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Abstract: This study aimed to assess the prevalence of ultra-high-temperature (UHT) processed
milk samples suspected of being adulterated on the Chinese market and, subsequently, relate
their geographical origin to the earlier determined fraud vulnerability. A total of 52 UHT milk
samples purchased from the Chinese market were measured to detect possible anomalies. The milk
compositional features were determined by standardized Fourier transform-infrared spectroscopy,
and the detection limits for common milk adulterations were investigated. The results showed
that twelve of the analysed milk samples (23%) were suspected of having quality or fraud-related
issues, while one sample of these was highly suspected of being adulterated (diluted with water).
Proportionally, more suspected samples were determined among milks produced in the Central-
Northern and Eastern areas of China than in those from the North-Western and North-Eastern
areas, while those from the South were in between. Combining the earlier collected results on
fraud vulnerability in the Chinese milk chains, it appears that increased fraud prevalence relates to
poorer business relationships and lack of adequate managerial controls. Since very few opportunities
and motivations differ consistently across high and low-prevalence areas, primarily the improvement
of control measures can help to mitigate food fraud in the Chinese milk supply chains.

Keywords: China; Fourier transform-infrared spectroscopy; fraud vulnerability; milk adulteration;
milk composition; one-class classifications

1. Introduction

The dairy industry in China has developed in parallel with the country’s economic growth.
The average annual milk consumption of Chinese consumers reached 36 kg per capita in 2016, though
this is still lower than the average world consumption [1]. Liquid milk is the main type of dairy
product in the Chinese market, with more than 90% of the raw milk being processed to liquid milk
products [2]. Moreover, the most popular liquid milk product, ultra-high-temperature (UHT) processed
milk, accounted for more than half of the liquid milk consumption in 2018 [3].

The melamine infant formula incident in 2008 highlighted the vulnerability of the dairy industry
in China and was a grave shock for this industry [4]. This incident resulted in great financial, as well as
consumer confidence, losses for the sector. Milk, as a source of protein and calcium, plays an important
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role in the diet of Chinese consumers. Unfortunately, milk is one of the most commonly adulterated
foods due to its popularity, production and sales in mass volume levels and the price paid for
the product based on its composition [5]. Moreover, the number associated with the adulteration of
dairy products made it the top-ranked product among the animal food products that are typically
subjected to fraud [6]. The rapidly growing economy in China has led to a gradual shift of concerns
about food security to food safety [7]. Linked to food safety is also the prevalence of food fraud, as the
adulteration of milk products, depending on the type of adulterant used, can have safety implications
for a food product.

Food fraud has become a widely acknowledged concern, not only within the food supply
chain, but also more widespread, for instance, by consumers. Recent studies on Chinese consumers’
preferences showed that Chinese consumers are concerned about the risk of domestic milk products
and, especially, infant milk formula [8] and therefore prefer to buy “foreign milk powder” instead
of domestic products [9]. Melamine is not the only milk adulterant. Milk adulterations range from
very simple, such as dilution, to very complex, such as synthesizing milk with urea, vegetable oil,
detergents and other chemical compounds [10]. A number of substances have been listed as potential
milk adulterants by different scholars [10,11].

In our previous studies, technical opportunities were identified as medium-high risk factors
in the investigations of the fraud vulnerability of milk supply chains, whereas the detectability
of milk adulteration was a main concern of the participants in the supply chain [12,13]. Various
advanced techniques have been developed for milk authentication. For example, chromatographic
methods combined with mass spectrometry (MS) have been used for detecting milk adulteration
with nitrogen-rich compounds [14,15] and vegetable oils [16], digital imaging for milk protein
determinations [17] and the detection of hydrogen peroxide in milk [18], proton transfer reaction
mass spectroscopy (PTR-MS) and stable isotope ratio mass spectroscopy (IRMS) for the discrimination
of organic milk [19,20] and nuclear magnetic resonance (NMR) for the nontargeted detection of
multiple adulterants in milk powder [21]. Moreover, infrared spectroscopy-based techniques have
become the most commonly used method for determining food authenticity, and they are considered
as alternatives to reference methods [22]. Furthermore, automated equipment based on Fourier
transform-infrared (FTIR) spectroscopy has been developed to determine milk composition, providing
high analytical capacity and low operational costs [23]. FTIR spectroscopy is extensively used
worldwide for milk quality control, because little sample preparation is needed, and the analysis
is rapid. In combination with statistical analysis, FTIR spectroscopy has been applied to identify
several milk adulterants, such as melamine [24], whey protein [25], sodium bicarbonate, sodium citrate
and corn starch [26].

Considering the previous milk fraud incidents in China and the uprising public concerns
from the Chinese consumers, there is an urgent demand for information on the integrity (i.e.,
safety, quality and authenticity) of milk products on the Chinese market to restore consumers’ trust.
As previous studies have already addressed food safety issues [27–30], the current study aims to
evaluate the occurrence of milk adulteration in China and relate the prevalence of the milk fraud to
fraud vulnerability profiles. The occurrence of milk adulteration was evaluated by anomaly detection.
Anomaly detection was firstly conducted based on individual measurement parameters that are
commonly used in practice, using both univariate and multivariate approaches. For both approaches,
the data of a control group of genuine UHT milk samples was used in combination with groups
of protein-rich, nitrogen-based and carbohydrate-based milk adulterants, as well as nonallowed
preservatives at various concentration levels to set boundaries. Finally, commercial UHT milk samples
from different regions in China were tested against the boundaries using both developed approaches.
Fraud prevalence was related to the geographical origin of the samples and compared with previously
established fraud vulnerabilities for the geographical areas.
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2. Materials and Methods

2.1. Sample Collection

A total of twelve UHT milk samples from five different brands were purchased from local
supermarkets in Beijing in November 2018. They were from the top 10 dairy-processing enterprises
in China and considered as the reference samples. Among these twelve samples, four samples were
labelled as premium quality (protein content > 3.5%) and produced in the North of China, four were
of normal quality and also produced in the North and the remaining four samples were of normal
quality and produced in the South. Accordingly, three milk pools were prepared: the first milk pool
(Pool A) was a mixture of the four samples of premium quality, the second pool (Pool B) a mixture of
the four samples of normal quality from the North of China and the third pool (Pool C) a mixture of
the four samples of normal quality from the South of China. The ratio of the four milk samples in
each pool was 1:1:1:1 w/w. Three milk pools of 100 g each were prepared, to which an adulterant was
added at several concentrations. The twelve reference samples and the three milk pools were from
major producers and, hence, considered as the control samples (i.e., nonadulterated). These 15 samples
comprised the training set.

A total of 52 commercial UHT milk samples were purchased from local markets (in Beijing)
and e-commerce (across China) during the winter of 2018/2019 (December 2018 to January 2019),
and these samples comprised the market survey test set. The distribution of the geographical origin of
the market survey samples is shown in Figure 1.

Foods 2020, 9, x FOR PEER REVIEW 3 of 17 

Foods 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/foods 

2. Materials and Methods 

2.1. Sample Collection 

A total of twelve UHT milk samples from five different brands were purchased from local 
supermarkets in Beijing in November 2018. They were from the top 10 dairy-processing enterprises 
in China and considered as the reference samples. Among these twelve samples, four samples were 
labelled as premium quality (protein content > 3.5%) and produced in the North of China, four were 
of normal quality and also produced in the North and the remaining four samples were of normal 
quality and produced in the South. Accordingly, three milk pools were prepared: the first milk pool 
(Pool A) was a mixture of the four samples of premium quality, the second pool (Pool B) a mixture 
of the four samples of normal quality from the North of China and the third pool (Pool C) a mixture 
of the four samples of normal quality from the South of China. The ratio of the four milk samples in 
each pool was 1:1:1:1 w/w. Three milk pools of 100 g each were prepared, to which an adulterant was 
added at several concentrations. The twelve reference samples and the three milk pools were from 
major producers and, hence, considered as the control samples (i.e., nonadulterated). These 15 
samples comprised the training set. 

A total of 52 commercial UHT milk samples were purchased from local markets (in Beijing) and 
e-commerce (across China) during the winter of 2018/2019 (December 2018 to January 2019), and 
these samples comprised the market survey test set. The distribution of the geographical origin of the 
market survey samples is shown in Figure 1. 

 
Figure 1. The geographical distribution of the market survey samples. 

2.2. Adulterations and Measurements 

Following the same procedure of a comparable study that was conducted on milk samples from 
the Dutch market, the same adulterants and the same adulteration levels were applied [31]. A total 
of 24 adulterants were used, which were categorized into five groups as follows: (1) protein-rich 
adulterants including whole milk powder (WMP), skimmed milk powder (SMP), whey protein 
isolate (WPI), pea protein isolate (PEA) and soy protein isolate (SOY); (2) nitrogen-based adulterants 
including urea (URE), melamine (MLM), ammonium sulphate (AS), ammonium chloride (AC) and 
dicyandiamide (DIC); (3) carbohydrate-based adulterants including sucrose (SU), glucose (GLU), 
corn starch (ST), lactose (LAC), fructose (FRU), maltodextrin (MD) and arrowroot powder (AR); (4) 
preservatives including sodium citrate (CIT), sodium carbonate (CAR), sodium bicarbonate (BIC), 
sodium hydroxide (HYD), formaldehyde (FMD) and hydrogen peroxide (PX) and (5) water. Both 
single and combined adulterations were conducted. The single adulterations were carried out at four 

Figure 1. The geographical distribution of the market survey samples.

2.2. Adulterations and Measurements

Following the same procedure of a comparable study that was conducted on milk samples from
the Dutch market, the same adulterants and the same adulteration levels were applied [31]. A total
of 24 adulterants were used, which were categorized into five groups as follows: (1) protein-rich
adulterants including whole milk powder (WMP), skimmed milk powder (SMP), whey protein isolate
(WPI), pea protein isolate (PEA) and soy protein isolate (SOY); (2) nitrogen-based adulterants including
urea (URE), melamine (MLM), ammonium sulphate (AS), ammonium chloride (AC) and dicyandiamide
(DIC); (3) carbohydrate-based adulterants including sucrose (SU), glucose (GLU), corn starch (ST),
lactose (LAC), fructose (FRU), maltodextrin (MD) and arrowroot powder (AR); (4) preservatives
including sodium citrate (CIT), sodium carbonate (CAR), sodium bicarbonate (BIC), sodium hydroxide
(HYD), formaldehyde (FMD) and hydrogen peroxide (PX) and (5) water. Both single and combined
adulterations were conducted. The single adulterations were carried out at four levels for each
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adulterant. The formulas and detailed plan for the single adulterations are provided in Table S1
(Supplementary Materials). The combined adulterations were conducted in two steps: first, 40 g water
was added to 100 g of a milk pool sample; then, one of the adulterants from either the protein-rich,
nitrogen-based or carbohydrate-based adulterant category was added to the diluted milk pool to
increase the apparent protein content with 40% w/w (adulterant protein/milk protein content for
the protein-rich and nitrogen-based adulterations) or to increase the apparent total solids content
with 40% w/w (adulterant total solids (TS)/milk TS content for the carbohydrate-based adulterations).
The detailed information of the combined adulteration is provided in Table S2 (Supplementary
Materials). Ultimately, a total of 288 single-adulterated samples and 51 combined-adulterated samples
were prepared. These 339 adulterated samples were considered as the adulterant test set.

MilkoScan FT120 equipment (Foss Electric, Hilleroed, Denmark) was used to measure the milk
composition. The equipment is based on the FTIR technique and reports a series of milk compositional
parameters, namely protein, fat, lactose, total solids (TS), solids nonfat (SNF) content, density
and freezing point depression (FPD). The FTIR spectra were not acquired separately because of
the limitation of the instrument used. All the samples were prepared at room temperature and measured
within two hours after preparation.

2.3. Statistical Analysis

2.3.1. Univariate Analysis: Determination of Boundaries for Each Variable

The mean and standard deviation (SD) for the seven variables (i.e., protein, fat, lactose, total
solids, solids nonfat, freezing point depression and density) were calculated based on the 15 control
samples. Next to that, the values of the 0.5th and 99.5th percentiles for each variable were used to set
boundaries for anomaly detection.

According to a programme of measurements of over 3 million raw milk samples for legislatorial
control (Zuivelverordening, 2000), the standard deviation of this large sample set for the seven variables
is roughly double the values of the control samples in this study. To adapt the variance of the control
samples in a practical way, the data of the 15 control samples was transformed into a variance-adjusted
dataset, where the mean value for each variable remained the same, but the SD value was adjusted
to twice the measured SD. The new dataset was converted from the measured data for each variable
separately using Equation (1):

Xnew =

(
X − µ
σ
× 2σ

)
+ µ (1)

where Xnew is the variance-adjusted data, X is the measured data for the control samples, µ is the mean
value of the 15 control samples and σ is the SD of the 15 control samples. Next, the variance-adjusted
boundaries were determined using the values of 0.5th percentile and 99.5th percentile for the seven
variance-adjusted variables.

The results of the measured and variance-adjusted datasets are shown in Tables S3 and S4
(Supplementary Materials), respectively. Both the measured boundaries and variance-adjusted
boundaries were then utilized for both the adulterant test set and market survey test set. The univariate
calculations were performed using Microsoft Excel 2016 (Microsoft, Redmond, WA, US).

2.3.2. Multivariate Analysis: Determination of Boundaries for Milk with One-Class
Classification Models

One-class classification (OCC), which focuses on a single target class, has become a common
modelling approach for the verification of food authenticity [32]. Three one-class classification (OCC)
models were applied in this study, namely k-nearest neighbours (KNN), soft independent modelling
of class analogies (SIMCA) and support vector machine (SVM). KNN has no requirement for the data
distribution and is robust to noisy training data, and hence, it is suitable for analysing small training
sets [33]. SIMCA focuses more on the similarities among samples within a class and is thus widely
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used for OCC models [34]. SVM is another fitting approach that can be applied to datasets with
a limited number of training samples [35]. SVM evaluates the distance from an object to the boundary.
For this study, the Gaussian radial basis function (RBF) kernel was used to determine the boundary for
the SVM model.

The measured dataset (n = 15) and variance-adjusted dataset (n = 15) of the control samples
were separately used as the training set for the model development. The training set was subjected
to leave-30%-out cross-validation with 100 repetitions. The dataset was preprocessed by means of
autoscaling. Next to that, the three classifiers (KNN, SIMCA and SVM) were applied. A significant
level of 1% (p < 0.01) was used for determining the critical classification thresholds. The adulterant test
set, comprising 339 adulterated milk samples, was then subjected to the developed models. The three
OCC models were evaluated applying the following parameters: the k value for the KNN model
was selected from consecutive numbers 1–10; the number of factors n for SIMCA was selected from
consecutive numbers 1-7; γ in the Gaussian radial basis function (RBF) kernel for the SVM was selected
from 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1 and 1. The average value of the percentages of
correctly assigned samples for the cross-validation set and adulterant test set was used to evaluate
the overall performance of the models. The optimal parameter for the best performing model was
determined accordingly. Next, the market survey test set, comprising 52 samples, was subjected
to the selected models. The OCC model development in this study was performed using R 3.6.1
(R Foundation for Statistical Computing, Vienna, Austria).

2.3.3. Exploratory Analysis and Regression Model

The result of the compositional features was subjected to principal component analysis (PCA)
to visualize the grouping of the control samples and market survey samples after preprocessing by
autoscaling. The PCA was performed by R 3.6.1 (R Foundation for Statistical Computing, Vienna,
Austria). Principal component regression (PCR) with leave-one-out cross-validation was conducted
between the geographical prevalence of the suspected samples and the result of the food fraud
vulnerability assessment in the corresponding areas. The mean ranks of the scores of fraud factors for
four of the main milk production areas in China (i.e., Central-North, Northeast, Northwest and East of
China) from a previous fraud vulnerability assessment study [13] were used to develop a model to
predict the percentage of suspected samples in these areas after preprocessing by autoscaling. The PCR
was performed using Pirouette 4.5 (Infometrix Inc., Bothell, WA, USA).

3. Results and Discussion

3.1. Control Samples

3.1.1. Natural Variation of the Control Samples

A certain degree of variation in the milk composition was observed among the three milk pools
analysed by FTIR spectroscopy (Table 1). All the measured compositional features of the premium
milk pool (pool A) were higher than those of the normal milk pools from both the North and the South
(pool B and C). Generally, the fat and lactose contents of the control milk are in agreement with those
of the raw milk in China, which are 3.6% to 4.2% w/w and 4.7% to 5.1% w/w, respectively [36,37].
However, the protein content of the control samples (3.4% to 3.7% w/w) was higher than that of
the raw milk produced by Chinese Holstein cattle, which is approximately 2.9% to 3.3% w/w [1,36].
This difference may have been caused by protein standardization techniques used during the processing
of the milk—for instance, flash evaporation [38]. It may also be due to the use of raw milk of a higher
protein content from other dairy cattle breeds. A difference in milk composition was observed between
the commercial UHT milk samples from the Dutch and Chinese markets. The means of the fat content
and lactose content of the Chinese samples (4.0% and 5.1% w/w, respectively) were slightly higher
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than those of the Dutch ones (3.8% and 4.7% w/w, respectively), while the mean values for the protein
content of the milk from the two countries were more or less the same (3.5%–3.6% w/w) [31].

Table 1. Means and standard deviation (SD) of the compositional features of the control samples
measured by standardised Fourier transform-infrared spectroscopy and the boundaries based on
the measured dataset and variance-adjusted dataset.

Dataset
Compositional Features a

Protein
(% w/w)

Fat
(% w/w)

TS
(% w/w)

SNF
(% w/w)

Lactose
(% w/w)

Density
(g/L)

FPD
(◦C)

Pools
Pool A (premium, North) 3.69 4.05 13.72 9.73 5.30 1034 0.567
Pool B (normal, North) 3.44 3.75 12.79 9.05 4.88 1031 0.524
Pool C (normal, South) 3.47 3.83 13.04 9.24 5.04 1032 0.544

Measured
dataset

Mean 3.54 3.95 13.24 9.33 5.06 1032 0.543
SD 0.15 0.24 0.51 0.35 0.21 1 0.022

Measured
boundary

Lower boundary 3.33 3.60 12.57 8.94 4.80 1031 0.516
Upper boundary 3.73 4.42 14.03 9.85 5.39 1035 0.576

Variance-
adjusted

boundary

Lower boundary 3.13 3.26 11.90 8.55 4.54 1030 0.489

Upper boundary 3.93 4.90 14.82 10.37 5.72 1038 0.608
a TS, total solids; SNF, solids nonfat and FPD, freezing point depression.

3.1.2. Control Samples and Univariate Detection Approach

The univariate boundaries based on the measured dataset and variance-adjusted dataset are
presented in Table 1. The 15 control samples were tested by the two sets of boundaries. According
to the measured dataset, five compositional values of the control samples out of 105 measurements
exceeded the measured boundaries, including four that exceeded the upper boundaries and one
that exceeded the lower boundary. The samples exceeding the upper boundaries concerned protein,
fat, SNF and the lactose content (control samples 2–4), while control sample 8 exceeded the lower
boundary of the TS content (Table S3, Supplementary Materials). It seems that the samples of which
the compositional features exceeded the upper boundaries are due to features generally occurring in
premium quality milk; in other words, they are in the top 0.5% of the distribution of the control samples
with regard to the protein, fat, SNF and/or lactose concentration. Considering the lactose content
of raw milk is quite stable, ranging from 4.5% to 5.0% w/w [39,40], and would not be intentionally
adjusted during the milk-processing, it is believed that the high lactose content of the premium milk
product was caused by the use of flash evaporation, which is sometimes used for the production of
premium milk in China [38]. Such flash evaporation would also lead to an increase of the protein, fat
and SNF contents by water removal, as was found for samples 2–4. As samples 2–4 were thus exceeding
the boundaries for reasons other than adulterations, they were kept in the control group. Considering
the large variance that would be found in practice among unadulterated samples, the variance-adjusted
dataset was also applied, against which all the 15 controls samples were considered normal.

3.1.3. Control Samples and the Multivariate Detection Approach

One-class classification models using three classifiers (KNN, SIMCA and SVM) were calculated,
and for each classifier, the model with the best performance was selected. The results of the selected
models are shown in Table 2. For all the three classifiers in both scenarios (i.e., the measured
dataset and variance-adjusted dataset), the samples of the training set were 100% correctly classified.
The KNN classifier performed a bit better for the cross-validation set, achieving 92% and 93% accuracy
for the model of the measured dataset and variance-adjusted dataset, respectively. Combining
the performance of the models in both scenarios, KNN was selected as the best classifier for the OCC
model for further analysis.
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Table 2. The results of the one-class classification models developed from the measured dataset
and variance-adjusted dataset. All the present values refer to the average of 100 repetitions of cross-
validation for the corresponding dataset.

Model Performance for
Dataset

Correctly Assigned Samples a (%)

KNN SIMCA SVM

Model developed from
the measured dataset

Training set 100 100 100
Cross-validation set 92 88 90
Adulterant test set 77 75 79

Overall performance 84 81 84

Model developed from
the variance-adjusted dataset

Training set 100 100 100
Cross-validation set 93 91 92
Adulterant test set 66 60 63

Overall performance 79 75 77
a KNN stands for k-nearest neighbours; the KNN model with the best performance was estimated with k = 3
for both the measured and variance-adjusted datasets. SIMCA stands for soft independent modelling of class
analogies; the SIMCA model with the best performance was estimated with the number of the factors n = 3 for
both the measured and variance-adjusted datasets. SVM stands for support vector machine; the SVM model with
the best performance was estimated with γ = 0.1 for both the measured and variance-adjusted datasets.

To summarise, based on the variation of the composition of both the control samples in this
study (i.e., the measured dataset) and a more practicable scenario (i.e., the variance-adjusted dataset),
the univariate boundaries and multivariate models were determined, respectively. The same models
were then subjected to the adulterant test set and market survey set.

3.2. Adulterants

3.2.1. Adulterants and the Univariate Detection Approach

To test the detection capacity of the developed approaches, the univariate boundaries were first
applied to the adulterant test set. As expected, the univariate boundaries of the measured dataset flagged
more adulterations than the variance-adjusted boundaries, as shown in Figure 2. Both boundaries
flagged the high concentrations (levels 2–4) of the protein-rich adulterations and almost all carbohydrate
adulterations (except for starch adulteration). Furthermore, the measured boundaries flagged high
concentrations (levels 3–4) of the nitrogen adulterants, while the variance-adjusted boundaries had
a lower performance for these adulterations. The water dilutions were almost universally flagged by
both boundaries. Most of the preservative concealers passed unnoticed for both types of boundaries
(Figure 2).

3.2.2. Adulterants and Multivariate Detection Approach

The selected KNN models were also applied to the adulterant test set. Similar to the scenario
of the univariate detection, the KNN model based on the measured dataset also raised more flags
than that based on the variance-adjusted dataset for the various adulterations, as shown in Figure 3.
All carbohydrates, except for the starch adulterations, were flagged by both models. When considering
the performance of the KNN model of the measured dataset, the average specificities of the model of
the 100 repetitions for the protein-rich adulterations (95%) and carbohydrate adulterations (93%) were
slightly higher than that of the nitrogen adulterations (86%)—only the ammonia sulphate adulterations
in the latter group were fully flagged. The KNN model of the measured dataset flagged most water
dilutions, while that of the variance-adjusted dataset flagged no water dilutions at all. The specificities
of both models for the preservative adulterations were very low.



Foods 2020, 9, 709 8 of 17
Foods 2020, 9, x FOR PEER REVIEW 8 of 17 

Foods 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/foods 

 
Figure 2. The results of the adulterant test sets for the three milk pools based on (a) the measured 
boundaries of the univariate detection and (b) the variance-adjusted boundaries of the univariate 
detection, indicating the potential to identify suspected milk adulterations. The samples with all 
results within the boundaries are coloured green, while the rest is coloured red. The full names of the 
adulterants are shown in the abbreviations list. For interpretation of the different colours, refer to the 
web version of the paper. N.A., not applicable. 

3.2.2. Adulterants and Multivariate Detection Approach 

The selected KNN models were also applied to the adulterant test set. Similar to the scenario of 
the univariate detection, the KNN model based on the measured dataset also raised more flags than 
that based on the variance-adjusted dataset for the various adulterations, as shown in Figure 3. All 
carbohydrates, except for the starch adulterations, were flagged by both models. When considering 
the performance of the KNN model of the measured dataset, the average specificities of the model of 
the 100 repetitions for the protein-rich adulterations (95%) and carbohydrate adulterations (93%) 
were slightly higher than that of the nitrogen adulterations (86%)—only the ammonia sulphate 
adulterations in the latter group were fully flagged. The KNN model of the measured dataset flagged 
most water dilutions, while that of the variance-adjusted dataset flagged no water dilutions at all. 
The specificities of both models for the preservative adulterations were very low. 

Figure 2. The results of the adulterant test sets for the three milk pools based on (a) the measured
boundaries of the univariate detection and (b) the variance-adjusted boundaries of the univariate
detection, indicating the potential to identify suspected milk adulterations. The samples with all
results within the boundaries are coloured green, while the rest is coloured red. The full names of
the adulterants are shown in the abbreviations list. For interpretation of the different colours, refer to
the web version of the paper. N.A., not applicable.Foods 2020, 9, x FOR PEER REVIEW 9 of 17 

Foods 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/foods 

 
Figure 3. The results of the adulterant test sets for the three milk pools based on the threshold of the 
of k-nearest neighbour (KNN) model developed from (a) the measured dataset and (b) the variance-
adjusted dataset, indicating the classification of milk adulterations. The samples with results within 
the threshold are coloured green, while the rest are coloured red. The full names of the adulterants 
are shown in the abbreviations list. For interpretation of the different colours, refer to the web version 
of the paper. 

3.2.3. Comparison of Approaches 

For both the univariate and multivariate approaches, the ones based on the measured dataset 
flagged more adulterated samples than those based on the variance-adjusted dataset, due to the 
measured dataset having less variance. All the developed criteria succeeded to flag carbohydrates, 
except for the starch adulterations, and also flagged protein-rich adulterations at the higher levels. 
Both approaches based on the measured dataset could identify nitrogen adulterations at higher levels 
as well. In addition, it is noted that the multivariate approach did not perform better than the 
univariate approach in distinguishing the milk adulterations. 

3.3. Market Survey Samples: What Type of Suspected Milk Samples are Discovered Using the Developed 
Approaches? 

3.3.1. Suspected Samples Flagged by the Univariate Detection Approach 

As the developed approaches showed different abilities in detecting adulterations, they were all 
applied to the market survey samples. Out of the 52 samples from the market survey, 37 samples 
were flagged according to the univariate boundary of the measured dataset (Table 3). Their 
compositional results showed that the protein, fat and lactose contents were the main parameters that 
exceeded the boundaries. Only two samples were flagged for exceeding the upper boundary based 
on the lactose content (samples 32 and 37). As discussed in Section 3.1.2, the lactose content of raw 
milk is rather stable and will be below 5.0% w/w. The extremely high lactose content of these two 
suspected samples (> 5.4% w/w) was likely caused by some kind of manipulation during processing, 
by either legal ways like flash evaporation or illegal ways like carbohydrate or dairy powder 
additions. The other 35 suspected samples were flagged, because their compositional variables 
exceeded the lower boundaries. Among these suspected samples, 32 samples were observed to be 
deficient in proteins, 15 samples deficient in fat and 15 samples deficient in lactose. It is not surprising 

Figure 3. The results of the adulterant test sets for the three milk pools based on the threshold of the of
k-nearest neighbour (KNN) model developed from (a) the measured dataset and (b) the variance-
adjusted dataset, indicating the classification of milk adulterations. The samples with results within
the threshold are coloured green, while the rest are coloured red. The full names of the adulterants are
shown in the abbreviations list. For interpretation of the different colours, refer to the web version of
the paper.
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3.2.3. Comparison of Approaches

For both the univariate and multivariate approaches, the ones based on the measured dataset
flagged more adulterated samples than those based on the variance-adjusted dataset, due to
the measured dataset having less variance. All the developed criteria succeeded to flag carbohydrates,
except for the starch adulterations, and also flagged protein-rich adulterations at the higher levels. Both
approaches based on the measured dataset could identify nitrogen adulterations at higher levels as
well. In addition, it is noted that the multivariate approach did not perform better than the univariate
approach in distinguishing the milk adulterations.

3.3. Market Survey Samples: What Type of Suspected Milk Samples are Discovered Using
the Developed Approaches?

3.3.1. Suspected Samples Flagged by the Univariate Detection Approach

As the developed approaches showed different abilities in detecting adulterations, they were all
applied to the market survey samples. Out of the 52 samples from the market survey, 37 samples were
flagged according to the univariate boundary of the measured dataset (Table 3). Their compositional
results showed that the protein, fat and lactose contents were the main parameters that exceeded
the boundaries. Only two samples were flagged for exceeding the upper boundary based on the lactose
content (samples 32 and 37). As discussed in Section 3.1.2, the lactose content of raw milk is rather stable
and will be below 5.0% w/w. The extremely high lactose content of these two suspected samples (>5.4%
w/w) was likely caused by some kind of manipulation during processing, by either legal ways like
flash evaporation or illegal ways like carbohydrate or dairy powder additions. The other 35 suspected
samples were flagged, because their compositional variables exceeded the lower boundaries. Among
these suspected samples, 32 samples were observed to be deficient in proteins, 15 samples deficient
in fat and 15 samples deficient in lactose. It is not surprising that the TS and SNF contents of these
suspected samples exceeded the lower boundary as well. These results indicate that the flagged
samples were deviating from the control samples with respect to multiple compositional parameters,
including protein, fat and/or lactose contents. However, it should be noted that the variance of
the measured dataset is smaller than that faced in practice, which likely resulted in more genuine
samples being misclassified. This would hence increase the workload of further checking these samples
and lower the users’ acceptance. In addition, although the protein or fat contents of these samples
were lower than the boundary, they were not exceeding the lower limit of the national food safety
standard for sterilized milk, where 2.9% w/w is stipulated for the protein content and 3.1% w/w for
the fat content [41]. It seems that the boundaries based on the measured dataset were thus too strict for
practical use.

A total of twelve samples were flagged according to the univariate boundary based on
the variance-adjusted dataset (Table 3). Eleven of these flagged samples were lower in protein
contents, exceeding the lower boundary (3.13% w/w) of the variance-adjusted dataset. In addition, it
was observed that some of the other compositional features such as the fat, total solids, density or FPD
of these samples also exceeded the respective lower boundaries. There are probably multiple reasons
for the low protein contents in these UHT milk products. One is that the raw milk used to produce
the final products could have been low in protein contents. Considering there is no prohibition on
adjusting the protein, fat, or lactose contents of UHT milk in China, another reason may be that the milk
composition was changed during the processing—for instance, removing part of the milk fat would
result in a lower fat content. It is also possible that the milk samples were diluted, although this would
be a violation of the national food safety standard for sterilized milk, if the milk was diluted during
the processing but labelled as “pure milk” on the package of the final product [41]. Since the milk
samples in this study were all labelled “pure milk”, the lower protein and fat contents of the flagged
milk samples might be indicators of potential milk manipulation. Therefore, these twelve samples were
suspected of quality or fraud issues. In addition, the FPD of one suspected sample (sample 1) exceeded
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the boundary of the variance-adjusted dataset. The freezing point is principally affected by the lactose
and dissolved salts in the milk and is very constant due to its effect on the osmotic pressure of milk.
The addition of water would reduce the concentration of these compounds and lead to a change of
the freezing point towards zero [42]. Taking the reasons above into consideration, sample 1 was most
likely adulterated by water dilution.

3.3.2. Suspected Samples Flagged by the Multivariate Detection Approach

According to the KNN OCC model developed with the measured dataset, 29 market survey
samples were flagged (Table 3). Among these suspected samples, the compositional features of
24 samples (samples 1–16, 18–22 and 26–28) were in-line with the univariate analysis, which exceeded
the lower boundary based on the measured dataset. The five other samples (samples 38–42),
of which the compositional features were within the univariate boundaries, could be explained
by the characteristics of the KNN algorithm. In the classification phase of the KNN OCC model, for
each object in the test set, the k (k = 3 in this study) nearest training set vectors (the control samples) are
determined, the distance between them calculated and the classification is then done by comparing
the distance between the object and its k nearest neighbours to a predetermined threshold [43]. To
visualise the variation among samples, a PCA was performed with the measured data of the control
samples and market survey samples, as presented in Figure 4. Although the samples 38–42 were located
in the middle of the control samples, their k nearest neighbours were not as close as the nonflagged
samples, explaining why they were flagged by the KNN OCC model. It is noted that Figure 4 shows
only the first two PCs of the PCA, instead of the “complete distribution”, as used for the KNN model;
however, it does provide a visualisation of the variation among samples.Foods 2020, 9, x FOR PEER REVIEW 13 of 17 
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Figure 4. The principal component analysis (PCA) plot of the first two PC dimensions of the control
samples (red points) and the market survey samples (blue points) based on the results obtained from
the MilkoScan measurements. The suspected samples flagged by the k-nearest neighbours (KNN)
model of the measured dataset are cross-shaped (x).

Three samples (samples 38, 39 and 43) were flagged by the KNN OCC method developed from
the variance-adjusted dataset (Table 3). Similar to the scenario as described for the measured dataset,
the spatial distance between these three flagged samples and their k (k = 3 in this study) nearest
neighbours is larger than the determined threshold of the models based on the variance-adjusted
dataset. As a result, these samples were flagged as differing from the control group.
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Table 3. The results of the suspected samples in the market survey set according to the developed detections a.

ID
Protein
(% w/w)

Fat
(% w/w)

TS
(% w/w)

SNF
(% w/w)

Lactose
(% w/w)

Density
(g/L)

FPD
(◦C) Area Province

Univariate Boundaries Multivariate Models
(KNN)

Measured
Dataset

Variance-
Adjusted
Dataset

Measured
Dataset

Variance-
Adjusted
Dataset

1 3.09 ** 3.56 * 12.06 * 8.42 ** 4.58 * 1029 ** 0.488 ** N Tianjin 7 4 yes no
2 3.07 ** 3.48 * 11.94 * 8.37 ** 4.55 * 1029 ** 0.490 * NW Xinjiang 7 3 yes no
3 3.28 * 3.49 * 12.25 * 8.69 * 4.65 * 1030 * 0.515 * NW Xinjiang 7 0 yes no
4 3.05 ** 3.79 12.35 * 8.51 ** 4.71 * 1029 ** 0.498 * N Henan 6 3 yes no
5 3.12 ** 3.61 12.18 * 8.50 ** 4.62 * 1030 * 0.492 * N Tianjin 6 2 yes no
6 2.99 ** 3.43 * 12.06 * 8.58 * 4.85 1030 * 0.512 * E Zhejiang 6 1 yes no
7 3.14 * 3.70 12.32 * 8.56 * 4.67 * 1030 * 0.494 * N Henan 6 0 yes no
8 3.28 * 3.74 12.49 * 8.68 * 4.64 * 1030 * 0.513 * NW Xinjiang 6 0 yes no
9 3.17 * 3.87 12.54 * 8.62 * 4.69 * 1030 * 0.505 * NW Xinjiang 6 0 yes no

10 3.22 * 3.40 * 12.19 * 8.72 * 4.74 * 1031 0.497 * S Chongqing 6 0 yes no
11 3.33 3.60 * 12.39 * 8.73 * 4.63 * 1030 * 0.492 * S Yunnan 6 0 yes no
12 2.95 * * 3.05 ** 11.78 ** 8.69 * 4.99 1031 0.510 * E Jiangsu 5 3 yes no
13 3.14 * 4.16 12.75 8.55 * 4.65 * 1029 ** 0.496 * N Tianjin 5 1 yes no
14 3.03 ** 3.57 * 12.34 * 8.74 * 4.96 1031 0.513 * S Yunnan 5 1 yes no
15 3.17 * 3.40 * 12.29 * 8.85 * 4.93 1031 0.510 * N Shanxi 5 0 yes no
16 3.15 * 4.15 12.81 8.62 * 4.70 * 1030 * 0.500 * NW Xinjiang 5 0 yes no
17 3.27 * 3.53 * 12.41 * 8.83 * 4.80 1031 0.514 * S Yunnan 5 0 no no
18 3.01 ** 3.63 12.26 * 8.58 * 4.81 1028 ** 0.538 S Hubei 4 1 yes no
19 3.12 ** 3.51 * 12.47 * 8.95 5.07 1032 0.513 * S Yunnan 4 1 yes no
20 3.25 * 4.21 13.05 8.81 * 4.80 1030 * 0.505 * N Hebei 4 0 yes no
21 3.12 ** 4.06 12.86 8.78 * 4.91 1030 * 0.523 NW Shaanxi 3 1 yes no
22 3.25 * 3.31 * 12.32 * 8.97 4.96 1032 0.520 N Beijing 3 0 yes no
23 3.37 4.16 13.09 8.89 * 4.75 * 1030 * 0.525 NW Gansu 3 0 no no
24 3.30 * 3.47 * 12.50 * 8.99 4.94 1032 0.523 S Guangdong 3 0 no no
25 3.26 * 3.58 * 12.67 9.07 5.06 1032 0.531 N Hebei 2 0 no no
26 3.09 ** 3.75 12.76 9.00 5.16 1032 0.541 E Shandong 1 1 yes no
27 3.26 * 4.23 13.24 9.00 4.97 1031 0.570 NW Qinghai 1 0 yes no
28 3.32 * 3.97 13.24 9.29 5.21 1033 0.536 S Yunnan 1 0 yes no
29 3.29 * 3.84 12.91 9.05 5.00 1032 0.538 E Shandong 1 0 no no
30 3.29 * 3.83 12.94 9.06 5.05 1032 0.532 N Beijing 1 0 no no



Foods 2020, 9, 709 12 of 17

Table 3. Cont.

ID
Protein
(% w/w)

Fat
(% w/w)

TS
(% w/w)

SNF
(% w/w)

Lactose
(% w/w)

Density
(g/L)

FPD
(◦C) Area Province

Univariate boundaries Multivariate Models
(KNN)

Measured
Dataset

Variance-
Adjusted
Dataset

Measured
Dataset

Variance-
Adjusted
Dataset

31 3.30 * 3.91 12.95 9.03 4.97 1032 0.524 N Hebei 1 0 no no
32 3.63 3.88 13.67 9.83 5.42 † 1035 0.573 NE Heilongjiang 1 0 no no
33 3.34 3.57 * 12.73 9.13 5.03 1032 0.524 NW Ningxia 1 0 no no
34 3.26 * 3.99 13.10 9.11 5.08 1032 0.539 NW Xinjiang 1 0 no no
35 3.32 * 3.97 13.17 9.19 5.11 1032 0.538 S Chongqing 1 0 no no
36 3.28 * 3.63 12.67 9.01 4.97 1032 0.530 S Guangdong 1 0 no no
37 3.58 3.85 13.57 9.74 5.40 † 1035 0.566 S Guangdong 1 0 no no
38 3.47 4.32 13.73 9.44 5.21 1033 0.546 E Jiangsu 0 0 yes yes
39 3.60 3.86 13.40 9.55 5.18 1033 0.553 NE Heilongjiang 0 0 yes yes
40 3.55 4.20 13.55 9.35 5.02 1032 0.540 E Shandong 0 0 yes no
41 3.40 3.72 13.08 9.36 5.20 1033 0.548 NW Xinjiang 0 0 yes no
42 3.40 4.40 13.56 9.16 4.99 1032 0.536 S Guizhou 0 0 yes no
43 3.51 4.22 13.83 9.65 5.36 1034 0.560 N Hebei 0 0 no yes

a ID, sample identification; TS, total solids; SNF, solids nonfat; FPD, freezing point depression; KNN, k-nearest neighbours. S, South; E, East; NW, Northwest; NE, Northeast and N,
Central North. The colours dark-red, light-red and green indicate the worst-to-no anomalies detected for the univariate boundaries, and the colours red and green indicate the abnormal
samples marked by the KNN models. * The value exceeding the lower measured boundary. ** The value exceeding the lower variance-adjusted boundary. † Value exceeding the upper
measured boundary.
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3.3.3. Overall Suspected Samples of the Market Survey Set

A total of 43 samples of the market survey set (n = 52) were flagged by the developed approaches
(Table 3). Some exceeded only the boundary of one feature, while in most cases, samples exceeded
multiple boundaries. Since more variation, as would be expected in practice, has been considered
with the application of the variance-adjusted dataset, more attention should be paid to the samples
exceeding the variance-adjusted boundaries. As every approach has its limits, combining multiple
criteria simultaneously to detect suspected samples would provide a new perspective. In the end,
the samples that violated most criteria, i.e., three out of four, were considered as the suspected samples
among the market survey samples, which resulted in twelve suspected samples (samples 1–2, 4–6,
12–15, 18, 19, 21 and 26). Among these samples, four were produced in the Central-Northern area of
China, three in the Eastern area, two in the North-Western area and three in the Southern area.

3.4. Relation Between the Origin of the Suspected Milk and the Previously Determined Fraud Vulnerability

As shown in Table 4, the percentages of the suspected samples in the North-Eastern and North-
Western areas (0% and 13%, respectively) were lower than those in the Central-Northern and Eastern
areas (31% and 38%, respectively). This is in-line with a study on the regional distribution of reported
food fraud incidents, where more food fraud scandals or incidents were reported in the provinces
of the Central-Northern and Eastern areas compared to the North-Western and North-Eastern areas
in China [6]. The fraud vulnerabilities of the Northern and Eastern areas have been identified in
a previous study [13]. The fraud factors showing significant differences between the milk production
areas are presented in Table 4, following the result of a PCR model that aimed to relate the determined
fraud vulnerability to the number of suspected samples in certain areas.

3.4.1. Relation Between the Origin of the Suspected Milk and the Fraud Opportunities and Motivations

As presented in Table 4, the milk chain actors from the East and Central-Northern areas, where more
suspected UHT milk samples were flagged, stated before that they had poorer business relationships
within the supply chain than those in other areas of China (fraud factor 4). Since a good relationship
between the actors in the milk supply chain can positively affect information-sharing, this can help
to keep the supply chain transparent [44], which may additionally play a role in reducing the risk of
fraud in certain areas. Conversely, the situation may deteriorate. As a consequence, the regression
vector of the PCR showed positive coefficients between the business relationship (fraud factor 4)
and the percentage of the suspected samples, indicating that a high rank of the factor would contribute
to the higher percentages of suspected samples in these areas.

3.4.2. Relation Between the Origin of the Suspected Milk and the Counteracting Controls

The results of our study revealed that two managerial control measures, lack of an ethical code
of conduct and lack of integrity screening of the employees, and one technical control measure (lack
of fraud contingency plans) related to the higher prevalence of suspected samples from the milk
production participants in the East and Central-Northern areas (Table 4). Well-established controls may
mitigate against food fraud. However, if they are lacking in combinations with increased opportunities
and motivations, companies become increasingly vulnerable to fraud [45].
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Table 4. The geographical prevalence of the suspected samples (flagged by the three criteria in
Table 3), the mean ranks of scores of the fraud factors showing significant differences between the four
geographical areas a and the principal component regression (PCR) results.

Parameters East Central-
North

North-
West

North-
East

Variable
Coefficients d

Percentage (%) of suspected samples in the market survey set
(number of suspected/total samples)

38%
(3/8)

31%
(4/13)

13%
(2/15)

0%
(0/2) -

Fraud factors on
opportunities

and motivations b

1. Available technology for milk adulteration 49 46 71 66 −0.201
2. Detectability of adulteration 51 56 35 58 −0.056
3. Accessibility to production activities 53 49 57 63 −0.243
4. Relationships within the supply chain 47 61 39 36 0.174
5. Valuable components/attributes 38 62 39 42 0.023
6. Farmer’s financial pressure imposed by
the company 40 61 40 45 0.005

7. Level of competition 73 41 73 53 0.096
8. Price difference due to regulatory differences 62 47 67 48 0.125

Fraud factors
on Controls c

9. Application of integrity screening of
employees in the company 51 46 70 63 −0.172

10. Strictness of the ethical code of conduct in
the company 45 48 70 61 −0.188

11. Support of a whistle-blowing system in
the company 62 47 69 48 0.115

12. Specificity of the national food policy 70 48 55 49 0.209
13. Availability of a fraud contingency plan 62 45 65 61 −0.051

a The fraud vulnerability data was retrieved from [11], based on 104 milk production participants (90 farmers and 14
milk processors) in China. b Higher rank of the opportunities and motivations factors indicate higher vulnerability [11].
c Higher rank of the control factors indicate more adequate controls and, thus, lower vulnerability [11]. d The variable
coefficients in the regression vector of the principal component regression (PCR) between the mean rank of the scores
of the fraud factors and the percentage of the suspected samples for the four geographical areas.

4. Conclusions

The study demonstrated the occurrences of suspected adulterated UHT milk samples in various
parts of China and their relationships with previously established fraud vulnerability of businesses
operating in those areas. Twelve (out of 52) samples in a market survey were suspects with quality or
fraud-related issues, of which one is highly suspected of being adulterated by a dilution with water.
The relative prevalence of suspect samples was higher in milks produced in the Central-Northern
and Eastern areas than in those produced in the North-Western and North-Eastern areas, while those
of the Southern area were in between. The underlying factors contributing to this higher vulnerability
are poorer business relationships and a lack of adequate managerial controls.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/6/709/s1:
Table S1. The calculations and four levels of adulterants added into the three milk pools (per 100 g). Table S2.
The amount of adulterants used for the combined-adulterations for the three milk pools. Table S3. The result
of the milk compositions and features of the control samples for the measured dataset. Table S4. The result of
the milk compositions and features of the control samples for the variance-adjusted dataset.
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