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Abstract: Measurement and feedback allows for an external agent to extract work from a system
in contact with a single thermal bath. The maximum amount of work that can be extracted in a
single measurement and the corresponding feedback loop is given by the information that is acquired
via the measurement, a result that manifests the close relation between information theory and
stochastic thermodynamics. In this paper, we show how to reversibly confine a Brownian particle in
an optical tweezer potential and then extract the corresponding increase of the free energy as work.
By repeatedly tracking the position of the particle and modifying the potential accordingly, we can
extract work optimally, even with a high degree of inaccuracy in the measurements.

Keywords: confinement; information theory; Brownian particle; stochastic thermodynamics

1. Introduction

Modern techniques have allowed for the manipulation of objects at the microscale.
A paradigmatic example are colloidal particles trapped by optical tweezers. At this scale—
the scale of Brownian motion—not only the motion of particles, but the energy fluxes, work,
or heat, become stochastic. Nevertheless, the combination of manipulation and imaging
or other detection techniques allow for some degree of control [1]. For instance, in driven
systems, the external driving may be modified based on outcomes of measurements, as in
feedback control, leading, for example, to (efficient) confinement in small region of space [2]
or to the reduction of thermal fluctuations, i.e., cooling, a technique that is implemented in
both classical or quantum systems [3,4]. Another application of feedback is an increase of
the performance of certain motors operating at the microscale, such as Brownian ratchets
or micro-motors [5–9].

Feedback exploits the information that is acquired through measurement as a ther-
modynamic resource. It is now known that the work needed to perform an isothermal
feedback process, for a system in contact with an environment at constant temperature T,
is bounded by the following extension of the second law of thermodynamics [9,10]:

W ≥ ∆F− kTI, (1)

where ∆F is the free energy difference between the final and initial states of the process,
k the Boltzmann’s constant, and I is the amount of information that is gained in the
measurement, quantified by the mutual information from information theory. Information
is always positive (or zero) and, thus, in a cycle (∆F = 0) it is possible to extract work
(W < 0) from a single thermal bath with measurement and feedback.

Equation (1) also shows that a given level of accuracy in the measurement, quantified
by the mutual information, limits the amount of work that can be extracted in one feedback
operation. Some especially tailored protocols saturate that bound (1) and they may be used
to convert all of the information acquired into useful work. These are processes that are
reversible under feedback [11–13]. In this article, we first review these protocols and show
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how to use their special properties in order to extract energy with the same efficiency and
even power when operating with higher measurement errors. In order to fix ideas, we use
a well known model that we proceed to describe in the following section.

2. Model Description and Cycle Operation

As our system, we consider an overdamped Brownian particle that is in contact with
a thermal bath, which acts as its environment. The particle feels a harmonic potential.
This is a well proven theoretical model for an experimental system that was formed by
a colloidal particle in water at constant temperature and trapped by optical tweezers.
The potential Vκ,x0 = 1

2 κ(x − x0)
2 has tunable parameters x0, the position of the center

of the trap, and κ, the stiffness. As the Brownian particle position fluctuates, the energy
transfers and thermodynamic potentials become also fluctuating; in fact, they are stochas-
tic variables. The framework to analyze energetics for these fluctuating systems in the
mesoscale is stochastic thermodynamics [14–16] .We review the main concepts in the follow-
ing. The Brownian particle may, due to a collision with the solvent, absorb some energy and
climb the potential well. Or it may transfer energy back to the thermal bath via viscosity
and go down in the potential. These energy transfers with the thermal bath constitute heat
Q̂ and, and since this energy can be stored as potential energy, this is the internal energy Ê
of the particle. In our system then the internal energy is Ê = Vκ,x0 = 1

2 κ(x− x0)
2 [17–20].

We will use â to denote a stochastic variable and the regular letter a for the average over
realizations, i.e., E = 〈Ê〉. Another form of energy transfer is work Ŵ: an external agent
may modify the harmonic potential (changing the parameters) and increase or decrease
the potential energy of the particle. If the internal energy depends on a parameter λ that is
modified from λ0 to λ f then, formally, the definition of work is:

Ŵ =
∫ λ f

λ0

∂E
∂λ

dλ (2)

This is best seen with an example. For instance, consider a fast increase of the stiffness
of the potential from ki to k f . If the increase is very fast, so that the particle does not modify
its position x during the time, the stiffness is changing, the energy of the particle increases
by an amount ∆V = 1

2 (x− x0)
2(k f − ki). This energy is supplied by the agent controlling

the potential who has then performed a work Ŵ = ∆V > 0. Consequently, the particle is in
a tighter parabola and the equilibrium dispersion of the position of the particle decreases,
so that this is commonly referred to as a compression. If the stiffness is decreased, work is
exerted on the agent by the system and, since the distribution of particle positions will
eventually widen, this corresponds to an expansion.

With these definitions, energy is conserved and the first law is fulfilled either at the
level of trajectories ∆̂E = Q̂ + Ŵ or as averages E = Q + W [14–20].

In order to extract energy from the thermal bath, we propose the following cyclic
operation in two stages:

1. Confinement of the Brownian particle by (repeated) measuring and feedback
2. Isothermal expansion

The system works as a motor if the work obtained in the isothermal expansion exceeds
the work that is needed for confinement. During a compression, the free energy of the
system increases (due to the entropy decrease). Using reversible feedback confinement [2],
we can minimize the work that is needed for stage 1, which turns out to vanish, and extract
all of the free energy increase of stage 1 as work during stage 2. Let us analyze each stage
in more detail.

2.1. Optimal Confinement

The confinement of a system to a small region of the phase space (at constant tempera-
ture) implies a decrease of entropy of the system. For the entropy of a Brownian particle,
we use the standard choice of Shannon’s entropy, S = −k

∫
ρ(x) log(x)dx, where ρ(x)
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is the probability distribution of the particle position. With this choice, the second law
of thermodynamics is fulfilled on average and the thermodynamic relation F = E− TS
is recovered for a system in contact with a thermal bath. Although, strictly speaking,
this is a generalization of the free energy to non-equilibrium systems, in systems that are
in contact to a thermal bath it plays a similar role as the standard thermodynamic free
energy, and stochastic thermodynamics for our system closely resembles macroscopic
thermodynamics [9].

Let us consider, for simplicity, that the internal energy change between the initial and
final states of the confinement process vanishes (we will see later that this is the case in
our particular system). A reduction of entropy then corresponds to an increase of free
energy ∆F = ∆E− T∆S. This increase in free energy could then be extracted as work in an
isothermal expansion. However, the whole process cannot operate as a motor, as this will
defeat the second law (extracting work from a single thermal bath). Indeed, the second law
states for the confinement

W1 ≥ ∆F1 (w/o. feedback) (3)

and then for the isothermal expansion back to the initial state (∆F2 = −∆F1)

W2 ≥ ∆F2 = −∆F1 (w/o. feedback) (4)

so that Wtotal = W1 + W2 ≥ 0 and the system dissipates energy into the thermal bath.
However, as explained above, when measuring and feeding back to the system, W is

bounded by (1) instead. Thus, the work that is needed for the confinement may be reduced
and the work output of the cyclic process (∆Fcycle = 0) may be negative:

Wtotal ≥ −kTI (5)

Notice that mutual information is always a positive quantity.
Following [2], we propose a reversible feedback confinement that can confine the

particle with W1 = 0 and, as will be shown later (see Equation (13)), without dissipating
heat to the thermal bath, so that the increase in free energy that is produced by the
confinement can later be completely recovered as work during a quasistatic expansion in
stage 2.

For a system that is in contact with a thermal bath, a feedback process is reversible if the
Hamiltonian is modified after the measurement, so that probability of the state of the system
conditioned on the measurement outcome is the Gibbsian state of the new Hamiltonian.
After a measurement, the probability to find a given state changes instantaneously, the new
probability distribution takes into account the information obtained, and ut must be
updated according to Bayesian inference. If the Hamiltonian also changes rapidly and
the Gibbs state of the new Hamiltonian matches the posterior probability distribution,
the system remains at equilibrium and no further evolution of the probability distribution
ensues until a new measurement is taken.

In our model, we take the common assumption of Gaussian measurement errors. If the
particle is located at a position x, then the measurement outcome m is Gaussian distributed
around x and the dispersion σm quantifies the measurement error:

q(m|x) = 1√
2πσ2

m
e−(m−x)2/2σ2

m (6)

After a measurement, the probability distribution of the position of the particle updates
according to Bayes’ theorem from the initial distribution ρ:

ρ′(x|m) =
ρ(x)q(m|x)

π(m)
(7)

where π(m) =
∫

dxq(m|x)ρ(x) is the marginal distribution of the measurement outcome.
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For a Brownian particle in a time-independent potential, the equilibrium distribution
is its corresponding Gibbs distribution:

ρ(x) ∝ e−V(x)/kT (8)

In a harmonic potential, it is a Gaussian, centered in the trap position x0 and with variance
being given by σ2 = kT/κ. It can be shown [7] that, after a measurement, the new
distribution that is computed according to (7) remains Gaussian. If the initial distribution
has mean x̄ and standard deviation σ, after a measurement, then the distribution updates
to a Gaussian with the mean and deviation given by [2]:

x̄′(m) =
σ2

m
σ2 + σ2

m
x̄ +

σ2

σ2 + σ2
m

m (9)

1
σ′2

=
1
σ2 +

1
σ2

m
(10)

We can make the post-measurement distribution an equilibrium distribution by setting
a new center of the trap position x′0 and stiffness κ′, as

κ′ = kT/σ′2 (11)

x′0(m) = x̄′(m) (12)

Notice that κ′ > κ; hence, the particle is more tightly bound or confined after this
change. Additionally, Equation (10) implies σ′ < σ, so that every measurement and
feedback step further reduces the variance of the particle distribution.
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Figure 1. Reduction of variance after measuring. Left: Initial distribution. Histogram of 40,000 random Gaussian numbers
centered in 0 with standard deviation σ = 3.0 (blue bars) and a theoretical Gaussian distribution with the same parameters
(red continuous line). Right: Posterior distribution. Histogram of particle positions with measurement outcomes in a
given interval (0.89, 0.98) (blue bars) and prediction according to Bayes’ theorem (7) (red). Measurement outcomes were
performed with measurement error σm = 3.0. Using σm = 3.0 and σ = 3.0 in (10) gives σ′ = 2.12, which matches the sample
standard deviation of 2.10.

In order to check this reduction of variance in simulation, we have computed the
particle distribution after a measurement. For this, we first generate a large number of
trajectories, starting from an initial equilibrium distribution for a harmonic potential cen-
tered in position x0 = 0 and corresponding dispersion σ = 3.0, as depicted in Figure 1(left).
After some time interval, for each trajectory, we measure its position by generating a
(Gaussian) random measurement outcome m around the actual position x with dispersion
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σm = 3.0 (see the details in Section 5). We can then fix a small interval around a given
measurement of the position (m, m + ∆m) of our choice, for instance (0.89, 0.98), and only
check the realizations that gave a measurement in that interval. The distribution of the
actual positions x of these particular realizations are distributed as in (7). In our case,
a Gaussian with new reduced standard deviation σ′ = 2.12 is given by (10). This can be
seen in Figure 1 (right).

This process of measurement and feedback can be repeated and a new, more con-
fined state could be achieved. Figure 2 (top) shows the confining effect of repeating
this procedure.

In every measurement and feedback step, the trapped Brownian particle stays in
equilibrium with the thermal bath at temperature T. Consequently, the average energy is
not modified by the feedback process. The average internal energy E of a trapped particle in
one dimension is given by the equipartition theorem, as E = kT/2. Because the process is
isothermal, ∆E = 0. On the other hand, always being in equilibrium, there is no relaxation
of the particle distribution and the heat that is transferred from the heat bath vanishes on
average Q = 0. Therefore, according to the first law, the average work done on the system
also vanishes:

∆E1 = Q1 + W1 = 0⇒W1 = −Q1 = 0 (13)

This has been checked in simulations, as shown in Figure 2 (bottom). Details about
work computation during measurement and feedback can be found in Section 5.
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Figure 2. Confinement. Top: particle trajectory (gray line), measurement outcome (red dots) and
trap center position (blue line). Bottom: Cumulative work for different realizations (color lines) and
its average over 200 realizations (thick black line) for confinement in 10 measurement steps. See the
simulation details in Section 5. Initial trap stiffness κ = 0.1 and position x0 = 0. Initial condition is
equilibrium with trap potential to avoid transient due to equilibration. Particle diffusion coefficient
D = 1 and friction γ = 1.
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In general, for other feedback protocols where the stiffness of the trap is suddenly
changed, work is performed, on average [21], as in the simple example described after
Equation (2). The feedback process used here is different (in addition to a sudden increase
of stiffness, trap position is also modified in a precisely combined manner) and it is special
in the sense that average work vanishes. As encoded in Equation (1), this can solely
be achieved by using information regarding the position through measurement in the
feedback (see Equation (9) for the new trap position). To see why this matters, consider
our Brownian particle in a harmonic potential, where the observer happens to know that
the particle is exactly at the bottom of the well. This would allow for this external agent
to increase the stiffness of the potential well with an abrupt change, without performing
work, since the energy of the particle is always zero at the bottom of the well, for any
stiffness. The confining protocol is a refinement of this idea that works for any position of
the particle, by displacing the bottom of the potential well towards the measured particle
position and changing the stiffness in a suitable manner.

Furthermore, one can compute the mutual information that is obtained in the process
of measurement and evaluate the increase in free energy ∆F1 for the confinement stage.
From the definition of mutual information:

I(m, x) =
∫

π(m)q(m|x) log
q(m|x)
π(m)

(14)

When considering that the measurement outcome distribution q(m|x) and the marginal
distribution π(m) are Gaussian with variance σ2

m and σ2 + σ2
m = σ2

mσ2/σ′2, respectively,
the information that is acquired in a measurement is

I(m, x) = −1
2

log
σ′2

σ2 ≥ 0 (15)

Mutual information intuitively measures the decrease in uncertainty of variable x if we
know the value of m, or vice versa [22]. In our case, from (10), if the measurement error σm
is very large then σ′ ≈ σ and we extract almost no information from measuring (I ≈ 0).
Conversely, for infinite precise measurement σm → 0, then σ′ → 0, and we obtain infinite
information from a measurement, as an infinite precise description of a position would
require an infinite number of bits to store it.

The entropy of a Gaussian of variance σ2 is S(ρ) = k log σ
√

2πe. In the measurement
process, the distribution changes from a Gaussian of variance σ2 to a Gaussian of variance
σ′2, and we have

∆S1step = k log σ′
√

2πe− k log σ
√

2πe = k
1
2

log
σ′2

σ2 = −kI(m, x) (16)

Because ∆E = 0, we finally obtain

∆F1step = ∆E− T∆S1step = kTI(m, x). (17)

This is valid for every measurement and feedback step while using the reversible feedback
protocol. In a sequence of confinement steps with successive variances σ0, σ1, . . . , σn,
the total information is

Itotal = −
1
2

n

∑
i=1

log
σ2

i
σ2

i−1
= −1

2
log

σ2
n

σ2
0

. (18)

σ2
n can be obtained from (10) by recursion, giving:

1
σ2

n
=

1
σ2

0
+ n

(
1

σ2
m

)
(19)
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Finally, the free energy difference between the final and initial states in the confinement
stage is

∆F1 = kTItotal =
kT
2

log
σ2

0
σ2

n
= kTItotal. (20)

Every bit of information that is extracted in the measurement is turned into an increase
of free energy during the confinement stage and it can be converted into useful work in the
subsequent expansion.

2.2. Work Extraction by Isothermal Expansion

If an external agent changes the stiffness of the optical trap from κi to κ f < κi, energy
is recovered as work, as explained above. In a quasistatic process, the work done by
the system is given by the free energy difference. Because stage 2 completes the cycle of
operation of the motor ending in the initial state, we have ∆F2 = −∆F1 and

Wtotal = W1 + W2 = 0− ∆F1 = −kTItotal, (21)

which corresponds to extracted work. In fact, it saturates expression (5) and it is the
maximum possible work that can be extracted while using the information that was
obtained in the measurements.

This result can also be recovered by the direct computation of the work of a process
changing stiffness from κi to κ f and while taking into account that, for a quasistatic process,
one can use the equipartition theorem stating 〈x2〉 = kT/κ(t), with κ(t) the instantaneous
value of the stiffness. Subsequently, the average work during the expansion, according
to (2), reads:

W2 =
∫ κ f

κi

dκ
〈x2〉

2
=

kT
2

∫ κ f

κi

dκ
κ

=
kT
2

log
κ f

κi
(22)

The expansion starts at the end of the confinement process with a distribution of variance
σn and ends at σ0. Subsequently, while using the relation between stiffness and variance in
the confinement stage (11), we have

W2 =
kT
2

log
κ f

κi
= − kT

2
log

σ2
n

σ2
0
= −kTItotal (23)

Notice that during both the confinement and expansion the system must be at equilibrium
in order to transform every bit of information into useful work.

In practice, though, for a process changing the stiffness of the potential to be ap-
proximately quasistatic, it is enough that the time of the process is large compared to
the inverse frequency of the trap given by ν = κ/γ. This is the criterion that we have
used for simulations. Additionally, it is worth noting that, even though the work in every
realization of the expansion may differ in principle in a stochastic system, work is—in
this particular example—a self-averaging quantity: for a quasistatic expansion, the total
work obtained in any realization is very similar to its average value. The argument for
self-averaging of the work is the following: from work definition (2), work in a single
realization when expanding is Ŵ =

∫ x2

2 dκ. If the expansion is very slow, in the time κ is
modified a certain small amount, the particle position has time to fluctuate and sample the
whole quasi-equilibrium distribution and x2 approximately can be replaced by its average
value (see the full computation in [14]).

Figure 3 depicts the complete diagram of the proposed cycle.
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Finally, one could also define an efficiency η as the ratio between the extracted thermo-
dynamic resource (work) and the thermodynamic resource consumed to make the engine
run, in this case information. With this definition, this reversible feedback engine attains
the maximum efficiency:

η =
−W
kTI

= 1 (24)

as in a similar system [23], with just one measurement per cycle.

Stage 1: multistep
optimal confinement 
       (W=0)

Stage 2: quasistatic
expansion (W<0)

Figure 3. Cycle for extracting work from a thermal bath with inaccurate measurements.

3. Results
3.1. Work Is Optimal

We have performed computer simulations of the model system that is described
above. Figure 4 depicts part of two consecutive cycles, each of them with a confinement
stage that is composed of 10 measurement and feedback steps, followed by an isothermal
expansion. The top panel depicts the particle position (gray line), trap center (blue line),
and measurement outcomes (red dots), whereas the bottom panel shows the evolution of
the stiffness along the cycle.

Figure 5 shows the cumulative work that was done on the system along the time of
a single cycle. The thick solid line represents the average over 200 cycles. Every cycle
consists of a confinement that is achieved by measuring the particle position 10 times and
the subsequent isothermal expansion. Average work extracted (W < 0) by the end of the
cycle approaches the expected result that is given by Equations (18), (19) and (21), marked
with dashed black line. The shaded area represents the variance of the work, which is
substantially large. As is apparent from the figure, most of the variance comes from
the confinement step, with the quasistatic work being a self-averaging quantity. Finally,
work that corresponds to two particular cycles is shown by thin blue lines.
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Figure 4. Trajectories. (Top) Particle trajectory (gray continuous line), trap center (blue continuous
line), measurement outcomes (red dots). (Bottom) Stiffness evolution during the cycle. Every cycle
starts with κ = 1, there are 10 measurement steps, followed by quasistatic expansion. D = 1, γ = 1.
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Figure 5. Average cumulative work along the confinement-expansion cycle (thick blue line) com-
puted from 200 realizations. The shaded area corresponds to one standard deviation from the
average. Thin blue lines represent cumulative in two representative cycles. Simulation parameters
are: ∆t = 0.001, time between measurements τ = 0.1, number of measurements before expansion is
10, measurement error σ2

m = 1, initial stiffness of the trap κ = 1, diffusion coefficient D = kT/γ = 1,
and drag coefficient γ = 1.

3.2. Power and Efficiency with Higher Measurement Errors

Consider two setups, A and B, with different measurement errors being given by
variances σ2

mA and σ2
mB = 2σ2

mA. Suppose that only one measurement step is performed in
each system before the expansion. According to our discussion above, the measurement
information that can be later transformed into work is smaller in system B than in A:
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IB1 =
1
2

log
σ2

mB + σ2
0

σ2
mB

=
1
2

log

(
1 +

σ2
0

2σ2
mA

)
<

1
2

log

(
1 +

σ2
0

σ2
mA

)
= IA1 (25)

However, we can obtain as much information in system B with two measurements as
in system A with one measurement. After two measurements, while using the reversible
confinement protocol, the variance of the equilibrium distribution σ2

B2 in system B is equal
to the variance in system A after one measurement σ2

A1:

1
σ2

B2
=

1
σ2

0
+ 2

(
1

σ2
mB

)
=

1
σ2

0
+

(
1

σ2
mA

)
=

1
σ2

A1
(26)

Using (18), we obtain:

IB =
1
2

log
σ2

B2
σ2

0
=

1
2

log
σ2

A1
σ2

0
= IA (27)

As explained above, this implies that the same work can be extracted in the subsequent
quasistatic expansion. In fact, bothof the systems run with the same efficiency η = 1;
hence, every bit of information is turned into work in the expansion. Furthermore, system
B can also be run in principle at the same power as system A. During the confinement
process, after the adjustment of the potential, the particle distribution is at equilibrium.
No relaxation occurs, as explained previously. Therefore, a new measurement and feedback
step could, in principle, be taken immediately after, in rapid succession. Thus, halving the
time between measurements in system B as compared to system A ensures the same cycle
time. As the work obtained is also the same, both of the systems operate with the same
power. Figure 6 depicts this, where we show the simulation results for system A with one
measurement and expansion and system B with two (faster) measurements and expansion.
Approximately the same work is obtained in both systems. For reference, we have also
marked the expected extracted work for a system with tge measurement error given by
σmB, but using just one measurement.

Figure 6. Average work extraction for two different measurement errors, using one measurement
with variance σ2

mA = 1 (blue thick line), and using two measurements with variance σ2
mB = 2

(red thick line). Dashed line represents expected work extraction and fine dashed line corresponds
to expected work extraction with just 1 measurement of variance σmB. Thin lines represent single
realizations of the work in system A (blue) and B (red).
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4. Discussion

Reversible feedback confinement is an optimal way of reducing the entropy of a system
to be later used for work extraction. Nevertheless, it requires a high degree of control over
the Hamiltonian, to adapt it to the new probabilistic state after the measurement. This might
be a limitation for experimental realizations, although a low dissipation is expected, even if
a similar or approximate protocol is implemented. Theoretically, the dissipation could
be accounted for by using the Kullback–Leibler distance between the post-measurement
particle distribution and the equilibrium distribution of the potential after feedback [24] ,
if they were different due to a less precise tuning of the potential.

In principle, for a measurement and feedback protocol, imprecision in the measure-
ment, which will inevitably arise in an experimental setup, will limit the work extraction
or power. Nevertheless, we have shown here that this limitation can be overcome by
adding more measurement steps before the quasistatic expansion, as long as the reversible
feedback confinement protocol is used. In principle, the application of this protocol is
instantaneous. In practice, this means that the confinement may be applied in a very short
time, limited maybe by the response time of the feedback mechanism or the measurement
acquisition time. Thus, if the response times of measurement, feedback, and Hamiltonian
modification are fast as compared to system’s relaxation time, optimal work extraction is
feasible, even with a high degree of inaccuracy in the measurement, while using repeated
optimal feedback.

5. Materials and Methods

The confined Brownian particle evolves according to Langevin equation:

γẋ = −V′κ,x0(x) + ξ(t), (28)

with ξ(t) Gaussian white noise 〈ξ(t)ξ(t′)〉 = 2kTγδ(t − t′), T bath temperature and
k Boltzmann’s constant. The potential Vκ,x0(x) is defined above and it is controlled
through measurement and feedback. Model simulations were performed in C language,
solving the Langevin evolution equation with the Heun method for a stochastic dif-
ferential equation [25]. We provide, in the following, some details on work computa-
tion, measurement, and feedback steps. For full details, the code is available here:
http://seneca.fis.ucm.es/ldinis/code/extract_optimal_work.zip.

• Measurement. In order to perform a measurement in the simulation, a Gaussian
number “r” with zero average and standard deviation 1 is generated. Subsequently,
if particle position is x, the measurement outcome m is

m = x + σmr (29)

Notice that m is then distributed according to Equation (6)
• Feedback. Immediately after measurement, and using the measurement outcome

m just computed, the potential parameters κ and x0 are recomputed according to
Equations (9) to (12). Notice that the old values need to be stored in an auxiliary
variable for the work computation, as explained in the following step.

• Work computation during feedback process. According to its definition for a trajectory,
work is the difference in the potential energy when the potential is changed. If κ → κ′

and x0 → x′0 as a result of measurement and feedback, then work is computed as

∆W =
1
2

κ′(x− x′0)
2 − 1

2
κ(x− x0)

2 (30)

This ∆W is added to a variable W that stores the cumulative work that was done along
the whole simulation.

• After the feedback, evolution equation resumes with the new potential parameters.

http://seneca.fis.ucm.es/ldinis/code/extract_optimal_work.zip
http://seneca.fis.ucm.es/ldinis/code/extract_optimal_work.zip
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• Work during expansion. Work is also performed as a result of the change in κ during an
expansion. In the simulation, during the expansion stage, κ changes an amount ∆κ =
κ f−κi
Nexp in every time step, where Nexp is the number of time steps of the expansion.

Therefore, in a time step, a work

∆W =
1
2

∆κ(x− x0)
2 (31)

is performed. Again, this ∆W has to be added to the variable W, which stores the
total or cumulative work of the whole process.
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