neutral monism (see [101], sec. 8.3). 

Furthermore, if the aspect in ‘dual-aspect’ is interpreted in terms of properties, such that basic 

entities have both mental and physical properties (as suggested by [105], p. 46), then dual-aspect 

theory becomes a form of property dualism—which we ruled out above.  

There are versions of dual-aspect theory that explicitly refrain from defining the dual aspect in 

terms of property dualism (see, e.g., [106], pp. 339,342). Markovian monism is similar to dual-aspect 

monism (cf. [107], pp. 220–221), in that it entails that one and the same thing (i.e., internal states of a 

system possessing a Markov blanket) can be viewed from two perspectives. Internal states can either 

be regarded as states of a random dynamical system; or they can be viewed as the parameters of a 

probability distribution (i.e., probabilistic belief). In order to count as a dual-aspect monism, these 

two perspectives would have to be mutually irreducible (see [106], p. 46; [105], p. 341), we are 

sceptical that this would be a coherent interpretation of the dual information geometry. 

As with the other two interpretations discussed above, an interpretation in terms of a dual-aspect 

monism would presuppose a realist view on descriptions in terms of the extrinsic information 

geometry. Furthermore, just as the interpretation in terms of neutral monism, it would entail that 

single-cell organisms have a mind. In what follows, we will sketch how Markovian monism can 

ground versions of reductive materialism. This physicalist interpretation of Markovian monism is the 

one we favour – although we admit that other interpretations cannot conclusively be ruled out. 

13. Markovian Monism as Reductive Materialism 

Here is what we believe is the most coherent interpretation of the formal treatment. The fact that 

one can associate two information geometries with systems possessing a Markov blanket reveals a 

continuity between simple, non-conscious systems and more complex, conscious systems such as 

human beings: due to the extrinsic information geometry, simple systems can be described as if they 

had beliefs about external states. For conscious systems, the perspective—afforded by such ‘as if’ 

descriptions—acquires a special status, because it will typically abstract away from many of the 

details inherent in the mechanistic perspective. For instance, the probabilistic beliefs ascribed to 

explain cognitive phenomena are typically assumed to be represented by the average activities of 

neuronal populations, which means that any differences between populations with the same average 

properties will be irrelevant from the perspective of the extrinsic information geometry. This squares 

well with the idea that causation (including mental causation) is a macroscopic phenomenon 

[108,109]. At the same time, these macrostates are always grounded in more fine-grained physical 

states, and their properties can be reductively explained in terms of physical properties. 

Furthermore, the computational properties ascribed to conscious systems will be more 

numerous and more complex than those ascribed to non-conscious systems. There are no additional, 

non-reducible properties, which are necessary to explain the mind and consciousness; between some 

non-conscious and conscious systems, there is only a gradual difference. This entails that 

consciousness is a vague concept; i.e., there will be borderline cases in which the concept cannot 

unequivocally be applied. 

In particular, this proposal rests upon a distinction between temporally deep and shallow 

generative models, that accompanies the distinction between conscious and unconscious inference. 

This distinction is vague, in the sense that any generative model of dynamics has, to a certain extent, 

temporal depth. For example, predictive coding, homoeostasis and thermostats can all be articulated 

in terms of perceptual control [46,110,111] and a reflexive form of active inference using generative 

models based upon differential equations. The fact that a generative model entails differential 

equations means that there is some inference over time. The distinction between deep and shallow 
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then becomes a quantitative issue. Perhaps a better distinction would be between generative models 

that entertain a single trajectory into the future, versus multiple (counterfactual action dependent) 

trajectories that incur a selection problem; namely, choosing an action or planning. 

Construing consciousness as a vague concept may even have relevance for the meta-problem of 

consciousness [112]; i.e., the problem of explaining why it seems (to many) that a physical duplicate 

of a conscious creature could be non-conscious. Although solving the meta-problem is not the aim of 

this paper,19 we can at least contribute to an explanation: as noted above, our interpretation of 

Markovian monism entails that there is only a gradual difference between some non-conscious and 

conscious systems, and that consciousness is a vague concept. So, when people claim they can 

imagine a physical duplicate that is unconscious, they may in fact imagine not a complete duplicate, 

but a system that differs in (seemingly non-significant ways) from a conscious system. As an analogy, 

consider a heap of sand. A heap of sand is constituted by grains of sand. But, one could object, a heap 

of sand cannot be just a collection of grains of sand, because I can imagine a collection of grains of 

sand (say, three grains) that does not count as a heap. Hence, there seems to be a crucial difference 

between collections of grains of sand and heaps of sand—just adding a grain of sand to something 

that is not a heap does not turn it into a heap. Similarly, just adding a bit more structure and function 

to a non-conscious system does not turn it into a conscious system. Hence, it would seem as if 

consciousness requires more than just the right structure and functions, and the hard problem arises. 

But if consciousness is a vague concept (as suggested by our interpretation of Markovian monism), 

then the right structure and functions can be metaphysically sufficient for consciousness, even if 

adding just a bit of structure and function to any uncontroversially non-conscious system does not 

make it conscious. 

Furthermore, the very existence of the meta-problem implies a certain kind of Bayesian belief 

that entails some puzzlement about ‘our capacity to have subjective experiences of a quantitative 

sort’. But ‘qualia’ and accompanying ‘puzzlement’ are just Bayesian beliefs that imply an extrinsic 

information geometry. So, is there anything special about Bayesian beliefs about Bayesian beliefs? 

The answer is yes: beliefs about beliefs (in a mathematical sense) require a hierarchical generative 

model. But, a hierarchical generative model requires hierarchically deployed Markov blankets to 

introduce the necessary conditional independencies (which make it hierarchical). We therefore 

conclude that phenomenally conscious systems for which a hard problem exists must possess a 

certain kind of statistical structure; namely, Markov blankets within Markov blankets [4]. 

Although we believe that there are only gradual differences between non-conscious and 

conscious systems, if one merely considers the probabilistic beliefs that can be ascribed to such 

systems, there are still categorical differences that can be described in terms of more high-level 

properties, such as intentionality and computation (note that this does not imply a “phase transition” 

between unconscious and conscious systems). 

In particular, one can make a threefold distinction between (i) systems that behave only ‘as if’ 

they implemented computations over probabilistic beliefs, (ii) systems for which the “computational 

stance” [114] provides added explanatory value, and (iii) systems that can usefully be described as 

not only computational, but also as representational systems. 20  While not speaking against a 

continuity between life and mind [103], this threefold distinction could be used to establish a 

discontinuity between life and consciousness. 

 
19 For a recent response to the meta-problem, see [113]. The authors identify three features that are central for 

conscious systems: (1) depth (including temporal depth); (2) responsiveness to “interoceptive information 

concerning the agent’s own bodily states and self-predicted patterns of future reaction”; (3) “the capacity to keep 

inferred, highly certain mid-level sensory re-codings fixed while imaginatively varying top-level beliefs.” ([113], 

p. 31). Note that these are all gradual features, in line with the view that consciousness is a vague concept.  
20 Note that this treatment departs from the classical conception of computation, according to which there is “no 

computation without representation” [115]. According to many proponents of this view, representation is prior 

to computation. In other words, a physical system only performs a computation if it has genuine representational 

states. Mechanistic conceptions of computation and representation reject this view. Accordingly, physical 

systems can perform computations without representation (see [116].).  
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Specifying the difference between (i) and (ii) would require defending a particular account of 

computation, which is beyond the scope of this paper. The step from (ii) to (iii) – i.e., from a 

computational to a representational system – requires ascribing content to internal states of the 

system. Representationalist interpretations of the free-energy principle refer to computations that are 

implemented (or approximated) by systems that minimize free energy (see e.g. [117], pp. 571–572). 

Such computations are defined with respect to exactly the types of probabilistic beliefs encoded by 

systems with an extrinsic information geometry. 

Although Markovian monism, interpreted as a form of reductive materialism, is not a theory of 

consciousness, it refers to properties that may ground mental properties (including phenomenal 

properties). As such, it provides a foundation for various physicalist approaches to consciousness 

and the mind, most notably representationalism and (computational) functionalism.21  

14. Consciousness and Integrated Information 

There have been previous attempts to use information theory to describe conscious processing. 

Perhaps the most notable is integrated information theory [118,119]. One might ask about the 

relationship between the free energy principle (FEP) and integrated information theory (IIT)? At the 

time of writing, there is a gap between these theoretical approaches. First, the FEP is a ‘first principle’ 

account that uses variational principles to build upon the Langevin formulation of random dynamical 

systems. In contrast, IIT is an ‘axiomatic’ approach that starts with some assumptions about what 

information processing must look like to be a contender for explaining conscious experience. The 

formal distinction between the FEP and IIT is that the free energy principle is articulated in terms of 

probabilistic beliefs about some (external) thing, while integrated information theory deals with 

probability distributions over the states of some system. In other words, IIT does not commit to an 

extrinsic information geometry (the “geometry of integrated information” is an intrinsic information 

geometry, see [120]). This is not necessarily a problem, in so far as IIT offers a normative (i.e., 

measurable, in principle) description of systems that comply with axioms, which inherit pre-

theoretical notions of consciousness. On the other hand, both the free energy FEP and IIT can be cast 

in terms of information theory and in particular functionals (e.g., variational free energy and ‘phi’). 

Furthermore, they both rest upon partitions (e.g., Markov blankets that separate internal from 

external states and complexes that constitute conscious entities and can be distinguished from other 

entities). This speaks to the possibility of, at least, numerical analyses that show that minimising 

variational free energy maximises ‘phi’ and vice versa. 

Although integrated information theory does not commit to a Markovian information geometry 

of experience (i.e., conscious or unconscious inference about something), it is possible to establish 

some kind of construct validity between the FEP and IIT in terms of the axioms upon which IIT is 

predicated. In other words, one can establish—at least heuristically—that the FEP features the 

essential properties of experience that constitute the axiomatic basis of IIT. There are five axioms; 

namely, intrinsic existence, composition, information, integration and exclusion. In brief: 

 Intrinsic existence—consciousness exists: each experience is actual and exists from its own 

intrinsic perspective. This is a necessary consequence of Bayesian mechanics under the free 

energy principle because the dynamics underlying inference are physically realised and are, by 

construction, intrinsic in the sense of pertaining to internal states. 

 Composition—consciousness is structured: with multiple phenomenal distinctions. Again, this 

is a necessary aspect of Bayesian mechanics, which is defined in terms of the structure implicit in 

conditional independencies. Indeed, from a statistical perspective, minimising variational free 

energy is synonymous with structure learning [59,121,122]. 

 Information—consciousness is unique: each experience is the particular way it is, thereby 

differing from other possible experiences (i.e., differentiation). Again, this is a fundament of 

Bayesian mechanics under the free energy principle; in the sense that any information geometry 

 
21 Of course, functionalism itself is ontologically neutral, in that it identifies mental states with functional states 

that could be realised by different substrates. 



Entropy 2020, 22, 516 22 of 31 

implies a particular point on a statistical manifold (of internal or intrinsic states) maps to a 

particular probability or belief state with phenomenal support (i.e., an extrinsic belief distribution 

over the external states). 

 Integration—consciousness is unified: each experience is irreducible to disjoint subsets of 

phenomenal distinctions (i.e., integration). Again, this is a necessary aspect of the information 

geometry that underwrites the free energy principle. This follows because for each point on the 

internal statistical manifold, there is a single probabilistic belief (i.e., variational density). In other 

words, although this density could be very high dimensional, it is just one probabilistic belief 

that cannot be dissembled or reduced. Another aspect of the axiom of integration is that “every 

part of the system has both causes and effects within the rest of the system” ([123], p. 3). This is 

true for systems possessing a Markov blanket, because the gradient flows of internal states (and 

associated belief updating) are, by definition, conditionally dependent. 

 Exclusion—consciousness is definite: each experience is characterised by what it is (neither less 

no more than) and flows at the speed it flows (neither faster nor slower). Again, this is a necessary 

consequence of the density dynamics that underwrites the free energy principle. In other words, 

flows on the extrinsic (statistical) manifold are unique and entail particular probabilistic beliefs 

about external states, i.e., precise beliefs about being in a particular (external) state but not 

another. Furthermore, each probabilistic belief has its own sufficient statistics that exclude the 

possibility of other sufficient statistics. For example, beliefs about my temperature can be 

stipulated with an expectation that my temperature is such and such. This precludes the 

possibility that I expect to my temperature to be anything else. In contrast to the exclusion axiom, 

however, the existence of a Markov blanket at one spatiotemporal scale does not exclude the 

existence of (e.g., nested) Markov blankets at other spatiotemporal scales.  

In summary, on an informal review, the information geometry and density dynamics implied 

by Markov blankets appear to possess the qualities—or conform to the essential criteria—that 

constitute the axiomatic basis of integrated information theory. 

The important result of this section, from our perspective, is that at least some properties 

associated with consciousness are already entailed by Bayesian mechanics under the free energy 

principle. This supports the (speculative) hypothesis that adding further constraints on generative 

models—entailed by systems possessing a Markov blanket—might enable us to say which systems 

are conscious, and which are not. Unconscious systems do not perform active inference in a way that 

entails that characteristic features of consciousness are instantiated, whereas conscious systems do. 

Specifying the constraints on generative models that underpin active inference of the sort that entails 

characteristic features of consciousness can lead to a unitary concept of consciousness ([124], as 

opposed to a bundle of feature descriptions; see [125]). In other words, a sufficiently specified sort of 

active inference may describe computational processes that account for clusters of features that are 

characteristic for consciousness – and thereby show why these features cluster together (cf. the natural 

kind approach sketched in [126], p. 7). 

15. Information Geometry and Altered States of Consciousness 

To recap, the information geometry above—and attending free energy principle—rest upon a 

separation of external from internal states by blanket states. This move is crucial for elaborating a 

physics of sentience, in which physical dynamics entail probabilistic beliefs about something. In this 

sense, it takes us beyond existing formalisms in the physical and philosophical sciences—revealing 

some key issues. For example, quantum treatments generally rely upon some specification of a 

Schrödinger potential. But where did this potential come from? Similarly, for statistical 

thermodynamics, where did the ‘heat bath’ (i.e., thermal reservoir) come from and what contains the 

heat bath? In short, there would be no quantum or statistical mechanics in the absence of Markov 

blankets (i.e., Schrödinger potentials and heat baths). The same questions can be posed to things like 

integrated information theory: what is this information about, in the absence of a Markovian (belief-

based) information geometry? What principles explain the emergence and maintenance of partitions 

induced by complexes?  
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The point here is that a Markovian monism (or information geometry) necessarily requires some 

notion of duality or conjugacy, here afforded by the Markov blanket. On this reading of self-

evidencing to nonequilibrium steady state, some pressing questions arise. For example, what would 

happen if internal and external states were statistically sequestered. In other words, is there a sentient 

physics for isolated systems, such as those considered in statistical mechanics. From a neurobiological 

perspective, this speaks to altered states of consciousness that ensue with physiological or 

pharmacological quenching of blanket states. There are many examples that we could pursue here; 

including states of consciousness associated with psychedelic and psychomimetic drugs, or, indeed, 

the false inference associated with psychopathology (e.g., hallucinations and delusions). However, 

we will focus on a canonical example; namely, sleep and dreaming. So, what does sleep physiology 

tell us about conscious or unconscious inference? 

If, for simplicity, we assume that the state of sleep corresponds to a sequestering of internal states 

from blanket states, we have an interesting preparation of a neuronal system that is temporarily—

and repeatedly—isolated from the sensorium. This simplification is easily substantiated by many 

neurophysiological and neurochemical aspects of sleep physiology [127]. For us, the key question is: 

what happens to the Markovian information geometry and Bayesian mechanics of the internal 

(neuronal) states? At first glance, the notion of self-evidencing as an explanation for internal 

dynamics simply goes away. This is because the Lyapunov or potential function driving dynamics 

ceases to exist in the absence of blanket states (technically, the gradients that underwrite gradient 

flows disappear). However, at nonequilibrium steady-state, periods of disconnection from blanket 

states must themselves be transient and repetitive; i.e., be part of the itinerant dynamics that have a 

pullback attractor. This means Bayesian mechanics must still apply, even during the suspension of 

any coupling with blanket states. We will consider a physiological case (of sleep) in which in 

autonomous dynamics are still in play. In this setting, the variational free energy gradients are driven 

by the part of free energy that does not depend upon blanket states. This part is the complexity term 

of equation (5), where removing blanket states discloses a description of complexity (i.e., 

redundancy) resolving internal dynamics: 

( ) ( ) ( )
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In other words, neuronal dynamics during sleep will appear to minimise the complexity of the 

generative model (i.e., minimise the divergence between the posterior beliefs and prior beliefs – in 

the absence of sensory evidence). This is precisely the argument put forward in statistics for 

optimising models in the absence of new statistical data – by removing redundant model parameters 

[128]. In neurophysiology, this is the argument that we have made previously to explain the very 

existence of sleep phenomenology—and in particular, the role of dreaming [129,130,131]. In short, 

physiological states of altered consciousness, such as sleep, may offer an important empirical handle 

on theoretical notions—notions that arise from the variational principles of sentience. 

In summary, an extrinsic information geometry can exist in the (temporary) absence of blanket 

states, in virtue of prior beliefs held by internal states. These prior beliefs underwrite proto-

consciousness [127] and are necessary to generate virtual or fictive realities [132] in states such as 

dreaming [129,130,131]. There are many fascinating issues here; for example, the complexity term of 

the free energy functional above provides a compelling metaphor for the housekeeping that we may 

enjoy during sleep [71,133]. This complexity minimisation itself has formal links with both machine 

learning [128] and universal computation [88,134,135]—and physiology in the form of synaptic 

homoeostasis [133,136]. 

16. Conclusions 

In conclusion, we have rehearsed some of the cornerstones of statistical physics and information 

theory to show how the very existence of things (i.e., Markov blankets) necessarily induces an 
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information geometry with two aspects. First, the dynamics of physical (internal) states of any 

sentient particle or creature is equipped with an information geometry, in terms of time dependent 

changes in probability distributions over internal states. We have called this an intrinsic information 

geometry. At the same time, there is a conjugate information geometry, which pertains to probability 

densities over external states parameterised by internal states. We have called this an extrinsic 

information geometry (because it is predicated upon probabilistic beliefs about external states). 

Crucially, the two are formally and fundamentally linked – in that the dynamics of internal states can 

always be expressed as a gradient flow on a variational free energy functional of belief 

(protophenomenal) states. This construction is entirely consistent with forces cast in terms of 

stochastic thermodynamics, with the appropriate constant of proportionality (i.e., Boltzmann's 

constant and the temperature).  

Second, we have considered the time it takes for a particle or creature to return to its attracting 

manifold (i.e., nonequilibrium steady state) from an initial state. When treated in the form of a path 

integral or fluctuation theorem, this temporal aspect may distinguish among different kinds of 

creatures; depending on how deeply their generative model (entailed by internal states) considers 

the future; c.f., counterfactual depth [111,137]. This is functionally equivalent to the temporal depth 

or extent of policies; namely, courses of action, and internally consistent with the notion of planning 

as inference [85,87,138]. 

Another technical formulation of information-processing – that is closely related to information 

geometry – is the use of gauge theories (e.g., the celebrated theory of general relativity). Our own 

work in this area [139] focused on gauge theories associated with information geometry and the 

Fisher information metric. Recall that the Fisher information metric that equips the belief space or 

statistical manifold (here, afforded by internal states) with a geometry has a number of revealing 

interpretations. First, the Fisher information metric is simply the curvature of the variational free 

energy as one moves on the internal (statistical) manifold. This is the same as the conditional precision 

or confidence placed in beliefs about external states. From a psychological perspective, this curvature 

or precision plays a key role in predictive processing (i.e., Bayesian brain) accounts of attentional 

selection and, a particularly important role in interoceptive inference [67,68,140,76,141]. We 

emphasise this seamless connection from gauge theories—through information geometry and 

variational inference—to precision for a special reason. The central role of precision and confidence 

in mediating consciousness is exactly the endpoint of the phenomenological and neuropsychological 

analysis of conscious processing and selfhood offered by Mark Solms [107]. Furthermore, the ‘paper 

trail’ from gauge theory to attention endorses pre-theoretical notions about their intimate relationship 

[142,143]. One could develop this story even further, in terms of the predictive processing of precision 

per se – and how this may underwrite mental action and a sense of agency [111,140]. 

In terms of the philosophy of science, perhaps the most tenable way of treating a dual aspect 

information geometry is under structural realism. We mean this in the sense that the mathematical 

and geometric form (i.e., structure)—afforded by the mathematical analysis above—allows one to say 

something about the relationship between (probabilistic) beliefs and the (statistical) physics of 

internal states that ‘hold’ or ‘represent’ those beliefs. Structural realism takes the pressure off any 

strong ontological commitments to the mapping between information structures and their content. 

However, this information structure implies a lawful dependency of probabilistic beliefs (about 

external states) and parameterised probability distributions (over internal states), in the following 

sense. Any movement on the internal statistical manifold will necessarily be accompanied by a 

movement in belief space, as measured by the information length or distance between the beliefs that 

are parameterised by expected internal states. Furthermore, because these internal states lie upon a 

statistical manifold of conditional expectations, they must play the role of thermodynamic variables. 

It follows that belief updating and statistical thermodynamics both supervene on the same internal 

manifold. Note, the claim here is that physics (i.e., statistical thermodynamics) supervenes on the 

same statistical manifold as belief updating. This supervenience—on the same statistical manifold—

from which both information geometries inherit their structure could be read as the philosophical 

formulation of the mathematical conjugacy implied by intrinsic and extrinsic information geometries. 
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In terms of the ontological commitments beyond this structural (realism) argument, any claims 

would have to be argued much more carefully. It is tenable to associate physics (in the sense of 

quantum, statistical and classical) mechanics with the intrinsic information geometry. Indeed, this is 

common parlance in statistical physics [62,64,144]. The more delicate issues arise in terms of 

commitments to—or interpretation of—the second (extrinsic) sort of information geometry that 

underwrites Bayesian mechanics. One can avoid any strong ontological commitments here and 

simply note that should there be any philosophical sentience (i.e., ‘qualia’) in play, they are more 

likely to be an attribute of belief updating – and therefore part of Bayesian mechanics. We have 

approached this issue by suggesting Markovian monism entails a gradual difference between non-

conscious and conscious entities, and—in this sense—consciousness is a vague concept. 
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Glossary of Terms and Expressions 

Expression Description Units 

Variables   

[ ] { ( ) : (0, )}x x t t    Trajectory or path through state space a.u. (m) 

( )   Random fluctuations a.u. (m) 

{ , , , }x s a X    
Markovian partition into external, sensory, 

active, and internal states 
a.u. (m) 

dx
dtx   Time derivative (Newton notation) m/s 

{ , }a A    Autonomous states a.u. (m) 

{ , }b s a B   Blanket states a.u. (m) 

{ , }b P    Particular states a.u. (m) 

E  External states a.u. (m) 

m Bk T   
Amplitude (i.e., half the variance) of random 

fluctuations 
J·s/kg 

Q  Rate of solenoidal flow J·s/kg 

1

Bm k T    Mobility coefficient s/kg 

T  Temperature 
K 

(Kelvin) 

2: j i
ijd d g d d      Information length nats 

: ( ) 0d   τ τ  Critical time s 

ij i j
g E

 

  
    

 Fisher (information metric) tensor a.u. 

Functions, functionals and potentials   

( )f x  

The expected flow of states from any point in 

state space. This is the expected temporal 

derivative of x, averaging over random 

fluctuations in the motion of states. 

 

[ ] [ ] ( )pE x E x xp x dx    Expectation or average  

( ) : Pr[ ] ( )
A

p x X A p x dx     
Probability density function parameterised by 

sufficient statistics  
 
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( )q   
Variational density – an (approximate posterior) 

density over external states that is 

parameterised by internal states 

 

( [ ]) ( [ ])x x    
Action: the surprisal of a path, i.e., the path 

integral of the Lagrangian 
 

( ) ( ) lnBU k T Z     Thermodynamic potential 
J or kg 

m2/s2 

( ) ( )F     
Variational free energy free energy—an upper 

bound on the surprisal of particular states 
nats 

0( [ ]) ( [ ] | )G   τ τ  

Expected free energy free energy—an upper 

bound on the (classical) action of an 

autonomous path 

nats 

Operators   

1 2

( ) , ,x x
x x x

   
     

   
  

Differential or gradient operator (on a scalar 

field) 
 

2

2
( )xx x

x

 
  


 Curvature operator (on a scalar field)  

Entropies and potentials   

( ) ln ( )x p x    Surprisal or self-information nats 

[ ( ) || ( )] [ln ( ) ln ( )]qD q x p x E q x p x   Relative entropy or Kullback–Leibler divergence nats 

(arbitrary units (a.u.), e.g., metres (m), radians (rad), etc.). 

References 

1. Friston, K. A free energy principle for a particular physics. arXiv 2019, arXiv:1906.10184. 

2. Pearl, J. Probabilistic Reasoning In Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San 

Fransisco, CA, USA, 1988. 

3. Parr, T.; Da Costa, L.; Friston, K. Markov blankets, information geometry and stochastic thermodynamics. 

Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190159, doi:10.1098/rsta.2019.0159. 

4. Kirchhoff, M.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The Markov blankets of life: Autonomy, active 

inference and the free energy principle. J. R. Soc. Interface 2018, 15, doi:10.1098/rsif.2017.0792. 

5. Palacios, E.R.; Razi, A.; Parr, T.; Kirchhoff, M.; Friston, K. Biological Self-organisation and Markov blankets. 

bioRxiv 2017, bioRxiv:10.1101/227181. 

6. Clark, A. How to Knit Your Own Markov Blanket. In Philosophy and Predictive Processing; Metzinger, T.K., 

Wiese, W., Eds.; MIND Group: Frankfurt, Germany, 2017. 

7. Friston, K.J.; Kahan, J.; Razi, A.; Stephan, K.E.; Sporns, O. On nodes and modes in resting state fMRI. 

Neuroimage 2014, 99, 533–547, doi:10.1016/j.neuroimage.2014.05.056. 

8. Pellet, J.P.; Elisseeff, A. Using Markov blankets for causal structure learning. J. Mach. Learn. Res. 2008, 9, 

1295–1342. 

9. Friston, K. Life as we know it. J. R. Soc. Interface 2013, 10, 20130475. 

10. Sekimoto, K. Langevin Equation and Thermodynamics. Prog. Theor. Phys. Suppl. 1998, 130, 17–27, 

doi:10.1143/PTPS.130.17. 

11. Ao, P. Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics. Commun. Theor. 

Phys. 2008, 49, 1073–1090. 

12. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. Phys. 

Soc. 2012, 75, 126001, doi:10.1088/0034-4885/75/12/126001. 

13. Crauel, H.; Flandoli, F. Attractors for Random Dynamical-Systems. Probab. Theory Rel. 1994, 100, 365–393, 

doi:Doi 10.1007/Bf01193705. 

14. Birkhoff, G.D. Dynamical Systems; American Mathematical Society: New York, NY, USA, 1927. 

15. Tribus, M. Thermodynamics and Thermostatics: An Introduction to Energy, Information and States of Matter, with 

Engineering Applications; D. Van Nostrand Company Inc: New York, NY, USA, 1961. 

16. Jaynes, E.T. Information Theory and Statistical Mechanics. Phys. Rev. Ser. II 1957, 106, 620–630. 

17. Jones, D.S. Elementary Information Theory; Clarendon Press: Oxford, UK, 1979. 



Entropy 2020, 22, 516 27 of 31 

18. MacKay, D.J.C. Information Theory, Inference and Learning Algorithms; Cambridge University Press: 

Cambridge, UK, 2003. 

19. Kerr, W.C.; Graham, A.J. Generalized phase space version of Langevin equations and associated Fokker-

Planck equations. Eur. Phys. J. B 2000, 15, 305–311, doi:10.1007/s100510051129. 

20. Frank, T.D.; Beek, P.J.; Friedrich, R. Fokker-Planck perspective on stochastic delay systems: Exact solutions 

and data analysis of biological systems. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2003, 68, 021912. 

21. Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications. Springer Series in Synergetics; 

Springer: Berlin, Germany, 2004. 

22. Tomé, T. Entropy Production in Nonequilibrium Systems Described by a Fokker-Planck Equation. Braz. J. 

Phys. 2006, 36, 1285–1289. 

23. Kim, E.-j. Investigating Information Geometry in Classical and Quantum Systems through Information 

Length. Entropy 2018, 20, 574, doi:10.3390/e20080574. 

24. Yuan, R.; Ma, Y.; Yuan, B.; Ping, A. Bridging Engineering and Physics: Lyapunov Function as Potential 

Function. arXiv 2010, arXiv:1012.2721v1. 

25. Friston, K.; Ao, P. Free energy, value, and attractors. Comput. Math. Methods Med. 2012, 2012, 937860, 

doi:10.1155/2012/937860. 

26. Sutton, R.S.; Precup, D.; Singh, S. Between MDPs and semi-MDPs: A framework for temporal abstraction 

in reinforcement learning. Artif. Intell. 1999, 112, 181–211, doi:10.1016/s0004-3702(99)00052-1. 

27. Kauder, E. Genesis of the Marginal Utility Theory: From Aristotle to the End of the Eighteenth Century. 

Econ. J. 1953, 63, 638–650. 

28. Fleming, W.H.; Sheu, S.J. Risk-sensitive control and an optimal investment model II. Ann. Appl. Probab. 

2002, 12, 730–767, doi:10.1214/aoap/1026915623. 

29. Haken, H., Synergetics: An introduction. Non-equilibrium phase transition and self-selforganisation in physics, 

chemistry and biology. 1983, Berlin: Springer Verlag. 

30. Sutton, R.S. and A.G. Barto, Reinforcement Learning: An Introduction. 1998, Cambridge, MA: MIT Press. 

31. Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 2002, 

5, 1226–1235. 

32. Kappen, H.J. Path integrals and symmetry breaking for optimal control theory. J. Stat. Mech. Theory Exp. 

2005, 11, 11011. 

33. Barlow, H. Possible principles underlying the transformations of sensory messages. In Sensory 

Communication; Rosenblith, W., Ed.; MIT Press: Cambridge, MA, USA, 1961; pp. 217–234. 

34. Tschacher, W.; Haken, H. Intentionality in non-equilibrium systems? The functional aspects of self-

organised pattern formation. New Ideas Psychol. 2007, 25, 1–15. 

35. Bernard, C., Lectures on the phenomena common to animals and plants. 1974, Springfield, IL: Charles C Thomas. 

36. Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795, 

doi:10.1080/01621459.1995.10476572. 

37. Hohwy, J. The Self-Evidencing Brain. Noûs 2016, 50, 259–285, doi:10.1111/nous.12. 

38. Friston, K., L. Da Costa, and T. Parr, Some interesting observations on the free energy principle. arXiv e-prints, 

2020: p. arXiv:2002.04501. 

39. Bossaerts, P.; Murawski, C. From behavioural economics to neuroeconomics to decision neuroscience: The 

ascent of biology in research on human decision making. Curr. Opin. Behav. Sci. 2015, 5, 37–42. 

40. Linsker, R. Perceptual neural organization: Some approaches based on network models and information 

theory. Annu. Rev. Neurosci. 1990, 13, 257–281. 

41. Optican, L.; Richmond, B.J. Temporal encoding of two-dimensional patterns by single units in primate 

inferior cortex. II Information theoretic analysis. J. Neurophysiol. 1987, 57, 132–146. 

42. Friston, K.; Kilner, J.; Harrison, L. A free energy principle for the brain. J. Physiol. 2006, 100, 70–87, 

doi:10.1016/j.jphysparis.2006.10.001. 

43. Nicolis, G.; Prigogine, I. Self-Organization in Non-Equilibrium Systems; John Wiley: New York, NY, USA, 

1977. 

44. Kauffman, S. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: 

Oxford, UK, 1993. 

45. Conant, R.C. and W.R. Ashby, Every Good Regulator of a system must be a model of that system. Int. J. Systems 

Sci., 1970. 1(2): p. 89-97. 

46. Ashby, W.R., Principles of the self-organizing dynamic system. J Gen Psychology., 1947. 37: p. 125-8. 



Entropy 2020, 22, 516 28 of 31 

47. MacKay, D.J. Free-energy minimisation algorithm for decoding and cryptoanalysis. Electron. Lett. 1995, 31, 

445–447. 

48. Helmholtz, H. Concerning the perceptions in general. In Treatise on Physiological Optics, Dover: New York, 

NY, USA, 1866/1962. 

49. Gregory, R.L. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond B 1980, 290, 181–197. 

50. Dayan, P.; Hinton, G.E.; Neal, R.M.; Zemel, R.S. The Helmholtz machine. Neural Comput. 1995, 7, 889–904. 

51. Beal, M.J. Variational Algorithms for Approximate Bayesian Inference. Ph.D. Thesis, University College 

London, London, UK, 2003. 

52. Dauwels, J. On Variational Message Passing on Factor Graphs. In Proceedings of the 2007 IEEE 

International Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 2546–2550. 

53. Suh, S.; Chae, D.H.; Kang, H.G.; Choi, S. Echo-State Conditional Variational Autoencoder for Anomaly 

Detection. In Proceedings of the 2016 International Joint Conference on Neural Networks, Vancouver, BC, 

Canada, 24–29 July 2016; pp. 1015–1022. 

54. Roweis, S.; Ghahramani, Z. A unifying review of linear gaussian models. Neural Comput. 1999, 11, 305–345, 

doi:10.1162/089976699300016674. 

55. Hinton, G.E.; Zemel, R.S. Autoencoders, minimum description length and Helmholtz free energy. In 

Proceedings of the 6th International Conference on Neural Information Processing Systems, Denver, CO, 

USA; 1994, pp. 3–10. 

56. Ikeda, S.; Tanaka, T.; Amari, S.-I. Stochastic reasoning, free energy, and information geometry. Neural 

Comput. 2004, 16, 1779–1810, doi:10.1162/0899766041336477. 

57. Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends 

Neurosci. 2004, 27, 712–719. 

58. Yedidia, J.S., W.T. Freeman, and Y. Weiss, Constructing free-energy approximations and generalized belief 

propagation algorithms. IEEE Transactions on Information Theory, 2005. 51(7): p. 2282-2312. 

59. Amari, S. Natural gradient works efficiently in learning. Neural Comput. 1998, 10, 251–276, 

doi:10.1162/089976698300017746. 

60. Ay, N. Information Geometry on Complexity and Stochastic Interaction. Entropy 2015, 17, 2432. 

61. Caticha, A. The basics of information geometry. AIP Conf. Proc. 2015, 1641, 15–26, doi:10.1063/1.4905960. 

62. Crooks, G.E. Measuring thermodynamic length. Phys. Rev. Lett. 2007, 99, 100602, 

doi:10.1103/PhysRevLett.99.100602. 

63. Herbart, J.F. Lehrbuch zur Psychologie, 2nd ed.; Unzer: Königsberg, Germany, 1834. 

64. Holmes, Z.; Weidt, S.; Jennings, D.; Anders, J.; Mintert, F. Coherent fluctuation relations: From the abstract 

to the concrete. Quantum 2019, 3. p124 

65. Van Gulick, R. Reduction, Emergence and Other Recent Options on the Mind/Body Problem. A Philosophic 

Overview. J. Conscious. Stud. 2001, 8, 1–34. 

66. Hobson, J.A.; Friston, K.J. A Response to Our Theatre Critics. J. Conscious. Stud. 2016, 23, 245–254. 

67. Brown, H.; Adams, R.A.; Parees, I.; Edwards, M.; Friston, K. Active inference, sensory attenuation and 

illusions. Cogn. Process. 2013, 14, 411–427, doi:10.1007/s10339-013-0571-3. 

68. Clark, A. The many faces of precision. Front Psychol. 2013, 4, 270. 

69. Hohwy, J. The Predictive Mind; Oxford University Press: Oxford, UK, 2013. 

70. Seth, A. The cybernetic brain: From interoceptive inference to sensorimotor contingencies. In Open MIND; 

Metzinger, T., Windt, J.M., Eds.; MIND Group: Frankfurt a.M., Germany, 2014. 

71. Hobson, J.A.; Friston, K.J. Waking and dreaming consciousness: Neurobiological and functional 

considerations. Prog. Neurobiol. 2012, 98, 82–98. 

72. Friston, K.; Buzsaki, G. The Functional Anatomy of Time: What and When in the Brain. Trends Cogn. Sci. 

2016, 20, 500–511, doi:10.1016/j.tics.2016.05.001. 

73. Adams, R.A.; Shipp, S.; Friston, K.J. Predictions not commands: Active inference in the motor system. Brain 

Struct. Funct. 2013, 218, 611–643. 

74. Ungerleider, L.G.; Haxby, J.V. ‘What’ and ‘where’ in the human brain. Curr. Opin. Neurobiol. 1994, 4, 157–

165, doi:10.1016/0959-4388(94)90066-3. 

75. Shigeno, S.; Andrews, P.L.R.; Ponte, G.; Fiorito, G. Cephalopod Brains: An Overview of Current Knowledge 

to Facilitate Comparison With Vertebrates. Front. Physiol. 2018, 9, 952, doi:10.3389/fphys.2018.00952. 

76. Seth, A.K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 2013, 17, 565–573, 

doi:10.1016/j.tics.2013.09.007. 



Entropy 2020, 22, 516 29 of 31 

77. Arnold, L. Random Dynamical Systems (Springer Monographs in Mathematics); Springer: Berlin/Heidelberg, 

Germany, 2003. 

78. Kleeman, R. A Path Integral Formalism for Non-equilibrium Hamiltonian Statistical Systems. J. Stat. Phys. 

2014, 158, 1271–1297, doi:10.1007/s10955-014-1149-x. 

79. Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. 

80. Pezzulo, G.; Rigoli, F.; Friston, K. Active Inference, homeostatic regulation and adaptive behavioural 

control. Prog. Neurobiol. 2015, 134, 17–35, doi:10.1016/j.pneurobio.2015.09.001. 

81. Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, 

Cognition and Health; John Wiley & Sons: Hoboken, NJ, USA,1988; pp. 629–649. 

82. Balleine, B.W.; Dickinson, A. Goal-directed instrumental action: Contingency and incentive learning and 

their cortical substrates. Neuropharmacology 1998, 37, 407–419. 

83. Ramsay, D.S.; Woods, S.C. Clarifying the Roles of Homeostasis and Allostasis in Physiological Regulation. 

Psychol. Rev. 2014, 121, 225–247, doi:10.1037/a0035942. 

84. Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.E.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, 

S.M.; Haker, H.; Seth, A.K.; et al. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-

Induced Fatigue and Depression. Front. Hum. Neurosci. 2016, 10, 550, doi:10.3389/fnhum.2016.00550. 

85. Attias, H. Planning by Probabilistic Inference. In Proceedings of the 9th International Workshop on 

Artificial Intelligence and Statistics, Key West, FL, USA, 3–6 January 2003. 

86. Toussaint, M.; Storkey, A. Probabilistic inference for solving discrete and continuous state Markov Decision 

Processes. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 

25–29 June 2006; pp. 945–952. 

87. Botvinick, M.; Toussaint, M. Planning as inference. Trends Cogn Sci. 2012, 16, 485–488. 

88. Schmidhuber, J. Curious model-building control systems. Proc. Int. Jt. Conf. Neural Netw. Singap. 1991, 2, 

1458–1463. 

89. Schmidhuber, J. Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010). IEEE Trans. Auton. 

Ment. Dev. 2010, 2, 230–247, doi:10.1109/tamd.2010.2056368. 

90. Sun, Y.; Gomez, F.; Schmidhuber, J. Planning to Be Surprised: Optimal Bayesian Exploration in Dynamic 

Environments. In Proceedings of the Artificial General Intelligence: 4th International Conference, AGI 2011, 

Mountain View, CA, USA, 3–6 August 2011; Schmidhuber, J., Thórisson, K.R., Looks, M., Eds.; Springer: 

Berlin/Heidelberg, Germany, 2011; pp. 41–51. 

91. Gibson, J.J. The theory of affordances. In Perceiving, Acting, and Knowing: Toward an Ecological Psychology; 

Erlbaum: Hillsdale, NJ, USA, 1977; pp. 67–82. 

92. Bruineberg, J.; Rietveld, E. Self-organization, free energy minimization, and optimal grip on a field of 

affordances. Front. Hum. Neurosci. 2014, 8, 599, doi:10.3389/fnhum.2014.00599. 

93. Parr, T.; Friston, K.J. Working memory, attention, and salience in active inference. Sci. Rep. 2017, 7, 14678, 

doi:10.1038/s41598-017-15249-0. 

94. Friston, K.; Mattout, J.; Kilner, J. Action understanding and active inference. Biol. Cybern. 2011, 104, 137–

160. 

95. Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. 

96. Kilner, J.M.; Friston, K.J.; Frith, C.D. Predictive coding: An account of the mirror neuron system. Cogn. 

Process. 2007, 8, 159–166, doi:10.1007/s10339-007-0170-2. 

97. Gallese, V.; Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 1998, 

2, 493–501, doi:10.1016/s1364-6613(98)01262-5. 

98. Friston, K.; Adams, R.A.; Perrinet, L.; Breakspear, M. Perceptions as hypotheses: Saccades as experiments. 

Front. Psychol. 2012, 3, 151. 

99. Dennett, D.C. True believers: The intentional strategy and why it works. In Scientific Explanation: Papers 

Based on Herbert Spencer Lectures Given in the University of Oxford; Heath, A.F., Ed.; Clarendon Press: Oxford, 

UK, 1981; pp. 150–167. 

100. Chalmers, D.J. Panpsychism and panprotopsychism. In Consciousness in the Physical World: Perspectives on 

Russellian Monism; Oxford University Press: New York, NY, USA, 2015; pp. 246–276. 

101. Stubenberg, L. Neutral monism. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics 

Research Lab, Stanford University: Stanford, CA, USA, 2018. 

102. Howell, R. The Russellian Monist’s Problems with Mental Causation. Philos. Q. 2015, 65, 22–39, 

doi:10.1093/pq/pqu058. 



Entropy 2020, 22, 516 30 of 31 

103. Kirchhoff, M.D.; Froese, T. Where There is Life There is Mind: In Support of a Strong Life-Mind Continuity 

Thesis. Entropy 2017, 19, 169, doi:10.3390/e19040169. 

104. Skrbina, D. Minds, objects, and relations. Toward a dual-aspect ontology. In Mind that Abides. Panpsychism 

in the New Millenium; Skrbina, D., Ed.; John Benjamins Publishing Company: Amsterdam, The Netherlands; 

Philadelphia, PA, USA, 2009; pp. 361–397. 

105. Velmans, M. Reflexive Monism. J. Conscious. Stud. 2008, 15, 5–50. 

106. Benovsky, J. Dual-Aspect Monism. Philos. Investig. 2016, 39, 335–352, doi:10.1111/phin.12122. 

107. Solms, M.; Friston, K. How and Why Consciousness Arises. Some Considerations from Physics and 

Physiology. J. Conscious. Stud. 2018, 25, 202–238. 

108. Woodward, J. Mental Causation and Neural Mechanisms. In Being Reduced: New Essays on Reduction, 

Explanation, and Causation; Hohwy, J., Kallestrup, J., Eds.; Oxford University Press, Oxford, UK: 2008. 

109. Papineau, D. Causation is Macroscopic but Not Irreducible. In Mental Causation and Ontology; Gibb, S.C., 

Lowe, E.J., Ingthorsson, R.D., Eds.; Oxford University Press, Oxford, UK: 2013; pp. 126–151. 

110. Mansell, W. Control of perception should be operationalized as a fundamental property of the nervous 

system. Top. Cogn. Sci. 2011, 3, 257–261, doi:10.1111/j.1756-8765.2011.01140.x. 

111. Seth, A.K. Inference to the Best Prediction. In Open MIND; Metzinger, T.K., Windt, J.M., Eds.; MIND Group: 

Frankfurt, Germany, 2015. 

112. Chalmers, D.J. The Meta-Problem of Consciousness. J. Conscious. Stud. 2018, 25, 6–61. 

113. Clark, A.; Friston, K.; Wilkinson, S. Bayesing Qualia. Consciousness as Inference, Not Raw Datum. J. 

Conscious. Stud. 2019, 26, 19–33. 

114. Schweizer, P. Triviality Arguments Reconsidered. Minds Mach. 2019, 29, 287–308, doi:10.1007/s11023-019-

09501-x. 

115. Fodor, J. The mind-body problem. Sci. Am. 1981, 244, 114–123. 

116. Piccinini, G. Computation without Representation. Philos. Stud. 2006, 137, 205–241, doi:10.1007/s11098-005-

5385-4. 

117. Gładziejewski, P. Predictive coding and representationalism. Synthese 2016, 193, 559–582, 

doi:10.1007/s11229-015-0762-9. 

118. Tononi, G. An information integration theory of consciousness. BMC Neurosci. 2004, 5, 42, doi:10.1186/1471-

2202-5-42. 

119. Tononi, G. Consciousness as Integrated Information: A Provisional Manifesto. Biol. Bull. 2008, 215, 216–242, 

doi:10.2307/25470707. 

120. Balduzzi, D.; Tononi, G. Qualia: The Geometry of Integrated Information. PLoS Comput. Biol. 2009, 5, 1–24, 

doi:10.1371/journal.pcbi.1000462. 

121. van Leeuwen, C. Perceptual-learning systems as conservative structures: Is economy an attractor? Psychol. 

Res. 1990, 52, 145–152. 

122. Tervo, D.G.; Tenenbaum, J.B.; Gershman, S.J. Toward the neural implementation of structure learning. 

Curr. Opin. Neurobiol. 2016, 37, 99–105, doi:10.1016/j.conb.2016.01.014. 

123. Tononi, G.; Boly, M.; Massimini, M.; Koch, C. Integrated information theory: From consciousness to its 

physical substrate. Nat. Rev. Neurosci. 2016, 17, 450–461, doi:10.1038/nrn.2016.44. 

124. Wiese, W. Toward a Mature Science of Consciousness. Front. Psychol. 2018, 9, 693, 

doi:10.3389/fpsyg.2018.00693. 

125. Wiese, W. Experienced Wholeness. Integrating Insights from Gestalt Theory, Cognitive Neuroscience, and Predictive 

Processing; MIT Press: Cambridge, MA, USA, 2018. 

126. Bayne, T. On the axiomatic foundations of the integrated information theory of consciousness. Neurosci. 

Conscious. 2018, 2018, niy007, doi:10.1093/nc/niy007. 

127. Hobson, J.A. REM sleep and dreaming: Towards a theory of protoconsciousness. Nat. Rev. Neurosci. 2009, 

10, 803–813. 

128. Hinton, G.E.; Dayan, P.; Frey, B.J.; Neal, R.M. The “wake-sleep” algorithm for unsupervised neural 

networks. Science 1995, 268, 1158–1161. 

129. Hobson, J.A. Dreaming as Delirium; The MIT Press: Cambridge, MA, USA, 1999. 

130. Hobson, J.A.; Friston, K.J. Consciousness, Dreams, and Inference The Cartesian Theatre Revisited. J. 

Conscious. Stud. 2014, 21, 6–32. 

131. Friston, K.J.; Lin, M.; Frith, C.D.; Pezzulo, G.; Hobson, J.A.; Ondobaka, S. Active Inference, Curiosity and 

Insight. Neural Comput. 2017, 29, 2633–2683, doi:10.1162/neco_a_00999. 



Entropy 2020, 22, 516 31 of 31 

132. Metzinger, T. Being No One: The Self-Model Theory of Subjectivity; MIT Press: Cambridge, MA, USA, 2003. 

133. Tononi, G.; Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 2006, 10, 49–62. 

134. Hochreiter, S.; Schmidhuber, J. Flat minima. Neural Comput. 1997, 9, 1–42. 

135. Tononi, G. An information integration theory of consciousness. BMC Neurosci. 2004, 5, 42. 

136. Gilestro, G.F.; Tononi, G.; Cirelli, C. Widespread changes in synaptic markers as a function of sleep and 

wakefulness in Drosophila. Science 2009, 324, 109–112. 

137. Palmer, C.J.; Seth, A.K.; Hohwy, J. The felt presence of other minds: Predictive processing, counterfactual 

predictions, and mentalising in autism. Conscious. Cogn. 2015, 36, 376–389. doi:10.1016/j.concog.2015.04.007. 

138. Kaplan, R.; Friston, K.J. Planning and navigation as active inference. Biol. Cybern. 2018, 112, 323–343 , 

doi:10.1007/s00422-018-0753-2. 

139. Sengupta, B.; Tozzi, A.; Cooray, G.K.; Douglas, P.K.; Friston, K.J. Towards a Neuronal Gauge Theory. PLoS 

Biol. 2016, 14, e1002400, doi:10.1371/journal.pbio.1002400. 

140. Limanowski, J.; Friston, K. ‘Seeing the Dark’: Grounding Phenomenal Transparency and Opacity in 

Precision Estimation for Active Inference. Front. Psychol. 2018, 9, 643, doi:10.3389/fpsyg.2018.00643. 

141. Fotopoulou, A.; Tsakiris, M. Mentalizing homeostasis: The social origins of interoceptive inference—

Replies to Commentaries. Neuropsychoanalysis 2017, 19, 71–76, doi:10.1080/15294145.2017.1307667. 

142. Dehaene, S.; Naccache, L. Towards a cognitive neuroscience of consciousness: Basic evidence and a 

workspace framework. Cognition 2001, 79, 1–37, doi:10.1016/s0010-0277(00)00123-2. 

143. Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural 

correlates. Brain 2006, 129, 564–583, doi:10.1093/brain/awl004. 

144. Still, S.; Sivak, D.A.; Bell, A.J.; Crooks, G.E. Thermodynamics of prediction. Phys. Rev. Lett. 2012, 109, 120604, 

doi:10.1103/PhysRevLett.109.120604. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


