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Abstract: Peer-to-peer (P2P) systems have offered users an efficient way to share various resources
and access diverse services over the Internet. In unstructured P2P systems, resource storage and
indexation are fully distributed among participating peers. Therefore, locating peers sharing pertinent
resources for a specific user query is a challenging issue. In fact, effective query routing requires smart
decisions to select a certain number of peers with respect to their relevance for the query instead
of choosing them at random. In this respect, we introduce here a new query-oriented approach,
called the reinforcement learning-based query routing approach (RLQR). The main goal of RLOR
is to reach high retrieval effectiveness as well as a lower search cost by reducing the number of
exchanged messages and contacted peers. To achieve this, the RLQOR relies on information gathered
from previously sent queries to identify relevant peers for forthcoming queries. Indeed, we formulate
the query routing issue as the reinforcement learning problem and introduce a fully distributed
approach for addressing it. In addition, RLQR addresses the well-known cold-start issue during the
training stage, which allows it to improve its retrieval effectiveness and search cost continuously,
and, therefore, goes quickly through the cold-start phase. Performed simulations demonstrate that
RLQR outperforms pioneering query routing approaches in terms of retrieval effectiveness and
communications cost.

Keywords: query routing; P2P; reinforcement learning; cold-start

1. Introduction

Peer-to-peer (P2P) systems have offered users an efficient way to share various resources and
access diverse services over the Internet. They are more scalable, cost-effective, and more autonomous
compared to distributed client/server systems [1]. In this respect, several P2P protocols and systems
(e.g., Gnutella [2], Chord [3], Pastry [4] to cite a few), mainly used for file sharing, have been deployed
over the Internet. The latter has attracted increasing interest among both researchers and computer
networking professionals [5]. Existing systems are categorized with respect to their architecture as
structured or unstructured systems. The former methods organize participating peers in a pre-defined
structure, such as ring or tree, then use an appropriate hashing function to compute peer identifiers
and place shared resources accordingly [4]. Locating peers holding pertinent resources for user
search queries (i.e., search mechanism) in structured P2P systems is easy since the network overlay is
structured and resources are distributed among peers according to known rules. However, in such a
dynamic environment, peers join and leave the system more frequently, and therefore, maintaining
the overlay structure is the main hindrance [6]. Instead of structuring the P2P overlay on a fixed
topology as structured systems do, unstructured P2P systems build a free network structure, in which
peers randomly organize themselves and locally manage their own content. Indeed, each peer joining
the network establishes at random a set of links with its neighborhood. Hence, peers do not have

Future Internet 2019, 11, 253; d0i:10.3390/£i11120253 www.mdpi.com/journal/futureinternet


http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/1999-5903/11/12/253?type=check_update&version=1
http://dx.doi.org/10.3390/fi11120253
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 253 20f12

information about shared documents of their neighbors or of other peers in the network [5,7-10].
Although unstructured systems efficiently manage the network dynamicity and fully support the
autonomy of peers, the search mechanism in these latter still remains a challenging issue. Indeed,
locating relevant peers sharing pertinent documents for a specific user query is of key interest. In fact,
it requires smart query routing decisions.

Existing query routing approaches in unstructured P2P systems have relied on various
mechanisms, such as pure flooding [2], controlled flooding [2], random walk [11,12], k-walker [12,13],
and gossiping [5,14,15]. The latter is an interesting mechanism widely adopted by recent query
routing approaches [5,9]. The main thrust of gossiping is to route the query to k neighbors chosen
with respect to the likelihood that they hold pertinent documents for the query [5,9,15,16], instead of
choosing them at random like controlled flooding, random walk, and k-walker do. Indeed, existing
gossiping-based approaches defined specific scoring functions to select the k relevant neighbors with
the highest score aka: “K-Neighbors-Selection (K-NS) problem.” To this end, two broad categories of
query routing methods have been proposed. They are known as content-oriented and query-oriented
routing methods [9]. The former gather meta-data about neighbor collections to build a global index
per peer, which is then exploited by a specific scoring function to rank neighbors with respect to their
shared documents and the query content. Hence, the query will be routed to the first k neighbors
with the highest scores. Query-oriented routing methods rely on data accumulated from previous
sent queries to identify the k relevant expected neighbors for the forthcoming queries. To this end,
different data mining and machine learning techniques have been used to define or learn the scoring
function [9,16].

Query-oriented methods are more advantageous than content-oriented ones, since they only
exploit available data of previously sent queries, therefore, they do not require extra network
communications to build and maintain the routing indices (i.e., global index) [5,9,15,16]. In this
respect, we introduce here a new query-oriented approach, called reinforcement learning-based query
routing approach (RLQR). The main goal of RLQOR is to reach high retrieval effectiveness as well as
lower communications cost by reducing the number of contacted peers. The main contributions of this
study are as follows:

1. We introduce a fully distributed query routing approach for pure unstructured P2P systems,
in which each peer learns only from its local gathered data.

2. We introduce a new formulation for the K-Neighbors-Selection (K-NS) problem different from
that of the existing approaches. Indeed, we consider that the natural model for this issue are
formalizations from reinforcement learning, in which an agent learns by taking actions that
produce rewards. The goal of the agent is to find a selection policy of actions that maximizes
the cumulative reward. In the query routing setting, the forwarder peer could run a learning
algorithm (e.g., agent) that selects k neighbors (e.g., actions) for each search query. Each selected
neighbor yields a binomial reward which expresses its ability to produce pertinent documents
to the query. Indeed, the agent must learn a K-NS policy to maximize the cumulative rewards
leading to higher user satisfaction.

3. We address the cold-start issue during training, which is considered as the main hindrance
of query routing approaches based on supervised machine learning or data-mining methods.
Indeed, a cold start happens when a new peer joins the network. Existing query-oriented methods
assume that each peer has submitted certain number of queries and received replies from relevant
peers. Hence, the gathered data from previous queries are stored in the sender log file then used
as training data. However, this assumption is not fulfilled in the case of a newly joined peer.
Therefore, existing methods [7,9,15,16] required to randomly flood a certain number of queries to
gather training data, which undoubtedly leads to achieving low performances during the training
phase. To tackle this problem, we introduce here reinforcement learning into the neighbors
selection algorithm. Indeed, our approach RLQR balances between exploration (pulling different
neighbors to learn new information) and exploitation (i.e., pulling the neighbor with the highest
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estimated reward based on previous queries). Doing so, RLOR improves the routing performance
continuously and therefore goes quickly through the cold-start phase [7,17-19].

The rest of this paper is structured as follows. In Section 2, we review the related work. In Section 3,
we first formalize the query routing issue as the reinforcement learning problem then we thoroughly
describe our approach. The simulation settings and the evaluation of the proposed approach are
presented in Section 4. Section 5 concludes this study and sketches of future directions.

2. Related Work

In the literature, several query routing methods for unstructured P2P systems have been
introduced. Their ultimate goal is to locate all relevant peers sharing pertinent resources for user
queries while reducing network traffic and the number of contacted peers. A first method was relied
on pure flooding [2], in which the forwarder peer (i.e., a peer that initiates or receives a search query)
must first search for pertinent documents that match the query keywords in its local shared collection
of documents. If it holds pertinent documents for the query then it replies to the requesting peer by
a query-hit message containing the list of retrieved relevant documents. The query-hit message is
routed back to the requesting peer through the reverse path of the query. After that, the forwarder peer
forwards the query to all neighboring peers that continue to forward it in the same way. The query
propagation process is stopped by a peer whenever a Time-To-Live counter (TTL) reaches a certain
specified value or it receives the same query from different neighbors.

Although the pure flooding method is straightforward and robust, it produces heavy network
traffic and an excessive number of peers are contacted. Several methods, such as controlled flooding [2],
random walk [11,12], k-walker [12,13], and gossiping [14,15] were proposed as an improvement of
pure flooding. Indeed, these methods introduced different ways of selecting the neighboring peers
to whom the query would be forwarded. In this respect, controlled flooding forwards the query to k
neighbors selected at random instead of all neighbors like pure flooding does. Random walk could
be seen as a special case of controlled flooding where the number of selected neighbors k equals 1.
This method produces less network traffic than controlled flooding, however, it achieves low retrieval
effectiveness. K-walker is a combination of controlled flooding and random walk, in which peer
initiating the query forwards it to k neighbors (k walkers) selected at random, which continue to
forward it to one random neighbor and so on until a relevant peer is located or the TTL value is
reached. Gossiping is an interesting mechanism widely used in smart query routing approaches.
The main thrust of gossiping is to route the query to k neighbors more likely having the requested
resource. Indeed, these neighbors are selected with respect to the likelihood that they hold pertinent
documents for the query [5,15,16], instead of choosing them at random like Random walk, K-walker
and controlled flooding do. Indeed, existing gossiping-based approaches relied on specific scoring
functions to select the k relevant neighbors with the highest score aka: “k-Neighbors-Selection (K-NS)
problem”. To this end, two broad categories of query routing methods have been proposed. They are
known as content-oriented [9] and query-oriented routing [9] methods. The former gather meta-data
about neighbors’ collections, which are then exploited by a specific scoring function to rank neighbors
with respect to their shared documents and the query content. Hence the query will be routed to the
first k neighbors with the highest scores [20-22].

Query-oriented routing methods rely on accumulated data of previously sent queries to identify
the k relevant expected neighbors for a given forthcoming query. To this end, various statistical,
data mining or machine learning techniques have been used to define or learn the scoring function.
Query-oriented routing methods are more interesting than content-oriented ones, since they only
exploit available data about previously sent queries, therefore, they do not require extra network
communications to build and maintain the routing indices (i.e., meta-data about neighbors’ collections).
In this respect, in [23] authors suggested building a local peer ontology that stores knowledge extracted
from previous queries. In the proposed scheme, Resource Description Framework (RDF) statements
were used to represent the extracted knowledge. A statement may describe either data or conceptual
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information. In addition, each peer maintains meta-information about these statements (e.g., source of
the statement, overall confidence in the statement and respective source peer, etc). The local ontology of
each peer is then exploited by a specific k-neighbors-Selection (K-NS) algorithm to select the k relevant
neighbors for the query. Kalogeraki et al. [13] introduced the Intelligent Search (IS) query-oriented
method. IS maintains a routing table that stores neighbors profiles. They suggested a simple vectorial
representation of each neighbor profile consisting of the most recent queries processed by the neighbor
altogether with the number of query hits. Whenever a peer initiates or receives a query it performs
an on-line ranking of its neighbors with respect to their profiles and the query content. The query
is then routed to the first k relevant neighbors. Ciraci et al. [16] introduced a supervised machine
learning algorithm, called Route Learning, to solve the K-NS problem. In the learning phase, the
introduced routing algorithm accumulates data from sent queries and related query-hits. Indeed, a
feature space for each neighbor is created. Furthermore, neighboring peers and forthcoming queries
are respectively considered as classes and new objects to classify in a supervised multi-classification
problem. Therefore, neighbors (i.e, classes) to which the query is assigned are considered as the k
relevant neighbors. Arour et al. [9] relied on the Formal Concept Analysis (FCA) theory [24], which is
a method of extracting interesting clusters from relational data, to implicitly extract user interests from
previous sent queries and associated query-hits (e.g, query identifier, query terms, the downloaded
documents and source peers). User interests are stored in a local knowledge base per peer. Indeed, user
interests express strong relationships between previous queries, common terms, and related positive
peers. To forward the query, a learning query routing algorithm first computes the similarity between
user interests and the query keywords. Peers included in the closest user interests to query are then
selected as the k relevant peers to forward the query to.

3. RLOR Approach

In this section, we introduce a new machine learning approach for query routing in unstructured
P2P systems. We first formalize the query routing issue in unstructured P2P systems as a reinforcement
learning problem then we thoroughly describe our approach.

3.1. Problem Formulation

In the literature, most of query routing approaches in unstructured P2P systems are based on
gossiping mechanisms. As outlined in the related work, within gossiping the forwarder peer routes the
search query to k relevant neighbors selected among a set of m neighbors (i.e., k < m) with respect to
their relevance for the query. Indeed, existing approaches relied on specific different scoring functions
to select the k elevant neighbors with the highest score. Our formulation for the K-Neighbors-Selection
(K-NS) problem differs from the existing approaches. Indeed, we consider that the natural model for
this issue are formalizations from reinforcement learning, in which an agent learns by taking actions
that produce rewards. The goal of the agent is to find a selection policy of actions that maximizes the
cumulative reward. In the query routing setting, the forwarder peer should run a learning algorithm
(e.g., agent) that selects k neighbors (e.g., actions) for each search query. Each selected neighbor
yields a binomial reward which expresses its ability to produce pertinent documents for the query.
In fact, the agent must learn a K-NS policy to maximize the cumulative rewards leading to higher user
satisfaction. At first glance it appears that modeling the K-NS issue as a Multi-Armed Bandit (MAB)
problem, which is considered as one of the classical problems in RL, seems like a natural approach.
However, most of the existing MAB algorithms are designed to select one among different actions
(e.g., neighbors) while a K-NS algorithm must select, for each search query, k neighbors (e.g., actions).
To address this issue, we introduce in the sequel a generic neighbor selection algorithm that adapts
MAB algorithms to the K-NS problem. Figure 1 shows the global architecture of our approach, with
P2P query routing terminology in black and corresponding RL terminology in red and italics.
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Figure 1. The global architecture of the reinforcement learning-based query routing approach (RLQOR)
approach.

In the following, we first introduce three MAB-based learning algorithms for selecting one relevant
neighbor for each search query, we will refer to these latter as 1-neighbor-Selection (1-NS) algorithms
(Section 3.2), then we detail our generic K-NS algorithm (Section 3.3).

3.2. 1-Neighbor-Selection Algorithms

Throughout this section, we assume that a forwarder peer has a set of N neighbors (e.g., actions)
noted ny, ..., ny. For a given search query g;, the forwarder runs a learning algorithm (e.g., an agent)
to select one neighbor 7;(g;) then receives a reward r,,,(q;) € {0, 1} from the selected neighbor 1;(g;)
(i.e., rn;(q¢) = 1if n; returns pertinent documents to the query g;, otherwise r,,,(g;) = 0). The goal of
the agent is to learn a 1-neighbor-Selection (1-NS) strategy that maximizes the cumulative rewards, i.e.,
the sum of rewards over all processed queries during learning. We note that the agent doesn’t have
prior knowledge about the reward of each neighbor. Therefore, an efficient 1-NS strategy must balance
between exploration (i.e., pulling different neighbors to learn new information) and exploitation (i.e.,
pulling the neighbor with the highest estimated reward based on previous queries). This will serve
to enhance the routing performance continuously and, therefore, goes quickly through the cold-start
phase [7,17-19].

In the following, we introduce an adaptation of three pioneering MAB algorithms for resolving
the conflicting goals of exploration and exploitation.

3.2.1. EGNS: Epsilon-Greedy Based 1-NS Algorithm

The epsilon-Greedy is a MAB strategy that balances between exploiting the best action with a
probability (1 — &) and exploring randomly the available actions with a probability ¢ (e is a specified
threshold) [25]. We rely on this strategy to define our 1-NS algorithm EGNS. In fact, as illustrated in
Algorithm 1, EGNS works by oscillating between (1) exploiting, with a probability (1 — ¢), the neighbor
with the highest estimated reward based on previous queries (see line 5 Algorithm 1) and (2) exploring
at random, with a probability ¢, among all the neighbors (see line 9 Algorithm 1). For example, if we
set € to 0.05, EGNS exploits 95% of the time the best neighbor with the highest average reward and
selects at random any neighbor about 5% of the time. Worth noting that the average reward r,, of the
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selected neighbor n;(q;) will be updated after receiving the reward r,,, (g;) for the query g; (see line 13
Algorithm 1).

Algorithm 1 EGNS: Epsilon-greedy-based 1-NS algorithm
Parameters:

q¢: search query at trial .

N = {ny,...,ny}: set of all neighbors

R = (rn,,...,Tn,): average rewards of the m neighbors

e: specified value of epsilon

n;(q¢): the neighbor to be selected for q;

L value = random() # choose a random value
2 if (value > ¢) then

g ni(q:) = argmax, cn{rs, € R}

g else

9: ni(q¢) = random(n; € N)

10: .

11: end if

12:

13

: update(rni, Tn; (qt))

3.2.2. UCBNS: UBC-Based 1-NS Algorithm

Upper confidence bounds (UCB) is a family of MAB algorithms. Unlike the epsilon greedy
algorithm, which pays attention only to the average reward of the actions, UCB algorithms rely on the
average reward and on the confidence in the estimated reward’s values of the selected actions [26].
It is worth mentioning that the UCB family of algorithms always chooses the best available actions
and they do not randomly explore unlike epsilon greedy does. In this paper, we focus on the UCB1
algorithm and adapt it to define our 1-NS algorithm UCBNS. As illustrated in Algorithm 2, UCBNS
starts by exploring all the m neighbors for the first m queries (see lines 1-9 Algorithm 2). Thereafter,
it selects, for each query g;, the neighbor 1;(g;) with the highest estimated reward and confidence
value. This estimation is calculated with respect to the number of times the neighbor #; was selected,
denoted c;,, and its average reward r;,, for previous queries (see line 11 Algorithm 2). Worth noting
that r,,, and c,, will be updated after receiving the reward of the selected neighbor n;(g;) (see lines
13-15 Algorithm 2).

Algorithm 2 UCBNS: UBC-based 1-NS algorithm
Parameters:
qs: search query at trial t.
N = {ny,...,ny}: set of neighbors
R = (rn,...,n,): average rewards of the K neighbors
C = (cny,---,Cn,): vector storing the number of times we have selected each of the K neighbors
n;(qe): the neighbor to be selected for gy

for all n; € N do
if (r,, == 0) then
ni(q:) = n;
end if

end for

OPNUIE W

log(z;nzl Cﬂj )

Cn:

1

}

11: n;(q¢) = argmax,, cn{rn, +

13: update(ry,, rn,(qt))
15: ¢y, + +
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3.2.3. TSNS: Thompson Sampling-Based 1-NS Algorithm

Thompson sampling (TS) [27] is an efficient algorithm wused for addressing the
exploration/exploitation trade-off in different research areas and especially for solving the
MAB problem. In this respect, we extend the idea of Thompson sampling to define our TSNS
algorithm for solving the 1-NS problem. Indeed, we assume that each neighbor n; € {ny,...,n,}
yields a success (i.e., a reward of 1) with probability 6; € [0,1] and produces a failure (i.e., a reward of
0) with probability 1 — 6;. The success probabilities (61, . . ., 6;) of the m neighbors are unknown to the
forwarder peer (ie., the learner), but are fixed over time, and therefore can be learned from previous
queries. We suppose that the learner starts with an independent prior belief over each 8; and this latter
is beta-distributed with parameters a; and §;, which denote the number of times n; produces a reward
of 1 (success) or a reward of 0 (failure), respectively. Therefore, the prior Probability Density Function
(PDF) of the probability of success 6; of each neighbor n; € {ny,...,ny} is calculated as follows:

N [(a; + Bi) ai—1q  py\Bi—1
PO =ty e M
here I' denotes the gamma function. It is worth mentioning that whenever a neighbor is selected and
its reward is observed the distribution is updated according to Bayes’ rule. The main idea of TSNS
is to choose a neighbor according to its probability of being the best one. To do so, TSNS initially
assumes that each neighbor n; to have prior Beta(a, f), where & = B = 1, on 0; (see initialization
part in Algorithm 3). It then samples a success probability estimate 6; of each neighbor 7; from its
posterior distributions of 6;, which is a beta distribution with parameters «; and §; (see lines 1-5
Algorithm 3). Thereafter, it selects, for the query g;, the neighbor 1;(g;) with the largest estimate éi (see
line 7 Algorithm 3). Finally, after receiving the reward r;(q;), TSNS updates the distribution parameters
a; and B; of the selected neighbor n;(g;) (see lines 9-11 Algorithm 3).

Algorithm 3 TSNS: Thompson sampling-based 1-NS algorithm

Parameters:
q¢: search query at trial t.
N = {ny,...,ny}: set of neighbors
a = (a1, ...,0&m): alpha parameters of the m neighbors
B = (B1,--.,Bm): beta parameters of the m neighbors
n;(q¢): the neighbor to be selected for q;

Initialisation:
o= (1,. .., l)
g=(1,...,1)
%3 forall n; € N do
3: sample 6; = Beta(w;, B;)
4.
5. end for
6: A
7. ni(qr) = argmax,, ey 0;
o: W =0+ Ty, (q:.‘)
10:
i i = pi+ru(q0)

3.3. K-NS Algorithm

We introduce here a generic K-NS algorithm that relies on the proposed 1-NS algorithms (EGNS,
UCBNS, and TSNS) to select the k relevant neighbors to forward the query to. The main idea is
summarized in Algorithm 4. It consists simply of running one of the three introduced 1-NS algorithms
(EGNS, UCBNS or TSNS) K times. As shown in Algorithm 4, the inputs of K-NS are the search query
qr at trial ¢, the set of all neighbors N = {#ny,...,n,} and the number of neighbors to be selected k.
The output is a set S of relevant neighbors to forward the query g; to. At each iterationi = 1...k,
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K-NS relies on EGNS, UCBNS or TSNS to select from the set N = {n; ... 1y} the neighbor n; with the
highest expected probability of success according to the used 1-NS algorithm (see line 3 Algorithm 4).
The selected neighbor n; at the iteration 7, is then added to the set of relevant neighbors S and removed
from the set of neighbors N (see lines 5-7 Algorithm 4).

Algorithm 4 K-NS algorithm
Input:
q¢: search query at trial t.
N = {ny,..., ny}: set of all neighbors
k: number of neighbors to be selected for q;
Output:
S: set of neighbors to be selected
Initialization:
S=Q:
fori=1...k do
select neighbor 1; using a 1-NS learning algorithm (EGNS, UCBNS or TSNS)
S=S§ U{Tl]}
N =N\ {n;}
end for

ORI W

4. Performance Evaluation

In this section, we compare the retrieval effectiveness and the search cost of our routing approach
RLQR vs Controlled Flooding (CF) [2] and Learning Peer Selection (LPS) [9]. It is important to note that
we assess three RLQR instances, noted with respect to the used 1-NS learning algorithm: RLQR-EGNS,
RLQR-UCBNS, and RLQR-TSNS. To this end, different simulation scenarios are performed using the
PeerSim simulator [28]. The latter is an open-source Java simulator widely used for implementing and
testing prototypes of P2P protocols. As the dataset, we use the "Big Dataset" collection [29]. The latter
consists of 25,000 documents and 4000 queries distributed among 1000 peers using a benchmarking
software developed by Zammali. et al [29]. The Time-To-Live of the query (i.e., the TTL parameter)
and the number of neighbors to be selected by the forwarder peer (i.e., the k parameter) are set to 5
and 3, respectively.

Evaluation Measures

We use the Recall metric [30] in order to evaluate the retrieval effectiveness of RLQR vs its
competitors. The recall R(g;) for the query g; is defined as follows:

RRD
R(q;) = RILD’ )

where, RRD and RLD are the numbers of relevant retrieved documents and the number of relevant

ones, respectively. The cumulative average recall up to n sent queries (CAR;;) is defined as follows:

_ Yitq R(g:)
- .

CAR,, 3)

To assess the search cost of the different routing algorithms we use the following metrics:

o  CP(g;): it refers to the number of contacted peers for the query g;. The Cumulative Average of the
number of Contacted Peers up to n sent queries (CACP,) is defined as follows:
i1 CP(4i)

CACP, = == 4)
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e  Overhead(yg;): it refers to the number of exchanged messages for the query g;. The Cumulative
Average Overhead up to n sent queries (CAO,,) is defined as follows:

n .

Retrieval Effectiveness of the Routing Algorithms

Figure 2 shows the evolution of the cumulative average recall of RLQR-EGNS, RLQR-UCBNS,
RLQR-TSNS, CFE and LPS. As expected CF has low and stable recall (around 0.32) since queries
are randomly flooded over the P2P network. We note that the recall of LPS is low (around 0.32)
during the training phase then it improves after each update of the LPS” knowledge base. During
the simulation, we periodically updated the knowledge base of each peer three times (i.e., after
sending 1000, 2000 and 3000 queries). Moreover, we observe that the recall of our reinforcement
learning algorithms RLQR-EGNS, RLQR-UCBNS and RLQR-TSNS increases rapidly, after sending
a few queries, allowing them to outperform CF and LPS. Indeed, the cumulative average recall
of CF, LPS, RLOR-EGNS, RLQR-UCBNS, and RLQR-TSNS for all sent queries is 0.17, 0.50, 0.64,
0.67, and 0.77, respectively. These encouraging results are owed to the fact that RLOR relies on
reinforcement learning neighbor selection strategies (i.e., Epsilon Greedy, Upper Confidence Bounds,
and Thompson Sampling) that efficiently balance between exploration and exploitation. Doing so,
RLQR improves the routing performance continuously and, therefore, goes quickly through the
cold-start phase. Moreover, we observe that Thompson Sampling-based neighbor selection algorithm
RLQR-TSNS outperforms its competitors. This can be explained by the fact that RLQR-TSNS has a
more sophisticated exploration strategy.

0.8 T T T T T T T
o 07 -
-
S os| |
24
L
o 05t -
g
> 04 i
w
E 03} -
3

0.2 i
=
O 0.1, i

0 1 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
#Queries
RLQR-EGNS —— RLQR-TSNS CF
RLQR-UCBNS —n LPS

Figure 2. Evolution of the cumulative average recall.
Search Cost of the Routing Algorithms

Figures 3 and 4 illustrate the search cost of our query routing algorithms RLQR-EGNS,
RLQR-UCBNS, and RLQR-TSNS compared with CF and LPS. Indeed, we observe that the cumulative
average overhead and the number of contacted peers per query of CF are high and stable over
the simulation time at about 324 and 275, respectively. Furthermore, we note that the cumulative
average overhead and the number of contacted peers per query of LPS decrease after the training
phase. Indeed, LPS starts with an empty knowledge and it relies on CF during the training phase
(i.e., first 1000 queries), which leads to achieving lower performance as CF. However, the cost search
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of LPS improves after updating the knowledge base of each peer to achieve a cumulative average
overhead and number of contacted peers per query around 300 and 255, respectively. Moreover, we
observe that the search cost of our reinforcement learning algorithms RLQR-EGNS, RLQR-UCBNS,
and RLQR-TSNS going down rapidly allowing them to outperform CF and LPS. Indeed the cumulative
average overhead per query of RLQR-EGNS, RLQR-UCBNS, and RLQR-TSNS decreases from 324
to 287, 272 and 268, respectively. This is owed to the fact that our reinforcement learning routing
algorithms locate more peers holding pertinent documents for the query. The latter stops the query
flooding process to avoid cycles then returns positive replies to requesting peers.
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O 270 | .
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Figure 3. Evolution of the cumulative average overhead.
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Figure 4. Evolution of the number of contacted peers.
5. Conclusions

In this paper, we have introduced RLQR a query routing approach for unstructured P2P systems
based on the reinforcement learning theory. In this respect, we have formulated the query routing
issue as the reinforcement learning problem and we have introduced a fully distributed approach for
addressing it. In fact, we have introduced three reinforcement learning neighbor selection algorithms
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based on epsilon greedy, upper confidence bounds and Thompson sampling selection strategies.
The introduced algorithms deal with the cold-start issue during the training stage, which allows
them to improve the retrieval effectiveness and the search cost continuously and, therefore, goes
quickly through the cold-start phase. Performed simulations have shown that our approach RLQR
outperforms its competitors CF and LPS. Obvious pointers for future work are as follows:

e  Studying the impact of the churn problem on the introduced neighbor selection strategies.
Indeed, in P2P systems peers could join and leave the network at any time leading to frequent
changes of neighbors links. This latter may have an impact on the performance of the neighbor
selection algorithm.

e Introducing a reinforcement learning model that includes the context in the neighbor selection
strategy to make the forwarding decision conditional on the state of the environment.
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