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Abstract: The nature and extent of climate and soil nutrient controls in Chinese forests remain poorly
resolved. Here, we synthesized the data on carbon–climate–soil in eastern China, and litter N was
firstly taken into consideration, to examine the variation of net primary productivity (NPP) and its
driving forces. Results showed that NPP had significant latitude pattern and varied substantially
across climate zones. Bivariate analyses indicated that mean annual temperature (MAT), mean annual
precipitation (MAP), soil N content (Nsoil), and annual litter N (Nre) were the main controlling factors
in spatial pattern of forest NPP. Notably, partial general linear model analysis revealed that MAT,
MAP, and Nre jointly explained 84.8% of the spatial variation of NPP. Among the three major factors,
Nre explained more variation of forest NPP than the other two factors, and MAT and MAP affected
NPP mainly through the change of litter N rather than via themselves, highlighting the importance of
litter N in estimating forest NPP. However, to accurately describe the pattern of forest NPP in China,
more detailed field measurements and methodologies on NPP and relevant confounding factors
should be addressed in future studies.
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1. Introduction

Net primary productivity (NPP) is a key ecosystem variable and a critical component
of the regional and global carbon cycle [1,2]. However, the spatial distribution of forest
NPP is still uncertain, due to complicated impacts from various environmental and biological
factors, e.g., vegetation distribution, climatic variables, and land use change [3–5]. Therefore,
accurate estimation of NPP and its driving forces is essential to understanding terrestrial carbon
pools and responses of forest functions to future climate change [6,7].

At a regional scale, NPP is strongly correlated with climatic factors [8–11]. Based on global NPP
data, Lieth (1975) [8] developed the climate-driven theory, and described the relationship between
climatic factors (annual mean temperature, annual precipitation, and annual evapotranspiration) and
NPP in logistic functions. However, it is still unclear whether regional NPP across biomes follows the
same pattern [12,13], since the driving factors vary among regions [14–16]. Further, an international
coordination for compilation of global NPP data for model validation and development, the Global
Primary Productivity Data Initiative (GPPDI), has worked successfully since 1995. However,
inadequate observational NPP data seriously inhibit the estimation and modeling of the global carbon
cycle and the validation and evaluation of the global carbon models [17].
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Globally, forests represent 80% of plant biomass, and 50–60% of annual NPP in terrestrial
ecosystems [5,18]. Chinese forests, which cover about half the total land area of China, contain perhaps
the widest range of forest types in the world, ranging from boreal forest and mixed coniferous
broad-leaved forest in the north, to subtropical evergreen broad-leaved forest, warm temperate
coniferous forest, tropical rainforest, and seasonal forest in the south [19,20]. It is regarded that these
forests have a significant influence on carbon budget both regionally and globally [21]. A lot of
field measurements of forest biomass and NPP estimations are available from multiple sites for the
past two decades. However, these data were mostly published in Chinese journals and reports and
not accessible to Western scientists. Also, site-based data of forest NPP in China has not yet been
synthesized in a consistent manner.

Located in heavily forested area, the North–South Transect of Eastern China (NSTEC) features a
high variation in plant composition, climate, and soil substrate materials [22]. It thus provides wide
biome heterogeneity to examine spatial pattern of forest NPP. We synthesized the data in the primary
literature on NPP in forests within the NSTEC to produce a consistent dataset on NPP, and amassed
the data on mean annual temperature (MAT), mean annual precipitation (MAP), soil N content (Nsoil),
and annual litter N (Nre). Hobbie (2015) [23] proposed the plant litter feedback paradigm that changes
in plant litter traits reinforce patterns of soil fertility and NPP. Thus, we first introduced litter N
as available N for plants, which was an improvement over the past studies. Based on these data,
we aim to investigate whether temperature and precipitation characterize the pattern of NPP within
the transect, to explore whether soil N is a limiting factor for large-scale distribution of NPP, and to
test the applicability of the climate-driven theory in eastern China. Besides understanding the causes
of variability in ecosystem productivity, the findings are crucial for assessing the potential responses to
global climatic change, and are thus incorporated into statistical and simulation models.

2. Materials and Methods

2.1. Study Area

NSTEC provides an ideal platform for exploring the growth of forest in East Asia’s monsoon
region [22]. NSTEC has a spatial distance of more than 3700.0 km in length, ranging from 108.0◦ E to
118.0◦ E for latitude below 40.0◦ N and from 118.0◦ E to 128.0◦ E for latitude above 40.0◦ N (Figure 1).
From north to south, MAP increases from 500.0 mm to about 1800.0 mm, and MAT changes from
1.0 to 22.0 ◦C, correspondingly. Due to the obvious latitudinal gradients for climate, zonal forest
ecosystems occur within the NSTEC, which include cold-temperate coniferous forest, temperate mixed
forest, warm-temperate deciduous broadleaved forest, subtropical evergreen broad-leaved forest,
and tropical monsoon rainforest. Within NSTEC, 87 observations in 34 plots were included in this
study, and geographical distribution of the sites was mapped in Figure 1.

2.2. Datasets

Data on the forest ecosystems within the transect were obtained from published literature (Figure 1,
Table S1). The sampling years were not mentioned in most of the original literature, and only the
publication years of the literature could be obtained, which varied from 1983 to 2010. The information
about the publication time could be seen in Table S1. The times were classified into three groups
according to the publication year, and they were 1980s (1983–1989), 1990s (1991–1999), and 2000s
(2001–2010). Based on the classification, the temporal variations were analyzed, and there were no
significances among climatic factor, soil N, and also NPP for different times (Table S2). Therefore,
we take no account of temporal variations of forest NPP, and only spatial pattern of forest NPP was
involved. To be clear, “major forest biome” was used to represent a higher-level classification of the
“ecological zone”, which included boreal, temperate, subtropical, and tropical forests [24]. Each site
included site name, latitude, longitude, tree species, MAT, MAP, Nsoil, Nre, and NPP estimations
(Table S1). We retrieved missing latitude or longitude information for sites without such data from
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Google Earth according to site names. Meanwhile, missing MAT and MAP were extracted from the
Chinese climate data based on site locations. NPP was expressed, herein, in per unit of oven-dry
matter (t ha−1 a−1). In order to compare with other studies, NPP may be expressed in g C m−2 a−1,
where 1.0 g carbon is equivalent to 2.2 g oven-dry matter.
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Figure 1. Locations of research plots in this synthesis in eastern China (black dots). The region between
the two lines represents the area of the North–South Transect of Eastern China (NSTEC).

2.2.1. Estimation of NPP

Forest NPP was estimated as the sum of increase in the standing crop of vegetation based on
the data for biomass, which included net increments of trees, shrubs, and herbs. Biomass data in
our study were all from field survey, and data from modeling and regional average were excluded.
The sampling methods for measuring forest biomass used by Chinese scientists, however, were quite
different. General methods of biomass estimates were given below. Firstly, diameter at breast height
(DBH) and the height (H) of each tree in the plot were measured, and then one of the three methods
was used: (1) mean tree biomass was measured, and then multiplied by tree density of each plot;
(2) allometric equations were used to calculate the biomass of each tree; and (3) allometric equations
were used to calculate the mean tree biomass, and multiplied by tree density of each plot [25,26].
Secondly, dead biomass of each tree was the sum of standing dead stem and coarse woody debris [27].
Thirdly, biomass of shrubs and herbs was measured by harvest method within large tree samples.
Aboveground tissues were clipped, and the weight of these tissues and the aboveground biomass
were calculated based on the plot area. Finally, the biomass of litterfall was determined by monthly
collection in three or more 1.0 m × 1.0 m plots, laid out inside a single tree plot. Litterfall components,
such as leaf, branch, flower, and fruit, were dried and weighed to estimated total litterfall biomass.
After one year, the sampling and the analysis for trees and understory vegetation were repeated,
and the increases in biomass were taken as forest NPP.

2.2.2. Measurements of Soil N

Soil sampling depths varied from a few centimeters to several meters in different studies.
Considering data availability and distribution of plant roots in the soil, in our study, only the data
from the depths of 0–60.0 cm in soil were used. Generally, the soil was sampled from the soil pits
selected randomly in each forest ecosystem, and soil bulk density was determined by collecting
samples in volumetric rings. In preparation for analysis, soil samples were air-dried and then passed
through the mesh sieve for measurement of N concentration. Nsoil was calculated by multiplying the
mean concentration of N in each layer with the corresponding mean soil bulk density Equation (1).
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Annual litter N (Nre) was calculated as litter biomass multiplied by the respective N concentration,
and finally, the contents of the individual fractions were summed in Equation (2).

Nsoil = ∑(mean concentration of N in each layer× corresponding mean soil bulk density) (1)

Nre = ∑(annual litter biomass of each component× litter N concentration in each component) (2)

where, Nsoil is soil N content (kg ha−1), Nre is annual litter N (kg N ha−1 a−1).

2.2.3. Climate Data

When investigating the relationship between climate and forest productivity, it would be better to
employ climate data for particular sampling years. Hence, synchronous climate data for particular
sampling years were collected. However, most sampling sites were far away from weather stations,
and thus, climate data were missing. Therefore, the meteorological data from the Meteorological
Database of the Chinese Ecological Research Network (CERN) Synthesis Research Center were
extracted. Climate data in a grid cell where the sampling site was located was extracted as the
climate data of the sampling site. MAP and MAT were the average values of 1980–2000 with a
10-day-0.1◦ spatial–temporal resolution [28].

2.3. Statistical Analysis

One-way analysis of variance (ANOVA) was adopted to test the differences in forest NPP among
different climate zones, and was followed by Fisher’s least significant difference (LSD) comparisons
when the differences were significant. Linear regression analysis or dynamic curve fit was used to
analyze the relationships between forest NPP and the driving forces. Considering the differences
in sample size, we compared R2 and root mean squared error (RMSE), and selected the better-fit
functions that had a higher R2 and lower RMSE. The stepwise regression was used to analyze the
linear regression on forest NPP with climate and soil N. In the stepwise regression, the minimum
p-value for a variable to be recommended for adding to and removing from the model was 0.05.
Considering the results of stepwise regression, only MAT, MAP, and Nre were analyzed in the ensuing
analysis. To identify the relative effects and interactive effects of the above three factors on forest NPP,
we conducted a partial general linear model (GLM) using NPP as dependent variable, and MAT, MAP,
and Nre as predictors. The partial regression divides the variation in response variable explained by
several predictor variables into independent components (representing the independent effects of an
individual explanatory variable when controlling effects of the other explanatory variables) and joint
components (usually representing the collinearities between explanatory variables). The variation
partitioning with three explanatory matrices leads to the identification of seven fractions in this study,
i.e., independent effects of MAT, MAP, and Nre; interactive effects of MAT and MAP, MAT and Nre,
MAP and Nre, and the interactive effect of all variables. Further details about the method were given
in Heikkinen et al. (2005) [29].

Figure 1 was plotted with ArcGIS 10.1 software (Esri, Realands, CA, USA), and other graphs were
performed by Sigma Plot 13.0 software (Systat Software Inc., San Jose, CA, USA). The partial GLM was
performed with SAS statistical software and other analyses were conducted by SPSS 16.0 statistical
software (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Latitudinal Pattern and Statistics of NPP

Forest NPP across eastern China exhibited significantly obvious latitudinal patterns (p < 0.001),
but no clear longitudinal trend (p = 0.20) (Figure 2). Therefore, we did not elaborate on the longitudinal
pattern of forest NPP. Generally, NPP decreased with increasing latitude when latitude was below
35.0◦ N, but increased when the latitude was higher than the threshold level (Figure 2). As a whole,
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mean total NPP was 9.5 ± 0.7 t ha−1 a−1 (mean ± SE), ranging from 0.8 to 29.6 t ha−1 a−1, with the
variability (coefficient of variation, CV) up to 64.0% (Table 1). In terms of different climate zones,
tropical forests below 23.0◦ N had the highest forest productivity with an average NPP of 15.3 ± 1.3 t
ha−1 a−1, but the smallest spatial variability (CV = 31.6%). NPP of temperate forests was, on average,
5.5 ± 0.8 t ha−1 a−1, which tended to be the lowest among the four climate zones. The other climate
zones (subtropical forests and boreal forests) were not different from each other, and were intermediate
to the others. Specifically, the average NPP of subtropical forests was 10.1 ± 0.9 t ha−1 a−1, which was
close to the value of boreal forests (12.1 ± 4.7 t ha−1 a−1), but the latter forests exhibited a higher
spatial variability in NPP from available data (CV = 78.4%) (Table 1).
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Figure 2. Trends of net primary productivity (NPP) along latitude for forest ecosystems in eastern
China. N, number of observations; F, F Values.

Table 1. Comparisons of net primary productivity (NPP) of forest ecosystems in different climate zones.
Tropical zone: <23.0◦ N; Subtropical zone: 23.0–33.0◦ N; Temperate zone: 33.0–45.0◦ N; and Boreal zone:
>45.0◦ N. Number of observations (N), mean value (Mean), maximum value (Max), minimum value
(Min), standard error (SE), and coefficient of variation (CV) were reported. Differences among climate
zones were tested using one-way ANOVA with Fisher’s LSD comparisons; differences at p < 0.05 were
indicated with different letters.

Climate Zone N
NPP (t ha−1 a−1)

Mean Max Min SE CV (%)

Boreal 4 12.1 ab 24.6 1.9 4.7 78.4
Temperate 28 5.5 c 14.1 0.8 0.8 73.2
Subtropical 42 10.1 b 29.6 1.2 0.9 54.7

Tropical 13 15.3 a 24.2 8.6 1.3 31.6
Overall 87 9.5 29.6 0.8 0.7 64.0

3.2. The Impact of Climatic Factors on the Spatial Pattern of NPP

Temperature is an important driving factor for the ecosystem carbon budget, and water is the basic
material for maintaining ecosystem structure and functions. As was clearly shown in Figure 3, the plot
based forest NPP grew linearly with increasing MAT, MAP, and the combinations, although variation
occurred within the climate band and few sites fell out of 95.0% prediction band. On average, MAT and



Forests 2018, 9, 322 6 of 13

MAP contributed 16.6% and 21.8% of the spatial variation of NPP, respectively (Figure 3, Table 2).
We then analyzed the combined contribution of MAT and MAP to the spatial variation of NPP,
and found that MAT and MAP jointly explained 24.3% of the spatial variation of NPP, which was only
just 2.5% higher in the prediction of NPP than single climatic factor (MAP) alone (Figure 3, Table 2).
As for different climate zones, climatic factors were also closely related to the occurrence of NPP.
Generally, there was a consistent and significant shift from species with high NPP in warm climate with
high MAT and MAP toward species with low NPP in low MAT and MAP conditions, while the trend
in boreal forest ecosystems differed (Figure S1). Specifically, for boreal forest, higher NPP occurred
with lower MAT and MAP. More speculatively, soil nutrients or other environmental factors might
contribute to the variation of forest NPP in this region, and this should be taken into consideration
in the ensuing analyses. It is worth noting that the number of boreal forests was quite low, hence,
the reliability of the results should be considered carefully.
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Figure 3. Relationships between net primary productivity (NPP) and mean annual temperature (MAT),
mean annual precipitation (MAP), and combinations of MAT and MAP. N, number of observations;
F, F Values.

Table 2. Bivariate and multivariate regression models of net primary productivity (NPP) on climatic
factors and soil N. MAP, mean annual precipitation; MAT, mean annual temperature; Nsoil, soil N
content; Nre, annual litter N; N, number of observations; F, F Values; RMSE, root mean square error.

Variables Model Type N R2 F RMSE p

MAT linear 87 0.166 16.9 5.6 <0.001
exponential 87 0.202 22.0 5.6 <0.001

MAP linear 87 0.218 21.5 5.4 <0.001
exponential 87 0.237 23.2 5.3 <0.001

MAT+MAP linear 87 0.243 23.8 4.2 <0.001
Nsoil linear 42 0.106 4.7 7.0 <0.05

exponential 42 0.148 4.5 6.7 <0.05
Nre linear 86 0.284 30.1 3.4 <0.001

Nsoil + Nre linear 42 0.382 32.7 2.2 <0.001
MAT + MAP + Nsoil + Nre linear 42 0.543 10.6 1.6 <0.001

3.3. The Impact of Soil N on the Spatial Pattern of NPP

Similar to climatic factors, our data illustrated that soil N was also closely related to forest NPP
(Figure 4). Generally, positive linear function fitted well the relationship between forest NPP and soil
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N, and namely, Nsoil and Nre accounted for 10.6% and 28.4% of variation of NPP (Figure 4, Table 2).
When examining the combined effect of Nsoil and Nre, we found that Nsoil and Nre in the model jointly
explained 38.2% of variation in NPP, a marked improvement over Nsoil or Nre alone. (Figure 4, Table 2).
Although forest NPP covaried spatially with soil N, it should be noted that a statistically significant
relationship did not necessarily imply causality. Moreover, the occurrence of high Nsoil and Nre rather
than MAT and MAP favored the increase of NPP in boreal forest ecosystems (Figure S2). Additionally,
across all bivariate analyses above, R2-value and F-value of Nre for NPP were almost always higher
than those of NPP versus other factors involved in this study, illustrating that plant litter N played a
more important role in determining forest NPP than other environmental factors.

Forests 2018, 9, x FOR PEER REVIEW  7 of 13 

 

almost always higher than those of NPP versus other factors involved in this study, illustrating that 
plant litter N played a more important role in determining forest NPP than other environmental 
factors. 

N
soil (kg ha-1)

0 5000 10000 15000

N
P

P 
(t

 h
a-1

 a
-1

)

0

10

20

30
X column  vs Y column 
95% Confidence Band 
95% Prediction Band 

(a)

Y = 0.001 X + 5.30
R2 = 0.106, p < 0.05
F = 4.7, N = 42

N
soil (kg ha-1)*N

re (kg ha-1 a-1)

0 600 1200 1800

Y = 0.01 X + 3.85
R2 = 0.382, p < 0.001
F = 32.7, N = 42

(c)

N
re (kg ha-1 a-1)

0 50 100 150

N
P

P
 (

t h
a-1

 a
-1

)
Y = 0.08 X + 6.60
R2 = 0.284, p < 0.001
F = 30.1, N = 86

(b)

 
Figure 4. Relationships between net primary productivity (NPP) and soil N content (Nsoil), annual 
litter N (Nre), and combinations of Nsoil and Nre. N, number of observations; F, F Values. 

3.4. The Combined Impact of Climate and Soil on the Spatial Pattern of NPP 

Even though the climate-NPP and soil-NPP relationships analyzed above were statistically 
significant, many points were still scattered around the fitted lines, and a great deal of variability for 
NPP was not captured (Figures 3 and 4). Subsequently, we conducted a stepwise multiple regression 
to identify the effects of climatic factors and soil N on forest NPP. The results showed that Nsoil was 
excluded from the linear regression model, and the explanatory power of these three factors (MAT, 
MAP, and Nre) for NPP was just 49.2%, a marginal decline over four factors together, in Equation (3). NPP	 = 	−0.3387 − 0.033	MAT + 0.004	MAP + 0.073N 																		  																					 	= 	0.492, 	 = 	42, 	 = 	10.2, 	 < 	0.001 (3) 

However, there were significant collinearities between these environmental factors. Table 3 
summarized correlation coefficients among these variables. Climatic factors for MAT and MAP were 
highly correlated, and both of them had marked correlations with Nre, but had non-robust 
correlation with Nsoil, and mutually, Nre had a marginal relationship with Nsoil (Table 3). 

Table 3. Correlation matrix of independent variables. MAT, mean annual temperature; MAP, mean 
annual precipitation; Nsoil, soil N content; Nre, annual litter N; **, p < 0.01. 

Variables Data Range MAT MAP Nsoil 
MAT (°C) 0–23.5 1   

MAP (mm) 500.0–2000.0 0.670 **   
Nsoil (kg ha−1) 115.6–163.5 0.213 0.365  

Nre (kg ha−1 a−1) 1.9–172.2 0.288 ** 0.242 ** 0.161 

Considering the results of stepwise multiple regression analysis and correlation coefficients 
above, only MAT, MAP, and Nre were referred to when identifying the combined effects of the 
drivers on NPP in ensuing analysis. Given the significant collinearities among the three factors, their 
true roles for NPP could be obscured. Therefore, we used partial GLM to examine their relative 
causality in the control of spatial pattern of NPP. General linear model involving MAT, MAP and Nre 
could account for 84.8% of the variation in NPP, and MAT, MAP, and Nre explained 9.8%, 12.7%, and 

Figure 4. Relationships between net primary productivity (NPP) and soil N content (Nsoil), annual litter
N (Nre), and combinations of Nsoil and Nre. N, number of observations; F, F Values.

3.4. The Combined Impact of Climate and Soil on the Spatial Pattern of NPP

Even though the climate-NPP and soil-NPP relationships analyzed above were statistically
significant, many points were still scattered around the fitted lines, and a great deal of variability for
NPP was not captured (Figures 3 and 4). Subsequently, we conducted a stepwise multiple regression
to identify the effects of climatic factors and soil N on forest NPP. The results showed that Nsoil was
excluded from the linear regression model, and the explanatory power of these three factors (MAT,
MAP, and Nre) for NPP was just 49.2%, a marginal decline over four factors together, in Equation (3).

NPP = −0.3387− 0.033 MAT + 0.004 MAP + 0.073Nre

R2 = 0.492, N = 42, F = 10.2, p < 0.001 (3)

However, there were significant collinearities between these environmental factors. Table 3
summarized correlation coefficients among these variables. Climatic factors for MAT and MAP were
highly correlated, and both of them had marked correlations with Nre, but had non-robust correlation
with Nsoil, and mutually, Nre had a marginal relationship with Nsoil (Table 3).
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Table 3. Correlation matrix of independent variables. MAT, mean annual temperature; MAP,
mean annual precipitation; Nsoil, soil N content; Nre, annual litter N; **, p < 0.01.

Variables Data Range MAT MAP Nsoil

MAT (◦C) 0–23.5 1
MAP (mm) 500.0–2000.0 0.670 **

Nsoil (kg ha−1) 115.6–163.5 0.213 0.365
Nre (kg ha−1 a−1) 1.9–172.2 0.288 ** 0.242 ** 0.161

Considering the results of stepwise multiple regression analysis and correlation coefficients above,
only MAT, MAP, and Nre were referred to when identifying the combined effects of the drivers on NPP
in ensuing analysis. Given the significant collinearities among the three factors, their true roles for NPP
could be obscured. Therefore, we used partial GLM to examine their relative causality in the control of
spatial pattern of NPP. General linear model involving MAT, MAP and Nre could account for 84.8%
of the variation in NPP, and MAT, MAP, and Nre explained 9.8%, 12.7%, and 35.3% of the variation
in NPP, respectively; the interactive effects of MAT and MAP (ab), MAT and Nre (ac), MAP and Nre

(bc), and MAT, MAP, and Nre (abc) represented 10.9%, 4.6%, 4.0%, and 7.5%, respectively (Figure 5).
The results indicated that Nre was much more important in shaping forest NPP than the climatic factors.
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Figure 5. Summary of the partial general linear model (partial GLM) for the effects of mean annual
temperature (MAT), mean annual precipitation (MAP), and annual litter N (Nre) on net primary
productivity (NPP). In the partial GLM, a, b, and c denoted the independent effects of MAT, MAP and
Nre, respectively; ab, ac, and bc indicated respectively the interactive effects between MAT and MAP,
MAT, and Nre, MAP and Nre; and abc represented the interactive effects of the three different factors.

4. Discussion

4.1. Carbon Budget

NPP in forests in eastern China in our study were, on average, 4.3 t C ha−1 a−1, which was
similar to that in boreal forest ecosystems (4.2 t C ha−1 a−1) [30], but lower than that in European
Forest Ecosystems (6.5 t ha−1 a−1) [31]. Actually, considering the number and spatial representation
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of observation sites in different regions, our results need to be further validated with more data.
Based on the 7th national forest inventory data and biomass–volume relationship, we estimated that
forest biomass carbon in China was approximately 840.3 Tg C a−1 (forest area was 195.0 × 106 ha),
assuming that forests represented potential vegetation in forest regions, and the impact of human
disturbance was negligible. Our findings were similar to the result reported by Ni et al. (2003) [20]
(738.9 Tg C a−1), but was about two times that estimated by Fang et al. (2001) [19] (461.0 Tg C a−1),
and the results might be ascribed to the differences in NPP estimate methods and forest area
calculations. As a large country in the world, China contributes much to regional and global carbon
budget. Therefore, determining distribution pattern of carbon budget of the forest ecosystems in
China will be helpful for exploring the carbon cycle of the terrestrial ecosystem and addressing global
warming [32].

4.2. Explanations for the Distribution Pattern of NPP

4.2.1. Climate Control

Temperature is an important factor for regulating potential photosynthetic activity of vegetation,
as well as the length of the growing season [33,34], both of which jointly determine ecosystem
productivity [35]. In addition to temperature, precipitation is another determinant of the spatial
variation of NPP [36,37]. Numerous studies have indicated that NPP increased with both increasing
temperature and precipitation, but the response rates and patterns varied in different regions [9,10,36].
Our study found that NPP in the forest ecosystems of China increased linearly at a rate of
0.38 t ha−1 a−1 for a 1.0 ◦C increase in MAT, and 1 t ha−1 a−1 for a 1.0 mm increase in MAP (Figure 3).
Our results were similar to that of Ni et al. (2001) [38], who noted that NPP in the forest ecosystems
of China increased by 0.48 kg ha−1 a−1 for 1.0 ◦C increase in MAT and 0.1 kg ha−1 a−1 for 1.0 mm
increase in MAP. Luo et al. (2004) [10] found that NPP increased exponentially, rather than linearly,
with an increase in MAT, whereas NPP increased with increasing MAP when MAP was lower than
the threshold level of 1490.0 mm, then decreased when MAP was higher than the threshold level.
Luyssaert et al. (2007) [36] illustrated that in a global forest study, NPP increased with increasing
MAT from 5.0 to 10.0 ◦C, but appeared to be saturated beyond 10.0 ◦C. Similarly, NPP increased with
increasing MAP until leveling off at 1500.0 mm. Although the responses of NPP to climatic factors were
different in a certain extent, the decisive effects of temperature and precipitation on spatial variation of
NPP were established in most studies.

4.2.2. N Control

Soil N is a primary factor that limits plant growth owing to the large discrepancy between demand
and supply, and its vital role in plant carbon assimilation [39,40]. Significant advances have been
made in the past decades toward understanding the relationship between soil N and NPP in terrestrial
ecosystems, whereas substantial uncertainties persist, and discrepancies between studies remain
unresolved [40–42]. Yuan et al. (2006) [43] found a significant positive linear correlation between NPP
and soil inorganic N for grassland ecosystems in Mongolia, whereas Luo et al. (2004) [10] found a
curved relationship between NPP and total soil N. Our field data indicated that Nsoil alone explained
nearly 10.6% of the NPP variation within the transect (Figure 4, Table 2). Hobbie (2015) [23] focused
on feedback to NPP operating through litter decomposition, and reported that positive or negative
effects of litter N on the later stages of litter decomposition could strengthen or weaken the positive
loop of NPP. Therefore, beside Nsoil, we introduced Nre to estimate the effect of soil N on forest NPP,
and found that Nre alone accounted for 28.4% of the variation, which had higher explanation for NPP
than Nsoil, and the positive effects of Nre on forest NPP were confirmed (Figure 4, Table 2). The role
of soil N in shaping forest NPP, in our study, was imperative for models based on mechanism and
ecological process, such as CEVSA model, and BIOME-BGC model for NPP estimation. Generally,
the plant growth module in CEVSA model described photosynthesis, carbon allocation, leaf area index,
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and litter production; the biogeochemical module simulated the transformation and decomposition of
organic materials, and nitrogen inputs and outputs in soil. BIOME-BGC model was described as the
function of temperature, leaf area, water, and soil nitrogen.

Soil N and litter N were involved in the key process of these models. Thus, future efforts should
be focused on identifying the role of soil N, litter N, litter nutrient limiting decomposition, and litter
nutrient release versus NPP.

4.2.3. Joint Control

The present study identified one geographical trend in forest productivity, and found that MAT
and MAP, alone or in combination, explained 16.6–24.3% of the NPP variation within the transect,
while Nsoil and Nre explained 10.6–38.2% of the variation (Figures 3 and 4, Table 2). Although forest
NPP covaried spatially with climatic factors and soil N, it should be noted that a statistically
significant relationship did not necessarily imply causality. Importantly, we found that the trends
of the relationships of NPP to soil N were more similar than that of NPP versus climatic factors,
especially for boreal forests, indicating that rich soil N, rather than warm climate, stimulated the
increase in productivity in this region (Figures 3 and 4). To confirm the effects of climate and soil
on NPP, partial GLM was conducted, and the results showed that the overall model including MAT,
MAP, and Nre, could account for 84.8% of the spatial variation in NPP (Figure 5). The findings suggest
that the combination of temperature and precipitation-related physiology and soil substrate-related N
is responsible for the observed pattern of forest productivity, and also reflects pervasive geographic
pattern in the structure and function of forest ecosystems [42]. It was worth noting that in the overall
model, Nre explained independently more than 35.0% of the total variation for NPP, while MAT and
MAP explained independently less than 15.0% (Figure 5). The results above suggest that the geography
of NPP was largely controlled by Nre rather than climate, highlighting the role of litter N in shaping the
spatial pattern of forest NPP. The finding is valuable for planners and decision-makers in their attempts
to evaluate the effects of nutrient status on forest ecosystems and to develop suitable strategies for
forest management.

4.3. Uncertainty Analysis

In this study, we synthesized the data in the primary literature on NPP in the forest ecosystems in
eastern China to produce a consistent dataset on NPP. With a wide coverage and a reasonable range,
the results of this study provide a robust estimate of NPP in this region. However, there was still a great
deal of variability in NPP, which might be ascribed to limitations of data and methodology. Firstly,
new methods of data collection are still urgently required. Data collection should come directly from
the ecologists who measure forest NPP, rather than indirectly from publications. Standard methods
in measuring biomass, standard measure time, and suitable methods in estimating NPP are strongly
encouraged. Secondly, uneven site distribution could be an important factor contributing to the
uncertainty. In this study, the sites tended to be more concentrated in the temperate and subtropical
than boreal zone; therefore, limitations in the results of the analysis were introduced by this uneven
site distribution. Additionally, when analyzing the spatial variation of NPP at an annual scale,
errors were likely to be produced due to different time spans of data collection. Moreover, available field
measurements of NPP depend largely on the sum of the positive increments of biomass, since root
production was rarely estimated. As a result, existing field-based estimates of forest NPP in our study
were likely to be significant underestimates. Furthermore, it is worth noting that although MAT, MAP,
and Nre were important factors in the spatial variation of NPP in the forests of eastern China, the total
variability that was not captured was 15.2% for NPP (Figure 5). We inferred that NPP showed high
spatial variability due to impacts from various environmental factors, and biological factors, such as
stand age, vegetation distribution, nitrogen deposition, and disturbance (i.e., thinning harvesting
irrigation, and drainage) [44–46], could weaken the climate and soil regulation on forest productivity
to a certain extent. An intensive study on this aspect is expected to be carried out in the future,
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which is critical for expanding current analysis and including other carbon cycles related to more
environmental factors.

5. Conclusions

Based on published data from Chinese literature and reports, we concluded that NPP increased
from north to south within the NSTEC, and high spatial variation of NPP was found among climate
zones. Spatially, climate and soil were both significantly linearly correlated to NPP, and the combined
effect of MAT, MAP, and Nre accounted for 84.8% of the spatial variation of NPP. Considering the
true roles of the controlling factors in NPP, Nre was the most important, followed by MAP and
MAT in succession. The findings demonstrate that forest productivity was determined by climate,
mainly via the status of soil N, highlighting the role of litter N in shaping the spatial pattern of
forest NPP. The results are helpful for elucidating spatial variation of NPP and evaluating potential
responses of forest ecosystems to global climatic change. However, further studies need to be carried
out to fully understand and verify the causes of variability of NPP in forest ecosystems across wider
geographical sites.

Supplementary Materials: The following materials are available online at http://www.mdpi.com/1999-4907/
9/6/322/s1. Table S1: Location, mean annual temperature (MAT), mean annual precipitation (MAP), soil N
content (Nsoil), annual litter N (Nre) and net primary productivity (NPP) in this study. NOTES: Table S1 is a
long table, and we put it in a separate file; Table S2: Summary of analysis of variance (ANOVA) of mean annual
temperature (MAT), mean annual precipitation (MAP), soil N content (Nsoil), annual litter N (Nre) and net primary
productivity (NPP) among three classification of publication year (1980s (1983–1989), 1990s (1991–1999) and
2000s (2001–2010)). Figure S1: Comparisons of mean annual temperature (MAT), mean annual precipitation
(MAP), and net primary productivity (NPP) of forest ecosystems in different climate zones. Different letters above
bars indicated significant differences among climate zones, which were determined by Fisher′s least significant
difference (LSD) comparisons (p < 0.05). Figure S2: Comparisons of soil N content (Nsoil), annual litter N (Nre),
and net primary productivity (NPP) of forest ecosystems in different climate zones. Different letters above
bars indicated significant differences among climate zones, which were determined by Fisher′s least significant
difference (LSD) comparisons (p < 0.05).
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