
future internet

Article

Performance Analysis of Internet of Things Interactions via
Simulation-Based Queueing Models

Georgios Bouloukakis 1,∗ , Ioannis Moscholios 2 , Nikolaos Georgantas 3 and Valérie Issarny 3

����������
�������

Citation: Bouloukakis, G.;

Moscholios, I.; Georgantas, N.;

Issarny, V. Performance Analysis of

IoT Interactions via Simulation-Based

Queueing Models. Future Internet

2021, 13, 87. https://doi.org/

10.3390/fi13040087

Academic Editor: Kien Nguyen

Received: 18 February 2021

Accepted: 27 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 75013 Paris, France
2 Department of Informatics and Telecommunications, University of Peloponnese, 22100 Tripolis, Greece;

idm@uop.gr
3 MiMove Team, Inria, 75589 Paris, France; nikolaos.georgantas@inria.fr (N.G.); valerie.issarny@inria.fr (V.I.)
* Correspondence: georgios.bouloukakis@telecom-sudparis.eu; Tel.: +33-6-5247-1086

Abstract: Numerous middleware application programming interfaces (APIs) and protocols were
introduced in the literature in order to facilitate the application development of the Internet of Things
(IoT). Such applications are built on reliable or even unreliable protocols that may implement different
quality-of-service (QoS) delivery modes. The exploitation of these protocols, APIs and QoS modes, can
satisfy QoS requirements in critical IoT applications (e.g., emergency response operations). To study
QoS in IoT applications, it is essential to leverage a performance analysis methodology. Queueing-
network models offer a modeling and analysis framework that can be adopted for the IoT interactions
of QoS representation through either analytical or simulation models. In this paper, various types
of queueing models are presented that can be used for the representation of various QoS settings of
IoT interactions. In particular, we propose queueing models to represent message-drop probabilities,
intermittent mobile connectivity, message availability or validity, the prioritization of important
information, and the processing or transmission of messages. Our simulation models demonstrate the
significant effect on delivery success rates and response times when QoS settings are varied.

Keywords: Internet of Things; queueing models; middleware; QoS analysis

1. Introduction

The Internet of Things (IoT) promises the integration of the physical world into
computer-based systems. IoT devices, featuring sensing capabilities, are deployed in
many application domains, including community spaces, smart buildings, and intelligent
transportation. By exploiting the information that IoT devices can provide, peoples’ quality
of life and safety can be substantially improved. For instance, in [1,2], IoT devices are
exploited to monitor offices or homes for possible seismic activity. Such an application
provides critical information, and it is anticipated to function timely and reliably. Hence,
identifying a methodology for the analysis and performance modeling of IoT applications is
of great significance. IoT devices can be inexpensive, low-powered, and mobile; regarding
their deployment environment, applications that utilize them have different characteristics.

More precisely, the following quality-of-service (QoS) constraints can be identified:
(i) limited memory of low-cost devices, (ii) limited data availability or validity, (iii) in-
termittent (mobile) device connectivity, and (iv) urgent data delivery. Furthermore, IoT
applications are built on application programming interfaces (APIs) and reliable or unre-
liable protocols that introduce additional QoS constraints [3,4]. Hence, these constraints
pose important challenges for IoT performance analysis.

Existing efforts [5–7] concerning both the design and the evaluation of mobile sys-
tems under particular constraints (e.g., limited resources or intermittent availability) rely
on queueing theory [8]. Key IoT protocols were evaluated with regard to metrics such
as delivery success rates and response times [9,10]. However, such efforts are protocol-
specific; thus, the research community analyzed the performance of well-known interac-

Future Internet 2021, 13, 87. https://doi.org/10.3390/fi13040087 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0109-9527
https://orcid.org/0000-0003-3656-277X
https://doi.org/10.3390/fi13040087
https://doi.org/10.3390/fi13040087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13040087
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/13/4/87?type=check_update&version=2

Future Internet 2021, 13, 87 2 of 13

tion paradigms [11,12] that may abstract different IoT protocols. The publish/subscribe
paradigm was analyzed using formal models [13] and evaluated using queueing net-
works [14] or queueing Petri nets [15]. Queueing networks can be considered as networks
of connected service centers that provide simulation or analytical solutions for various
performance measures (e.g., response time).

Combining separate service centers in order to form a queueing network enables us
to model an IoT interaction. Some of the queueing models presented in this paper were
investigated in the context of previous works. In particular, in [16–19], we identified a
framework where various middleware protocol nodes (e.g., clients, servers, and brokers)
are analyzed as queues while exchanged messages are represented as served jobs. To
model QoS settings such as the intermittent connectivity [20] of mobile things, a separated
queueing model was investigated with the aid of an ON/OFF queueing model [16,17].
The applicability of our models was demonstrated in [16–18,21–23] for the performance
of publish/subscribe and data-streaming systems, respectively. In [19], we applied our
approach to analyze the performance of IoT devices with heterogeneous QoS settings.

This paper expands upon our previous work [24] that provides a summary of queueing
models that represent the aforementioned QoS constraints of IoT applications. In this paper,
we include two queueing systems that model the processing or transmission of diverse
IoT messages (e.g., video data vs. temperature data) and the prioritization of urgent data
in critical IoT applications (e.g., structural fire scenarios). The key contributions of this
paper are:

1. Description of a generalized ON/OFF model that includes message losses and mes-
sage join probabilities.

2. Introduction of two queueing systems that model diverse message transmission,
processing, and prioritization on the basis of delivery urgency requirements.

3. Description of additional features for queueing models that represent message avail-
ability and resource-constrained devices.

4. Comparison of different queueing models in terms of delivery success rate and re-
sponse time through simulation-based experiments.

The rest of this paper is organized as follows: related work is discussed in Section 2.
In Section 3, we describe the queueing models that represent various QoS settings of IoT
interactions and applications. In Section 4, we compare the performance of queueing
models when message availabilities, message join probabilities, and finite buffer capacities
are considered. In addition, we show how the presented queueing models can be leveraged
to properly configure and tune an IoT system. We conclude this paper and provide possible
future extensions in Section 5.

2. Related Work

Today’s IoT applications consist of IoT devices that employ existing APIs and (IP-
based) IoT protocols such as CoAP, MQTT, DPWS, XAMPP, and ZeroMQ [10,25] to ex-
change data. To guarantee specific response times and data delivery success rates between
things, each protocol provides several quality-of-service (QoS) features. Initially, it inherits
different characteristics from the underlying transport (TCP/UDP) mechanisms. Subse-
quently, it supports different modes of message delivery. For instance, CoAP offers a choice
between “confirmable” and “nonconfirmable”, whereas MQTT support three choices (“fire
and forget”,“delivered at least once”, and “delivered exactly once”) [4]. Furthermore,
devices that employ such protocols can be mobile (e.g, wearable devices), while IoT appli-
cations may need to guarantee the freshness of provided information dropping (possibly
less important) messages (e.g., mission-critical information for public safety [2]).

In [3,9,10] the trade-off between response times and delivery success rates by using
key IoT protocols is evaluated. However, such methods are protocol-specific and limit the
application designer upon the introduction of a new IoT protocol. Regarding middleware
protocols, queueing Petri nets (QPNs) were used in [15] for accurate performance prediction.
However, QPNs, while highly expressive in representing parallelism, are suited for small-

Future Internet 2021, 13, 87 3 of 13

to-moderate size systems and intake considerable computational resources [26]. Several
existing efforts concerning the design and evaluation of mobile systems aim at guaranteeing
QoS requirements under several constraints (e.g., intermittent availability and limited
resources) [27–29]. The used evaluation methods were mainly derived from the field of
queueing theory.

Several existing efforts support message dropping such as RabbitMQ, ActiveMQ, and
mosquitto message brokers via maximum queue capacity [30]. To ensure message timeli-
ness, message losses occur due to the validity or availability periods that can be assigned
to every message through pub/sub protocols and APIs (e.g., the JMS API). More sophisti-
cated approaches support semiprobabilistic delivery [31] or take into account subscriber
preferences [32–34]. To allow for the reliable and timely data exchange, existing solutions
manipulate data at both the middleware and network layers. Early middleware-based
solutions [35–37] support prioritization or bandwidth allocation based on available system
capacity, data relevance, and data importance. More recent solutions assign priorities on
the basis of the validity span of published data and subscriptions [38], or on the basis of
delay and reliability requirements [39]. Currently, standardized message brokers such as
RabbitMQ and ActiveMQ support the assignment of priorities at the publisher side prior
to the emission of a message.

In this paper, we model the performance of data exchange in the IoT by relying
on queueing-network models (QNMs) [14,40]. QNMs have been extensively applied to
represent and analyze communication and computer systems, and proven to be simple and
powerful tools for application designers with regard to system performance evaluation
and prediction. While in [27,28] the authors evaluated the performance of WiFi mobile
users via an ON/OFF queue, this work leverages and adapts this queue as part of a QNM
that represents the mobile behavior of IoT devices. To represent the maximal capacity
of IoT system components such as pub/sub message brokers (RabbitMQ, ActiveMQ), a
specific buffer size can be applied to any queue of the QNM. In addition, to represent
message losses occurring in such brokers via APIs or protocols (e.g., JMS), a validity
or availability (lifetime) period can be applied to each message entering the QNM. To
represent losses occurring due to the protocol leveraged for data exchange (e.g., CoAP
deployed over UDP [25]), the ON/OFF loss model can be used, which drops messages
when the queueing server is not active. We also introduce a model for message dropping by
relying on probabilistic techniques. Lastly, to represent IoT systems that consider the data
recipients’ preferences [32–34] to deliver different types of data (message sizes, important,
etc.) [35,36,38,39], multiclass and priority queues are introduced where different classes of
messages can be assigned with different priorities. To summarize, application designers
are able to analyze and configure certain system aspects (middleware QoS delivery modes,
network and user connectivity, message dropping rates, system resources, priority levels,
message sizes) by combining the provided queueing models in order to tune and guarantee
the appropriate response time and delivery success rate between IoT devices.

3. Queueing Models

In this section, we provide some necessary definitions of the queueing models that
were adopted in our simulation-based methodology.

3.1. M/M/1 Model

This queue is used to model uninterrupted service of messages (transmission, recep-
tion or processing) as part of an (end-to-end) IoT interaction. It corresponds to the classical
M/M/1 queue (Figure 1a) where Poisson arrivals are serviced by a single server for an
exponentially distributed service time.

An M/M/1 queue (qm/m/1) can be defined via the tuple:

qm/m/1 = (λ, µ). (1)

Future Internet 2021, 13, 87 4 of 13

where λ is the message arrival rate to the queue and µ is the service rate of messages. Let
D = 1/µ be the service demand for the processing delay (service time) of a message. On
the basis of [14], the time that a message remains in a M/M/1 system (corresponding to
queueing time + service time; we also call it mean response time) is determined via

∆m/m/1 =
D

1 − λD
. (2)

(a) M/M/1 queue. (b) ON/OFF queue.

Figure 1. M/M/1 and ON/OFF queues.

3.2. ON/OFF Model

In Figure 1b, we introduce the intermittent (ON/OFF) queue, so as to capture the
mobile peer’s connections and disconnections. Messages arrive in the system following a
Poisson process with rate λ > 0, and are placed in a queue waiting to be “served” with rate
µ > 0 (also exponentially distributed).

With regard to the server, we assumed that its operation followed an on–off procedure.
More specifically, the server remains for an exponentially distributed time, with parameter
θON, in the ON state. While in that state, the server provides service to messages. Let
TON = 1/θON be the time during which the server is ON. Upon the expiration of this
time, the server enters the OFF state for an exponentially distributed period with rate θOFF.
While in that state, the server stops providing service to messages. Let TOFF = 1/θOFF be
the time during which the server is OFF. Similar to the M/M/1 queue, an ON/OFF queue
qon/off can be defined via the tuple:

qon/off = (λ, λon/off, µ, TON, TOFF). (3)

where λ is the messages’ arrival rate, λon/off is the messages’ output rate, and µ is the
service rate for the messages’ processing during TON. Output process λon/off is intermittent
since, during TOFF intervals, no messages depart from the queue. Regarding the case where
TON expires while a message is still under service, we assumed that the server stops the
processing of the message and continues in the next TON period.

We denote by ∆on/off the mean response time for the qon/off queue, i.e., the time that a
message spends in the system.

In [16,17,19], we provided the following formula for the estimation of ∆on/off:

∆on/off =
E(n)on/off

λ
. (4)

where E(n)on/off refers to the average number of messages that exist in the system (both in
the server and the queue) [17].

3.3. Probabilistic ON/OFF Model

The reduction in queueing delays that may appear in the ON/OFF model can be
addressed via the probabilistic ON/OFF model (Figure 2a).

In this model, the arrival process remains Poisson, and messages wait to be served
while the server is ON. However, when the server is OFF, messages may leave the system

Future Internet 2021, 13, 87 5 of 13

with probability 1 − ζ or enter the queue with probability ζ. The probabilistic ON/OFF
queue qprob

on/off can be defined via the tuple:

qprob
on/off = (λ, λon/off, µ, ζ, TON, TOFF). (5)

where λ refers to the messages’ arrival rate, ζ refers to the probability of entering the queue,
λon/off is the messages’ output rate, and µ is the service rate (during TON) for the message
transmission. When ζ = 1, we have the ON/OFF model of Section 3.2 (i.e., during OFF
periods, all messages enter the queue).

∆prob
on/off is the mean response time (the time during which a message remains in the

system) for the qprob
on/off queue. In [41], we provided the following formula for the estimation

of ∆prob
on/off:

∆prob
on/off =

E(n)on/off

λe f f
(6)

where λe f f is the rate of messages served in the probabilistic ON/OFF queue qprob
on/off.

(a) Probabilistic ON/OFF queue. (b) ON/OFF loss queue.

Figure 2. Probabilistic and loss ON/OFF queues.

Such a probabilistic ON/OFF model aids system designers in improving or tuning
delays of components that transmit messages during period TON, but also may disconnect
for a period TOFF. More specifically, such a component can represent an IoT sensor (which
is resource-constrained as far as memory and energy are concerned) that can periodically
be on sleep mode, while its probabilistic behavior can be defined via the application layer.

3.4. ON/OFF Loss Model

The ON/OFF models presented in the previous subsections do not consider the case
of message losses (or message drops). All messages are either buffered before service or
immediately served if the server is empty.

In order to model message losses, we consider the case of the ON/OFF loss queue
where messages still arrive in the system according to a Poisson process (Figure 2b).
Regarding the server function, we consider the following: while the server is ON, messages
enter the queue and wait to be served with rate µ. When the server µ OFF, messages enter
the queue, are served with rate µloss > µ, and exit the system (i.e., messages are lost).

The assumption that messages are “served” with rate µloss > µ was adopted because
the ON/OFF loss queue is used for the performance analysis of an IoT mobile device that
employs a middleware protocol. The latter introduces (message) losses since it builds atop
UDP and does not install a logical sender/receiver session (i.e., there is QoS guarantee
for messages). Regarding the value of µ, it can be based on the network transmission
delay of the end-to-end interaction. Regarding µloss, we identify the network’s point
where message losses occur. As an example, if the ON/OFF loss queue is used to model
the intermittent connectivity of a wireless receiver, then we parameterize µloss via the
corresponding transmission delay of the network. The definition of such a delay can

Future Internet 2021, 13, 87 6 of 13

be based on how the sender interacts with the access point that the receiver connects
or disconnects.

An ON/OFF loss queue qloss
on/off can be defined according to the tuple:

qloss
on/off = (λ, λout, λloss, µ, µloss, TON, TOFF). (7)

where λ is the messages’ arrival rate; λout and µ are the messages’ output and processing
rates during ON periods, respectively; λloss and µloss are the lost and processing rates
during OFF periods. Both λout/λloss rates were exponential since new messages split
according to the TON/TOFF intervals.

3.5. Multiclass Model

This queue model’s uninterrupted serving (transmission, reception, or processing) of
messages belonging to different classes. Such classes are used to categorize messages of
IoT interactions that have different characteristics. For example, sensor data, video stream-
ing services and transnational messaging require different transmission and processing
resources. Each class corresponds to the common M/M/1 queue (see Figure 1a), featuring
Poisson arrivals and exponential service times; thus, multiple M/M/1 queues are used to
form the multiclass queue (see Figure 3a).

(a) Multiclass queue. (b) Multiclass and multipriority queue.

Figure 3. Multiclass and priority queues.

A multiclass queue (qmcl) is defined by the tuple:

qmcl = (λ, µ, C) (8)

where λ = {λcn : cn ∈ C} is the input rate of messages to the queue of each class cn ∈ C
and µ = {µcn : cn ∈ C} is the service rate for the processing of messages of cn ∈ C. On the
basis of standard solutions [14] for the multiclass queue, and given a message that belongs
to a class ck, its time that remains in the system is given by

∆mcl =
1

µck − µck ∑cn∈C λcn /µcn

. (9)

3.6. Nonpreemptive Priority and Multiclass Model

The multiclass queue (see Figure 3a) serves messages on the basis of a first-come
first-served policy regardless of the class to which each message belongs. However, IoT
systems handle the data of different application types such as emergency response, real-
time, and video streaming. The nonpreemptive priority and multiclass (NPPM) enables the
prioritization of messages belonging to different classes when being served (transmitted
or processed). The NPPM is different from the nonpreemptive priority (NPP) queue,
where classes of messages are created on the basis of the priority assigned to each message.
As depicted in Figure 3b, messages belonging to n classes arrive according to Poisson
processes and are then classified to different queues on the basis of their assigned priority.
At the exit of each priority queue, messages are classified to be served (on the basis of
exponential service times) depending on the class to which they belong (video-streaming
data vs sensor data).

Future Internet 2021, 13, 87 7 of 13

A nonpreemptive priority and multiclass queue (qmclpr) is defined by the tuple:

qmclpr = (λ, µ, C, Y) (10)

where λ = {λcn : cn ∈ C} is the input rate of messages to the queue of each class cn ∈ C,
µ = {µcn : cn ∈ C} is the service rate for the processing of messages of cn ∈ C and
Y = {ycn : cn ∈ C} is the assigned priority to each class cn ∈ C. Given a message that
belongs to a class ck and is assigned with priority yck , the time that it remains is given by:

∆mcl =
Lck ,yck

(λ, µ)

λck

(11)

where Lck ,yck
(λ, µ) is the number of messages classified to ck and assigned with priority

yck in the system (queue + server) of qmclpr. We omitted the proof of (11) due to space
constraints, but analysis is similar to that in Section 3.4.2 in [8] (provided in [23]).

3.7. Additional Features

Up to this point, we considered queueing models of which the buffers have infinite
capacity, and arriving messages simultaneously have an infinite lifetime. This affects both
the ratio of successfully served messages and the response time. However, it may be
unrealistic to model IoT interactions with such characteristics. As an example, in the case of
the long disconnection period of an IoT sensor (e.g., 30 min), the produced messages may
well exceed the buffer capacity of the IoT sensor, and some of the oldest messages (data)
may simultaneously become obsolete. We now describe the features that can consider such
constraints and apply them to the already defined queueing models.

3.7.1. Lifetime Messages in Queueing Networks

As already discussed, a queueing network consists of a network of (connected) queues
used for the performance modelling of a system. As an example, in the context of this
paper, IoT interactions can be modeled via the creation of queueing networks that consist
of queueing models already described in previous subsections. According to Figure 4a,
messages that have an arrival rate λ are processed in the first queue of a queueing network.
Such messages have a lifetime period attributed to them upon their creation which
expresses the validity of the message inside the (queueing) network. Hence, as soon as the
lifetime of a message elapses, the message leaves the queueing network and is said to
be expired.

(a) Applying lifetime periods to a queue. (b) Applying buffer size (K) to a queue.

Figure 4. Queues with event expirations and finite capacity.

To take into account the case of an expired message, we consider the time that a
message spends in both server and queue. By assuming that a queueing network includes
only one M/M/1 queue, a message reneges when a certain lifetime period passes without
its service having started. According to the literature, such a model is the M/M/1 queue
with reneging or impatient customers [42–44]. In this paper, we present the simulation
of such a model via our simulator and incorporate the case of reneging in our ON/OFF
models. Hence, it is possible for system designers to create networks of queues, including
various queueing models enriched with the feature of the lifetime period.

Future Internet 2021, 13, 87 8 of 13

3.7.2. Queues of Finite Capacity

According to this feature, a specific buffer size is considered for each queue that
prevents the system from handling more than K messages (in both queue and server). Such
a feature prevents the system from storing messages for a long period of time in devices of
limited capacity. More specifically, consider Figure 4b, where messages arrive in the queue
with a rate λ. If condition new_queue_size + message_in_service > K is true when a new
message arrives in the system, then the message is dropped. Otherwise, the message joins
the queue and waits to be served. According to the literature, an M/M/1 queue with a
limited buffer size is notated as M/M/1/K [8]. In the case of our model, we incorporated
system size K in the M/M/1 and the ON/OFF queues by adding it to corresponding
Tuples (1),(3), (5), and (7).

4. Experiment Results

For our experiments, we considered our simulator (MobileJINQS) that was presented
in [17] and is an extension of the Java implementation of the JINQS simulator [45]. In this
paper, we extended our simulator to include the ON/OFF models of Section 3. In our
experiments, we assumed that each ON/OFF model represented a mobile sender that uses
various QoS settings for the transmission of messages. Such a mobile sender generates
7,500,000 messages so as to accurately determine the mean response times and success
rates per message. Then, we let the mobile peer connect and disconnect in the time scale
of seconds.

4.1. ON–OFF Model

We set the ON/OFF mode parameters as follows: (i) the server remains in the ON
and OFF states for exponentially distributed time periods TON = TOFF = 20/40/60 s; thus,
the server changes its state every 20, 40, and 60 s, respectively; (ii) messages are processed
with a mean service demand D = 0.125 s; (iii) there is sufficient buffer capacity so that no
messages are dropped; and (iv) messages arrive to the queue with a mean rate varying
from 0.05 to 4 messages per sec (λmax = 4 messages/s). By applying λ rates greater than 4
messages/sec, the system saturates. Using the above settings in our simulator, we ran the
system and derived the simulated curve of the mean response time for several λ rates as
depicted in Figure 5.

0 0.5 1 1.5 2 2.5 3 3.5 4

Arrival Rate ()

0

50

100

150

200

250

300

350

400

450

500

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
)

T
 ON

 = T
 OFF

 = 20 sec

T
 ON

 = T
 OFF

 = 40 sec

T
 ON

 = T
 OFF

 = 60 sec

Figure 5. Response time for various TON, TOFF parameters.

4.2. ON/OFF model with QoS Features

We then set the following parameters to the ON/OFF model: (i) the server remains in
states ON and OFF for time periods TON = TOFF = 20 s (exponentially distributed); (ii) the
mean service demand for message processing is D = 0.125 s; and (iii) message arrival rate
λ varies from 0.05 to the maximal value of 3.9 messages/s. On the above basis, we set
up four experiments (which correspond to different ON/OFF models) by considering the

Future Internet 2021, 13, 87 9 of 13

following QoS features: (1) ζ = 1, lifetime = ∞ and K = ∞; (2) ζ = 1, lifetime = 30 s, K =
∞; (3) ζ = 0.75, lifetime = ∞, K = ∞; and (4) ζ = 1, lifetime = ∞, K = 100.

Response times: For each of the four experiments above, we ran the corresponding
ON/OFF model 10 times and derived the curves of Figure 6 on the basis of the average
values of these runs. According to Figure 6, the highest values of mean response times
(∼10–360 s) were observed in the first experiment where messages were buffered and
served (i.e., no message losses occurred). On the other hand, the lowest values of mean
response times (∼5–10 s) were observed in the fourth experiment, where we considered
the application of lifetime periods in messages. In the third experiment, where a certain
buffer capacity was considered, mean response time varied from 10 to 16 s. Lastly, the
fourth experiment provided low mean response times (∼8–14 s) for λ = 0.05–2 and higher
response times (∼17–49 s) for λ = 2.5–3.9.

0 0.5 1 1.5 2 2.5 3 3.5 4

Arrival Rate ()

0

50

100

150

R
e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
) = 1 lifetime = K =

 = 1 lifetime = 30 sec K =

 = 0.75 lifetime = K =

 = 1 lifetime = K = 100

Figure 6. Response time for various ON/OFF model parameters.

Success rate vs. response time: In order to investigate the trade-off between success
rates and response times, the rates of successful message service are presented in Figure 7
for the same set of experiments. In the first experiment, there was a 100% message success
rate since no messages were lost. Lowest rates were observed in the case of lifetime periods
and increased arrival rates. In the third experiment, low arrival rates led to high message
success rates (in the range of ∼90–100%), while higher arrival rates led to a decrease
(∼87–77%). Lastly, the fourth experiment led to a stable message success rate (75%).

0 0.5 1 1.5 2 2.5 3 3.5 4

Arrival Rate ()

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 R

a
te

 = 1 lifetime = C =

 = 1 lifetime = 30 C =

 = 0.75 lifetime = C =

 = 1 lifetime = C =100

Figure 7. Success rates for various ON/OFF model parameters.

4.3. Message Classes Assigned with Priorities

We then leveraged the nonpreemptive priority and multiclass simulation model
to compare response times of different classes assigned with priorities. As depicted in

Future Internet 2021, 13, 87 10 of 13

Figure 8a, we defined 19 classes (i.e., |C| = 19) with different arrival (λck) and service (µck)
rates for each class ck. Depending on the values of λck , µck , the queue (or IoT system that
it represents) can be saturated. Let ρ = ∑cn∈C

λcn
µcn

be server utilization (i.e., probability
that the server is busy) of the nonpreemptive priority and multiclass queue. The queue
remains unsaturated (i.e., queue stability is ensured) when ρ < 1. In Figure 8a, we defined
ρ = 0.69; thus, queue stability was ensured. As expected, lower priorities present higher
response times. c4 experienced a lower response time than that of c9 despite the fact that c4
was assigned with a lower priority. This is because our model enables system designers to
assign different arrival or service rates to different classes (e.g., different groups of IoT data
sizes to be transmitted with diverse importance).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8 9

Classes

0

1

2

3

4

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

 = 0.89

 = 0.69

0

4
4

1
0

0

02 2
2

3 3

4
4 4

1

1

0

0

1

1
1

0 0 0 0

1

2 2 2b

a

Figure 8. Response time for various classes of messages assigned with different priority parameters.

In Figure 8b, we define 9 classes (i.e., |C| = 9) but with the server utilization defined
as ρ = 0.89. Therefore, the system was close to the saturation point, and classes assigned
with lower priorities thereby experienced high response times. On the other hand, de-
spite the fact that the system was almost saturated, high-priority classes experienced low
response times.

4.4. IoT System Tuning

The queueing models presented in this paper can be employed to properly configure
and tune an IoT system. For instance, suppose that an IoT designer is willing to deploy
occupancy counters in a smart building. Such a sensor remains inactive (sleep mode)
for a certain period; right afterwards, it becomes active to count people in the covered
space. IoT designers can leverage the obtained results in Section 4.1 to either configure
the inactive period or to estimate the response time for a default inactive period. For
example, given TOFF = 1 min as the inactive period, TON = 3 s as the active period to
count people and D = 0.1 s as the service time required to count people, IoT designers can
estimate the resulting response time. Now, suppose that data flowing from IoT sources are
collected via a message broker to be disseminated to interested recipients. To guarantee
the freshness of the occupancy data, IoT designers can apply dropping parameters K,
ζ, or lifetime to ensure that obsolete data are dropped. The presented methodology
in Section 4.2 can be exploited to evaluate the trade-off between the resulting response time
and delivery success rate, thereby guiding an IoT designer to select the most appropriate
dropping mechanism. Lastly, suppose that the smart building hosts an IoT application for

Future Internet 2021, 13, 87 11 of 13

the creation of evacuation plans in case of an emergency by leveraging occupancy data and
the building’s floor plans. To ensure that occupancy data flow quicker than other flows
of data do, different classes with assigned priorities can be defined. The obtained results
in Section 4.3 can help in this direction for evaluating the expected response times.

5. Conclusions

Modeling the performance of IoT applications is a tedious task. IoT messaging may
lead to message losses or delays due to various QoS settings such as resource-constrained
devices, message availability, and intermittent connectivity. In this paper, we summarized
simulation-based queueing models that represent such QoS settings. Some of the presented
models were investigated in the context of previous articles where their validation and
evaluation has been performed in realistic application settings and using real data traces.
Using the simulator we have developed, the trade-off between message success rates and
response times can be evaluated for various queueing models. The latter may help system
designers to create queueing networks that represent IoT interactions and analyze (or tune)
their performance.

In future work, we will consider analytical models for queueing networks that in-
clude finite capacity buffers, lifetime periods, losses, ON/OFF probability, and message
prioritization (via dropping probability).

Author Contributions: Conceptualization, G.B., I.M., N.G. and V.I.; formal analysis, G.B., I.M., N.G.
and V.I.; investigation, G.B.; methodology, G.B. and I.M.; resources, I.M.; validation, G.B.; writing—
original draft, G.B., I.M., N.G. and V.I.; writing—review and editing, G.B., I.M., N.G. and V.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable, the study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
QoS Quality of service
APIs Application programming interfaces
NPP Nonpreemptive priority
NPPM Nonpreemptive priority and multiclass
JINQS Network-of-queues =simulation
QPNs Queueing Petri nets
QNMs Queueing network models

References
1. Community Seismic Network. Available Online: http://www.communityseismicnetwork.org (accessed on 1 May 2015).
2. Cochran, E.; Lawrence, J.; Christensen, C.; Chung, A. A novel strong-motion seismic network for community participation in

earthquake monitoring. IEEE Instrum. Meas. Mag. 2009, 12, 8–15. [CrossRef]
3. De Caro, N.; Colitti, W.; Steenhaut, K.; Mangino, G.; Reali, G. Comparison of two lightweight protocols for smartphone-based

sensing. In Proceedings of the IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT),
Namur, Belgium, 21 November 2013.

4. Lee, S.; Kim, H.; Hong, D.k.; Ju, H. Correlation analysis of MQTT loss and delay according to QoS level. In Proceedings of the
International Conference on Information Networking (ICOIN), Bangkok, Thailand, 28–30 January 2013.

5. Mehmeti, F.; Spyropoulos, T. Performance analysis of “on-the-spot” mobile data offloading. In Proceedings of the 2013 IEEE
Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013.

6. Lee, K.; Lee, J.; Yi, Y.; Rhee, I.; Chong, S. Mobile Data Offloading: How Much Can WiFi Deliver? Available online: https:
//conferences.sigcomm.org/co-next/2010/CoNEXT_papers/26-Lee.pdf (accessed on 27 March 2021).

http://www.communityseismicnetwork.org
http://doi.org/10.1109/MIM.2009.5338255
https://conferences.sigcomm.org/co-next/2010/CoNEXT_papers/26-Lee.pdf
https://conferences.sigcomm.org/co-next/2010/CoNEXT_papers/26-Lee.pdf

Future Internet 2021, 13, 87 12 of 13

7. Wu, H.; Wolter, K. Tradeoff analysis for mobile cloud offloading based on an additive energy-performance metric. In
Proceedings of the 8th International Conference on Performance Evaluation Methodologies and Tools, Bratislava, Slovakia,
9–11 December 2014.

8. Gross, D.; Shortle, J.; Thompson, J.; Harris, C. Fundamentals of Queueing Theory; Wiley: Hoboken, NJ, USA, 2008.
9. Durkop, L.; Czybik, B.; Jasperneite, J. Performance evaluation of M2M protocols over cellular networks in a lab environment.

In Proceedings of the 18th International Conference on Intelligence in Next Generation Networks (ICIN), Paris, France, 17–19
February 2015.

10. Fysarakis, K.; Askoxylakis, I.; Soultatos, O.; Papaefstathiou, I.; Manifavas, C.; Katos, V. Which IoT protocol? Comparing
standardized approaches over a common M2M application. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM), Washington, DC, USA, 4–8 December 2016.

11. Aldred, L.; van der Aalst, W.M.; Dumas, M.; ter Hofstede, A.H. On the notion of coupling in communication middleware. In
Proceedings of the OTM Confederated International Conferences on the Move to Meaningful Internet Systems, Agia Napa,
Cyprus, 31 October–4 November 2005.

12. Kattepur, A.; Georgantas, N.; Bouloukakis, G.; Issarny, V. Analysis of timing constraints in heterogeneous middleware interactions.
In Proceedings of the International Conference on Service-Oriented Computing, Goa, India, 16–19 November 2015.

13. He, F.; Baresi, L.; Ghezzi, C.; Spoletini, P. Formal analysis of publish-subscribe systems by probabilistic timed automata. In
Proceedings of the International Conference on Formal Techniques for Networked and Distributed Systems, Tallinn, Estonia,
27–29 June 2007.

14. Lazowska, E.D.; Zahorjan, J.; Graham, G.S.; Sevcik, K.C. Quantitative System Performance: Computer System Analysis Using Queueing
Network Models; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1984.

15. Kounev, S.; Sachs, K.; Bacon, J.; Buchmann, A. A methodology for performance modeling of distributed event-based systems. In
Proceedings of the 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), Orlando,
FL, USA, 5–7 May 2008.

16. Bouloukakis, G.; Georgantas, N.; Kattepur, A.; Issarny, V. Timeliness Evaluation of Intermittent Mobile Connectivity over
Pub/Sub Systems. In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L’Aquila,
Italy, 22–26 April 2017.

17. Bouloukakis, G.; Moscholios, I.; Georgantas, N.; Issarny, V. Performance Modeling of the Middleware Overlay Infrastructure of
Mobile Things. In Proceedings of the IEEE International Conference on Communications, Paris, France, 21–25 May 2017.

18. Bouloukakis, G.; Agarwal, R.; Georgantas, N.; Pathak, A.; Issarny, V. Leveraging cdr datasets for context-rich performance
modeling of large-scale mobile pub/sub systems. In Proceedings of the IEEE 11th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, United Arab Emirates, 19–21 October 2015.

19. Bouloukakis, G. Enabling Emergent Mobile Systems in the IoT: from Middleware-layer Communication Interoperability to
Associated QoS Analysis. Ph.D. Thesis, Inria Paris, Paris, France, August 2017.

20. Bajaj, G.; Bouloukakis, G.; Pathak, A.; Singh, P.; Georgantas, N.; Issarny, V. Toward enabling convenient urban transit through
mobile crowdsensing. In Proceedings of the IEEE 18th International Conference on Intelligent Transportation Systems (ITSC),
Gran Canaria, Spain, 15–18 September 2015.

21. Gomes, R.; Bouloukakis, G.; Costa, F.; Georgantas, N.; da Rocha, R. Qos-aware resource allocation for mobile iot pub/sub systems.
In Proceedings of the 8th International Conference on Internet of Things, Santa Barbara, CA, USA, 15–18 October 2018.

22. Benson, K.; Bouloukakis, G.; Grant, C.; Issarny, V.; Mehrotra, S.; Moscholios, I.; Venkatasubramanian, N. Firedex: A prioritized iot
data exchange middleware for emergency response. In Proceedings of the 19th International Middleware Conference, Rennes,
France, 10–14 December 2018.

23. Bouloukakis, G.; Benson, K.; Scalzotto, L.; Bellavista, P.; Grant, C.; Issarny, V.; Mehrotra, S.; Moscholios, I.; Venkatasubramanian,
N. PrioDeX: A Data Exchange Middleware for Efficient Event Prioritization in SDN-based IoT Systems. Available online:
https://hal.archives-ouvertes.fr/hal-03171358/ (accessed on 27 March 2021).

24. Bouloukakis, G.; Moscholios, I.; Georgantas, N.; Issarny, V. Simulation-based queueing models for performance analysis of IoT
applications. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks and Digital Signal
Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018.

25. Karagiannis, V.; Chatzimisios, P.; Vazquez-Gallego, F.; Alonso-Zarate, J. A survey on application layer protocols for the internet
of things. Trans. Iot Cloud Comput. 2015, 3, 11–17.

26. Vernon, M.; Zahorjan, J.; Lazowska, E.D. A Comparison of Performance Petri Nets and Queuing Network Models; Technical Report;
University of Wisconsin-Madison: Madison, WI, USA, 1986.

27. Mehmeti, F.; Spyropoulos, T. Performance analysis of mobile data offloading in heterogeneous networks. IEEE Trans. Mob.
Comput. 2016, 16, 482–497. [CrossRef]

28. Lee, K.; Lee, J.; Yi, Y.; Rhee, I.; Chong, S. Mobile Data Offloading: How Much Can WiFi deliver? IEEE/ACM Trans. Netw. 2012,
21, 536–550. [CrossRef]

29. Phung-Duc, T.; Masuyama, H.; Kasahara, S.; Takahashi, Y. A simple algorithm for the rate matrices of level-dependent QBD
processes. In Proceedings of the 5th International Conference on Queueing Theory and Network Applications, Beijing, China,
1 June 2010.

https://hal.archives-ouvertes.fr/hal-03171358/
http://dx.doi.org/10.1109/TMC.2016.2557799
http://dx.doi.org/10.1109/TNET.2012.2218122

Future Internet 2021, 13, 87 13 of 13

30. John, V.; Liu, X. A Survey of Distributed Message Broker Queues. Available online: https://arxiv.org/pdf/1704.00411.pdf
(accessed on 27 March 2021).

31. Gian, P.C.; Costa, P.; Picco, G.P. Publish-Subscribe on Sensor Networks: A Semi-probabilistic Approach. In Proceedings of the
2nd IEEE International Conference on Mobile Adhoc and Sensor Systems, Washington, DC, USA, 7–10 November 2005.

32. Diallo, M.; Fdida, S.; Sourlas, V.; Flegkas, P.; Tassiulas, L. Leveraging caching for Internet-scale content-based publish/subscribe
networks. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011.

33. Pripuzic, K.; Zarko, I.P.; Aberer, K. Top-k/w publish/subscribe: finding k most relevant publications in sliding time window w.
In Proceedings of the second international conference on Distributed event-based systems, Rome, Italy, 1–4 July 2008.

34. Salehi, P.; Zhang, K.; Jacobsen, H.A. Popsub: Improving resource utilization in distributed content-based publish/subscribe
systems. In Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems, Barcelona, Spain,
19–23 June 2017.

35. Chakravarthy, S.; Vontella, N. A publish/subscribe based architecture of an alert server to support prioritized and persistent
alerts. In Proceedings of the International Conference on Distributed Computing and Internet Technology, Bhubaneswar, India,
22–24 December 2004.

36. Maheshwari, P.; Tang, H.; Liang, R. Enhancing web services with message-oriented middleware. In Proceedings of the IEEE
International Conference on Web Services 2004, San Diego, CA, USA, 6–9 June 2004.

37. Zhang, R.; Lu, C.; Abdelzaher, T.F.; Stankovic, J.A. Controlware: A middleware architecture for feedback control of software
performance. In Proceedings of the 22nd International Conference on Distributed Computing Systems, Vienna, Austria,
2–5 July 2002.

38. Saghian, M.; Ravanmehr, R. Publish/subscribe middleware for resource discovery in MANET. In Proceedings of the 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 4–7 May 2015.

39. Wang, Y.; Zhang, Y.; Chen, J. Pursuing differentiated services in a sdn-based iot-oriented pub/sub system. In Proceedings of the
2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017.

40. Baskett, F.; Chandy, K.M.; Muntz, R.R.; Palacios, F.G. Open, closed, and mixed networks of queues with different classes of
customers. J. ACM (JACM) 1975, 22, 248–260. [CrossRef]

41. Bouloukakis, G.; Moscholios, I.; Georgantas, N. Probabilistic Event Dropping for Intermittently Connected Subscribers
over Pub/Sub Systems. In Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China,
21–23 May 2019.

42. Montazer-Haghighi, A.; Medhi, J.; Mohanty, S.G. On a multiserver Markovian queueing system with balking and reneging.
Comput. Oper. Res. 1986, 13, 421–425. [CrossRef]

43. Abou-El-Ata, M.; Hariri, A. The M/M/c/N queue with balking and reneging. Comput. Oper. Res. 1992, 19, 713–716. [CrossRef]
44. Yue, D.; Zhang, Y.; Yue, W. Optimal performance analysis of an M/M/1/N queue system with balking, reneging and server

vacation. Int. J. Pure Appl. Math. 2006, 28, 101–115.
45. Field, T. JINQS: An Extensible Library for Simulating Multiclass Queueing Networks, v1.0 User Guide. Available online:

http://www.doc.ic.ac.uk/~ajf/Software/manual.pdf (accessed on 27 March 2021).

https://arxiv.org/pdf/1704.00411.pdf
http://dx.doi.org/10.1145/321879.321887
http://dx.doi.org/10.1016/0305-0548(86)90029-8
http://dx.doi.org/10.1016/0305-0548(92)90010-3
http://www.doc.ic.ac.uk/~ajf/Software/manual.pdf

	Introduction
	Related Work
	Queueing Models
	M/M/1 Model
	ON/OFF Model
	Probabilistic ON/OFF Model
	ON/OFF Loss Model
	Multiclass Model
	Nonpreemptive Priority and Multiclass Model
	Additional Features
	Lifetime Messages in Queueing Networks
	Queues of Finite Capacity

	Experiment Results
	ON–OFF Model
	ON/OFF model with QoS Features
	Message Classes Assigned with Priorities
	IoT System Tuning

	Conclusions
	References

