Supplementary Materials

Article

Multi-analytical approach on asbestos minerals and their non-asbestiform analogues: Inferences from host rock textural constraints

Gaia Maria Militello 1,*, Andrea Bloise 2, Laura Gaggero 1, Gabriele Lanzafame 3 and Rosalda Punturo 4

1 Department of Earth, Environment and Life Sciences – DISTAV, University of Genoa, Corso Europa 26, I-16132 Genoa, Italy; gaggero@dipteris.unige.it
2 Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Pietro Bucci, I-87036 Rende, CS, Italy; andrea.bloise@unical.it
3 Elettra - Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy; gabriele.lanzafame@elettra.eu
4 Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia 55, I-95129 Catania, CT, Italy; punturo@unict.it

* Correspondence: gaiamaria.militello@edu.unige.it; Tel.: +39-010-3538301
Received: 28 February 2019; Accepted: 3 May 2019; Published: 10 May 2019

This file includes the supporting information of the paper entitled: “Multi-analytical approach on asbestos minerals and their non-asbestiform analogues: inferences from host rock textural constraints“.
Figure S1. TEM image of: (a) a thin cylindrical chrysotile; (b) conical chrysotile with no-interrupted empty core; (c) poorly shaped proto-chrysotile indicated by black arrow; (d) polygonal serpentine as viewed along the fiber axis.
Figure S2. (a) TEM image of tremolite asbestos as viewed perpendicular to the fibre axis; (b) flattened tremolite splitting longitudinally into thinner fibrils; (c) prismatic single crystals of tremolite (cleavage fragment).
Figure S3. TEM image of single crystals of tremolite (cleavage fragment) note the irregular sides.
Figure S4. (a) TEM image of tremolite asbestos as viewed perpendicular to the fiber axis; (b) prismatic single crystals of tremolite (cleavage fragment), note the irregular sides. The wider end displays an initial split into two-three fibrils.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).