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Abstract: Coalition formation is often analysed in an almost non-cooperative way, as a two-stage game
that consists of a first stage comprising membership actions and a second stage with physical actions,
such as the provision of a public good. We formalised this widely used approach for the case where
actions are simultaneous in each stage. Herein, we give special attention to the case of a symmetric
physical game. Various theoretical results, in particular, for cartel games, are provided. As they are
crucial, recent results on the uniqueness of coalitional equilibria of Cournot-like physical games are
reconsidered. Various concrete examples are included. Finally, we discuss research strategies to obtain
results about equilibrium coalition structures with abstract physical games in terms of qualitative
properties of their primitives.

Keywords: binary action game; cartel game; Cournot-like game; coalition formation; equilibrium
coalition structure; potential game; symmetric game; two-stage game

1. Introduction

Non-cooperative game theory plays an important role in the modern theory of coalition
formation.1 Modelling coalition formation as a two-stage game under almost non-cooperative
conditions is a very promising approach, albeit theoretically challenged. The roots of this approach
can be found in articles such as [3,4] in the context of industrial organisation. However, its further
development took place especially in the context of environmental economics, starting with articles
such as [5,6]; see [7–9] for overviews.

In the present article, we provide a formalisation of a specific variant of the two-stage game
approach in the case of complete information, transferable payoffs, and in each stage, independent
simultaneous actions. We simply refer to such a game as a “two-stage coalition formation game.”
Formally, it is defined by providing a player set N, a membership rule R, and a game in strategic
form Γ with N as the player set, called “physical game”; we denote it by (N; R; Γ). In the first stage
players choose a membership action. This leads via the membership rule to a coalition structure C and
a corresponding coalitional game ΓC which is played in the second stage. In this stage the members
of each coalition in C cooperate and each coalition behaves like a single player, called “meta player.”
After each meta player has chosen a physical action, each player obtains his payoff belonging to the

1 See [1] for a fundamental discussion of this approach. Also see [2] for an overview of coalition formation for economic models.

Games 2020, 11, 3; doi:10.3390/g11010003 www.mdpi.com/journal/games

http://www.mdpi.com/journal/games
http://www.mdpi.com
http://www.mdpi.com/2073-4336/11/1/3?type=check_update&version=1
http://dx.doi.org/10.3390/g11010003
http://www.mdpi.com/journal/games


Games 2020, 11, 3 2 of 31

played physical action profile. Definition 2 provides a formal definition of (N; R; Γ). If we speak below
about a two-stage coalition formation game, we always mean such a game.2

The topics of the present article are the equilibrium coalition structures for a two-stage coalition
formation game (N; R; Γ). In the literature, up to now, the notion of equilibrium coalition structure
presupposes that the two-stage coalition formation game is regular, meaning that each possible
coalitional game ΓC has a unique Nash equilibrium. Assuming regularity, the procedure to solve
the game then is as follows: the unique Nash equilibrium corresponds to a physical action for
each individual player, which in turn corresponds to a payoff for each individual player. In this
way the two-stage game (N; R; Γ) leads to a game in strategic form G, referred to as an “effective
game.” Finally, G has to be solved. Usually this is done by determining the Nash equilibria set of G.3

Finally, the membership rule R provides for each Nash equilibrium m of G, an equilibrium coalition
structure R(m).

An important special case of a two-stage coalition formation game is the cartel game,
where players in the first stage decide whether or not to cooperate. This leads to a coalition structure
where there is a (possibly empty) coalition of cooperators and various singleton coalitions. Initially put
forward to analyse the incentives of firms to join an industrial cartel ([3]), applications of cartel games
have spread to other areas. In particular, the game has been used to examine incentives of countries to
join international environmental agreements.4

A two-stage coalition formation game (N; R; Γ) contains the very basic structure shared by various
coalition formation games that have additional features like sharing and support ([14,15]).5 We will
disregard such extensions for three main reasons: (i) The 2-stage structure of the game may be lost;6

(ii) There are many possibilities for such extensions; and (iii) most importantly, because our “simple”
coalition formation game (N; R; Γ) is, in our opinion, not sufficiently understood. For example,
although there are various articles on two-stage coalition formation games, there is, to the best of our
knowledge, no theoretical result about equilibrium coalition structures that holds for an abstract class
of physical games in terms of qualitative properties (such as convexity, monotonicity and symmetry)
of the primitives of the physical game; only results for concrete (mostly symmetric) physical games
(mostly with linear or quadratic conditional payoff functions) are available (see, for example, [4,16–20]).
This casts serious doubt on the robustness of these results. For the further development of the theory
of basic two-stage coalition formation games, various mathematical problems have to be addressed.
Therefore, the first thing to do is to make the mathematical structure of such a game more transparent.
Highlighting the formal structure is one aim of the present article. As [21] also did for the cartel game,
transparency is obtained, among other things, by associating a game in strategic form (i.e., the effective
game G) with a two-stage coalition formation game. In this way all results for games in strategic
form apply via its effective game G to two-stage coalition formation games. We discuss this further
in Section 11.

Our article is self-contained. It is organised as follows. Section 2 formulates the game rules
of a two-stage coalition formation game (N; R; Γ), and Section 4 provides its formalisation together
with an explanation how the game is solved. Section 2 provides also a first example. The formal
definition of a two-stage coalition formation game in Section 4 uses various notions which are defined
in Section 3. Section 5 introduces a class of physical games which are quite popular in the literature

2 A variant of this game that has also obtained a lot of attention concerns the situation where, in the second stage, first some
specific coalitions takes action, and they are followed by the other coalitions. We do not consider this type of coalition
formation game, as such a game is, in fact, a three-stage game.

3 For cartel games (see below), one may also look for so-called “semi-strict Nash equilibria."
4 Recent applications address, e.g., agriculture [10], biodiversity conservation [11], and vaccination [12]. For further ideas for

possible extensions of the model, see [13].
5 Loosely speaking, “support” concerns the possibility for cartel games that players who do not choose for cooperation

support the cooperators.
6 For example, sharing leads to a 3-stage game and support even to a 4-stage game.
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about two-stage coalition formation games: Cournot-like games. Sufficient conditions are provided
for the regularity of a two-stage coalition formation game with a Cournot-like game as a physical
game. Section 7 deals with two-stage coalition formation games with a symmetric membership rule
and a symmetric physical game; preparations for the results therein take place in Section 6. Section 9
further analyses cartel games. As the effective game of a cartel game is a binary action game, Section 8
first presents various useful results about binary action games, particularly concerning the existence of
potentials. Section 10 presents some additional examples. In Section 11, we conclude with a discussion
of important next steps in order to obtain more comprehensive results.

2. The Rules of the Game

To allow a clear analysis of the two-stage coalition formation game, we describe the rules of the
game, and in the next section, provide the ingredients for dealing with these games.

The intended game is a two-stage game with complete information and transferable payoffs,
where the players choose independently and simultaneously a (pure) action in each stage. Further
rules of the game are as follows.

• The player set is N = {1, 2, . . . , n} with n ≥ 2. Each player i is characterised by a “membership”
action set Mi, a “physical” action set Xi and with X := X1 × · · · × Xn, by a payoff function
fi : X→ R. Let M := M1 × · · · ×Mn.

• At the first stage, the players choose, simultaneously and independently, a membership action
from their membership action sets. If each player i chooses mi, then this gives a membership
action profile m ∈ M. This action profile leads via a given membership rule R to the coalition
structure R(m) (which is a partition of N).

• In the second stage, the players of each coalition in R(m) coordinate their choices of a physical
action like a single player, called a “meta player.” The meta players simultaneously and
independently choose a physical action by choosing a physical action for each of their members.
The in this way a defined action profile for the meta players corresponds to a physical action
profile x ∈ X. Each meta player C ∈ R(m) obtains a payoff P̂C(x) = ∑l∈C fl(x) and each player i
obtains a payoff fi(x).

As time is not explicitly modelled, such a game has an almost static real-world structure. Even for
this, seemingly simple, real-word structure of the game it is not trivial how to solve the game. Usually,
as mentioned in the introduction (also see Subsection 4.3), regularity is assumed; i.e., that there is
a unique Nash equilibrium for every membership action profile m of the game played in the second
stage, with player set R(m), referred to as “coalitional game." Denoting with x̂(m) the with this
equilibrium corresponding action profile, this leads to a payoff gi(m) = fi(x̂(m)) for each player i and
in this way to a game in strategic form G, referred to as "effective game": this game has player set N,
for player i action set Mi and payoff function gi. We refer to gi as the “effective payoff function” of
player i. Finally, the Nash equilibria of G are determined; if m is such an equilibrium, then R(m) is
an equilibrium coalition structure. (Formal definitions will be given later.)

As the remainder of the article is quite abstract and general, it may be helpful to consider a simple
clarifying example of a cartel game. In a cartel game, each player has M = {0, 1} as membership action
set. The membership rule, here denoted by Rc, assigns to each membership action profile m ∈ Mn

a coalition structure Rc(m) as follows: all players i with mi = 1 jointly form a coalition and each player
i with mi = 0 forms a singleton coalition. We refer to such a coalition structure as a “cartel coalition
structure.” As with a physical game, we take a concrete, symmetric, Cournot-like public good game.

Example 1. Consider the cartel game with a physical game, the Cournot-like public good game, with common
action set X = R+ and with payoff functions

fi(x) = −
1
2

ax2
i + b

n

∑
l=1

xl
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where a, b > 0.
The following notations for m ∈ Mn are useful:

Ŝ(m) = {i ∈ N | mi = 1} and Ŝ?(m) = {i ∈ N | mi = 0}.

Consider the game in the second stage for a given action profile m chosen in the first stage. In this game the
payoff function P̂C of meta player C ∈ Rc(m) in terms of the action profile x ∈ X = Xn equals

P̂C(x) =

{
− 1

2 ax2
i + bxi + b ∑l 6=i xl if C = {i} with i ∈ Ŝ?(m),

∑i∈C(− a
2 x2

i + #Ŝ(m) bxi) + #Ŝ(m) b ∑l 6∈C xl if C = Ŝ(m).

It is clear that in this coalitional game, each meta player has a strictly dominant action: meta player
C = {i} has b/a as a strictly dominant action and meta player C = Ŝ(m) has a strictly dominant action
wherein each of its members plays #Ŝ(m)b/a. Thus, this game has a unique Nash equilibrium, the two-stage
coalition formation game is regular and for the with this equilibrium corresponding action profile x̂(m) we have

x̂i(m) =

{
b
a if mi = 0,
#Ŝ(m) b

a if mi = 1.

The effective payoff function of player i is the function gi : Mn → R given by gi(m) = fi(x̂(m)). Thus

gi(m) =

 −
a
2 (

b
a )

2
+ b
(

#Ŝ(m)#Ŝ(m) b
a + (n− #Ŝ(m)) b

a )
)

if mi = 0,

− a
2 (#Ŝ(m) b

a )
2
+ b
(

#Ŝ(m)#Ŝ(m) b
a + (n− #Ŝ(m)) b

a

)
if mi = 1.

The next step is to consider the Nash equilibria of the effective game G with player set N, common action set
Mn, and payoff functions gi. The game G usually is solved by determining its Nash equilibria. As #M = 2, G
is a binary action game. The action profile m being a Nash equilibrium of G comes down to g′i(m) ≤ 0 (i ∈ N);
here g′i(m) is the marginal payoff of i at m; i.e., the payoff change at m when player i changes his action from
mi to 1−mi. As, for m with #Ŝ(m) = 1, it holds that Rc(m) = Rc(0) = {{l} |l ∈ N}, g′i(0) = 0 (i ∈ N)

follows, and thus 0 is a Nash equilibrium. However, as we will see below, there are other (more interesting)
Nash equilibria.

We have, writing s = #Ŝ(m) and letting w0(s) = (s2 − s + n− 1
2 )

b2

a (0 ≤ s ≤ n− 1) and w1(s) =
( 1

2 s2 − s + n) b2

a (1 ≤ s ≤ n),

gi(m) =

{
w0(s) if mi = 0,
w1(s) if mi = 1.

This implies g′i(m) = w1(s + 1)− w0(s) if mi = 0 and g′i(m) = w0(s− 1)− w1(s) if mi = 1. With

t(s) = w1(s)− w0(s− 1) if 1 ≤ s ≤ n,

we have derived the formula

g′i(m) =

{
t(s + 1) if mi = 0,
−t(s) if mi = 1.

Letting t(0) = +∞ and t(n + 1) = −∞, this formula implies

m is a Nash equilibrium ⇔ t(s + 1) ≤ 0 ≤ t(s).

With the above explicit expression for gi(m) we find for 1 ≤ s ≤ n

t(s) =
(
(

1
2

s2 − s + n)− ((s− 1)2 − (s− 1) + n− 1
2
)
) b2

a
= (−1

2
s2 + 2s− 3

2
)

b2

a
.
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So t(0) = +∞, t(1) = 0, t(2) = 1/2, t(3) = 0, t(4) = −3/2, t(5) = −14, . . . , t(n + 1) = −∞.
This implies that, for n ≥ 3, m ∈ Mn is a Nash equilibrium if and only if Ŝ(m) ∈ {0, 2, 3} and the

equilibrium coalition structures are exactly the cartel coalition structures with 0, 2 or 3 cooperators. For n = 2
the equilibrium coalition structures are exactly the cartel coalition structures with 0 or 2 cooperators.

Observe that in this example G is a symmetric aggregative game,7 there exists an effective equilibrium
cartel coalition structure (i.e., an equilibrium cartel coalition structure not equal to {{1}, {2}, . . . , {n}}), that
the sign of t(s) does not depend on a and b and that the functions w0 and w1 are increasing. �

3. Fundamental Objects

In this section we provide the fundamental formalisations for dealing with two-stage coalition
formation games.

3.1. Games in Strategic Form

A game in strategic form Γ is an ordered 3-tuple

Γ = (I; (Xi)i∈I ; ( fi)i∈I),

where I is a non-empty finite set, every Xi is a non-empty set and every fi is a function

fi : XI → R,

where
XI := ∏

i∈I
Xi;

i.e., the product of the family (Xi)i∈I . The set I is called player set and its elements players. The set Xi
is called the action set of player i and its elements actions of player i.8 The function fi is called the
payoff function of player i and the elements of XI , being by I indexed families (xi)i∈I with xi ∈ Xi,
are called action profiles. For i ∈ I, we write

ı̂ := I \ {i} and Xı̂ := ∏
j∈ı̂

Xj.

For i ∈ I and z = (zj)j∈ı̂ ∈ Xı̂, define the conditional payoff function

f (z)i : Xi → R by

f (z)i (xi) := fi(xi; z);

here, (xi; z) is a by I indexed family with xi for the element with index i and zj for the element with
index j 6= i. Also define for i ∈ I the best-reply correspondence Ri : Xı̂ ( Xi by

Ri(z) := argmax f (z)i .

Thus, the best-reply correspondence for a player assigns to each given strategy profile of his
opponents, the set of actions that maximise his payoff. An action profile x = (xi)i∈I ∈ XI is a (Nash)
equilibrium of Γ if, for all i ∈ I, writing (given i) again x = (xi; z), xi is a maximiser of the conditional
payoff function f (z)i , i.e., xi ∈ Ri(z). We denote by

E(Γ)

7 If wished, see Subsection 3.1 for these notions.
8 The actions here are intended to be pure (and not mixed) actions.



Games 2020, 11, 3 6 of 31

the set of Nash equilibria of Γ.
Often, when dealing with games in strategic form, one takes N = {1, 2, . . . , n} for the player set,

and then, for the set of action profiles, instead of the product XN = ∏i∈N Xi, the Cartesian product
X = Xn

i=1Xi = X1 × · · · × Xn. However, when dealing below with coalitional games where the players
are subsets (so-called “meta players"), it is more natural not to number these subsets with 1, 2, . . ., but
just to identify them with the subsets themselves; this then leads to a game with action profiles in a
family product (instead of a Cartesian product). Below, in Definition 2, when defining our intended
two-stage coalition formation game (N; R; Γ), the game in strategic form Γ will have as player set
N = {1, 2, . . . , n} and the action profiles of the coalitional games will be elements of a family product.

A game in strategic form Γ = (N; (Xi)i∈N ; ( fi)i∈N) where N = {1, 2, . . . , n} and X1 = · · · =
Xn =: X is symmetric if for each permutation π of N, every i ∈ N and every x ∈ X = Xn

fπ(i) = fi ◦ Tπ<−1> ; (1)

i.e., fπ(i)(x1, . . . , xn) = fi(xπ(1), . . . , xπ(n)) for every (x1, . . . , xn) ∈ Xn; here, the mapping Tπ : Xn →
Xn is defined by

Tπ(x1, . . . , xn) = (xπ<−1>(1), . . . , xπ<−1>(n)).

Many economic games, like Cournot-like games (see Section 5) are aggregative games.
Aggregative games admit special, powerful techniques (see for instance [22–24]). Various definitions
exist for the notion of an aggregative game. Here, we present a general one for a game in strategic
form with player set N and actions sets Xi, subsets of R+. In order to do so, let Y := ∑l∈N Xl and
Ti := ∑j 6=i Xj.9 Also, for i ∈ N, let ∆i := {(xi, y) ∈ Xi ×Y | y− xi ∈ Ti}. Next note that the following
two properties are equivalent:

1. For every i ∈ N and z ∈ Ti there exists a function f̃ (z)i : Xi → R such that

fi(x) = f̃
(∑j 6=i xl)

i (xi) (x ∈ X). (2)

2. For every i ∈ N there exists a function πi : ∆i → R such that fi(x) = πi(xi, ∑l xl) (x ∈ X).

Having said this, the game is aggregative if it satisfies one, thereby satisfying both properties.
Note that if π1 = · · · = πn, then (X1 = · · · = Xn and) the game is symmetric.

3.2. Coalition Structures

In this subsection n is a positive integer and N := {1, 2, . . . , n}. A partition of the set N is a
set with as elements non-empty disjoint subsets of N whose union is N.10 A related notion is a
partition of the positive integer n; this is a finite sequence (k1, . . . , ks) of positive integers such that
k1 ≥ k2 ≥ · · · ≥ ks and k1 + · · ·+ ks = n.11 We denote the set of partitions of N by CN and refer to
a partition of N also as coalition structure. This last notion is used in order to define now below the
notion of congruent “coalition structures."12

Given a coalition structure C, we denote for i ∈ N by C[i] the unique element of C with

i ∈ C[i].

9 The sums here are Minkowski sums.
10 For example, there are 5 partitions of {1, 2, 3}: {{1}, {2}, {3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, and {{1, 2, 3}}.
11 For example, there are 11 partitions of 6: (6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1),

and (1, 1, 1, 1, 1, 1). The number pn of partitions of n is a rapidly increasing function of n. For example,
p1 = 1, p4 = 5, p9 = 30, p50 = 204226, p200 = 3972999029388. The number of coalition structures of N is given by the

Bell-number Bn. One has B0 = 1, B1 = 1, B2 = 2, B3 = 5, . . .. The following formula holds: Bn+1 = ∑n
k=0

(
n
k

)
Bk .

12 Congruent coalition structures play an important role, as we shall see, in the case of symmetric physical games.
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Given a coalition structure C, the sizes (i.e., number of elements) of the subsets in C induce in
a natural way a partition [C] of n. On CN the relation ∼ defined by

C ∼ C ′ means [C] = [C ′], (3)

which is an equivalence relation.13 We refer to C ∼ C ′ as C and C ′ are congruent. It is clear that
coalition structures C, C ′ of N are congruent if and only if there exists a permutation π of N such that
C ′ = {π(C) | C ∈ C}.

Finally, the following additional terminology may be useful: we call the coalition structure
{{1}, . . . , {n}} the ineffective coalition structure and refer to every other coalition structure as
effective coalition structure.

3.3. Coalitional Equilibria

In this subsection n is again a positive integer and N = {1, 2, . . . , n}. Consider a game in strategic
form Γ with player set N:

Γ = (N; (Xi)i∈N ; ( fi)i∈N).

For every partition C of N we are going to define a game in strategic form ΓC with a player set the
elements of C, being non-empty subsets of N. Therefore, it is useful to refer to a non-empty subset of
N as coalition and to a partition of N as a coalition structure (of N).

Given the game in strategic form Γ, we introduce the following notations. First, for a coalition C

KC := ∏
l∈C

Xl .

So an element kC of KC is a by C indexed family (kC;l)l∈C with kC;l ∈ Xl (l ∈ C):

kC = (kC;l)l∈C.

Second, for a coalition structure C, we define the mapping JC : ∏C∈C KC → X by

JC((kC)C∈C) := (kC[i] ;i)i∈N
. (4)

We refer to it as the canonical mapping. We call JC(k) the with k associated action profile in Γ.
Note that JC is a bijection.

Having these notations, we are ready to formalise the intended notion of coalitional equilibrium
(with physical game Γ) as already outlined in section 1.

Definition 1. Given a game in strategic form Γ = (N; (Xi)i∈N ; ( fi)i∈N) and a coalition structure C of N, the
(with C associated) game in strategic form ΓC is defined as the game in strategic form

ΓC := (C; (KC)C∈C ; (PC)C∈C) where PC := ∑
i∈C

fi ◦ JC . �

So PC : KC → R and PC(k) = ∑i∈C fi(JC(k)).
It may be appropriate to define for meta player C his payoff function in terms of physical action

profiles by
P̂C(x) = PC(J<−1>

C (x)).

13 For example, if N = {1, 2, 3, 4, 5, 6, 7}, then for the coalition structure C = {{3, 4, 5}, {1, 2}, {6}, {7}}, we have [C] = (3, 2, 1, 1)
and C[2] = {1, 2}. And for C ′ = {{1, 4, 5}, {2, 3}, {6}, {7}}, we have [C ′] = (3, 2, 1, 1), C ′[2] = {2, 3} and C ∼ C ′.
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So P̂C(x) = ∑i∈C fi(x).
Clearly the payoff function PC of the coalitional game ΓC is completely determined by C, C and the

fi (i ∈ C).14 The intended interpretation is that in ΓC the players inside each coalition coordinate their
actions. We also will refer to the elements of C as meta players. And we refer to ΓC also as a coalitional
game. A Nash equilibrium of ΓC is also called a coalitional Nash equilibrium of Γ; more precisely,
we speak of a C-equilibrium of Γ. As far as we know, coalitional games first were considered in [26].
For more on coalitional equilibria (and related notions), see [27].

The action sets XC of ΓC are typically more dimensional. Note that if

C = {{1}, {2}, . . . {n}},

then ΓC = Γ and a C-equilibrium of Γ is nothing else than a Nash equilibrium of Γ. And if

C = {N},

then a C-equilibrium is nothing else than a maximiser of the total payoff function ∑i∈N fi.

3.4. Membership Rules

In this subsection n again is a positive integer and N = {1, 2, . . . , n}. A membership rule (for N)
is a mapping

R : M→ CN ,

where the Ml non-empty sets and M = Xn
i=1Mi, with the following property: the ineffective

coalition structure {{1}, . . . , {n}} is in the image of R.15 A classification of membership rules can be
found in [28].

Given a membership rule R : M→ CN , a coalition structure is said to be possible if it belongs to
R(M). Thus, the ineffective coalition structure is possible.

We call a membership rule symmetric if the membership action sets are identical and for each
permutation π of N and m ∈ M

R(Tπ(m)) = {π(C) | C ∈ R(m)}. (5)

The following result should be clear:

Proposition 1. For a symmetric membership rule R, a permutation π of N and action profiles m, m′ ∈ M it
holds that m′ = Tπ(m) ⇒ R(m) ∼ R(m′).16 �

4. Two-Stage Coalition Formation Games

4.1. Notion

After having presented the rules of the game in Section 2, we now focus on the formal definition
of the two-stage coalition formation game.

14 This construction may not always be realistic. For example, in the case where the physical game Γ is a Cournot oligopoly,
one may imagine that the resulting cost function for a meta-player C in ΓC is not obtained as a sum ∑i∈C ci(kC;i) of the
individual cost functions (see, for example, [25]).

15 Note that we do not assume that R is injective. For example Rc in Definition 9 below is not injective.
16 We note that for a symmetric membership rule R, the implication R(m) ∼ R(m′) ⇒ m′ =

Tπ(m) for some permutation π of N does not necessarily hold. For example it does not hold for the cartel membership rule
Rc in Definition 9.
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Definition 2. A two-stage coalition formation game is a 3-tuple

(N; R; Γ)

where Γ = (N; (Xi)i∈N ; ( fi)i∈N) is a game in strategic form with player set N = {1, 2, . . . , n} with n ≥ 2,
called the physical game and R : M→ CN is a membership rule for N. �

We call Mi the membership action set of player i and Xi his physical action set.
An additional possibility for the above game is to allow for payoff transfers between the players.

This occurs, for example, if players who join a coalition redistribute their payoffs according to some
sharing rule; for example, equal sharing, where the total payoff is divided equally among the coalition
members. Although sharing is an important issue, we will not deal with it, since a general formalisation
is complicated (for example, the additional rules may refer explicitly to the chosen membership actions
and physical actions). In addition, sharing would destroy the two-stage structure of the game.17

4.2. Effective Game

As a two-stage coalition formation game is a two-stage game with, in both stages, simultaneous
and independent actions, it is not so clear how to “solve” such a game ([31]); an extra complication
here is that the player set of the second stage is, in general, not equal to that of the first stage.

The existing literature handles the solving issue by “looking for subgame perfect equilibria”: first
one solves the second stage by determining for each possible coalitional game18 its Nash equilibria,
and then the first one. In doing so it is assumed that each possible coalitional game has a unique Nash
equilibrium. Below we shall make this precise.

Definition 3. A two-stage coalition formation game (N; R; Γ) is regular if for each possible coalition structure
the coalitional game ΓC has a unique Nash equilibrium. In this case this Nash equilibrium is denoted by

e(C). �

Definition 4. Let (N; R; Γ) be a regular two-stage coalition formation game. Its effective game is the game in
strategic form G = (N; (Mi)i∈N ; (gi)i∈N) defined by

gi(m) := fi(x̂(m)). (6)

with x̂ : M→ X given by19

x̂(m) = (x̂1(m), . . . , x̂n(m)) := JR(m)(e
(R(m))).

We refer to the function gi as effective payoff of player i and to x̂i(m) as effective physical action (of
player i associated with m).20 �

17 In the literature (for example, in [19,29,30]) various sharing rules are used which are incompatible with the game rules in
Section 2 for the two-stage game. The problem is that these rules refer to effective payoffs (see Subsection 4.2) which only
are known after the game has been solved. In particular, this applies to so-called “optimal sharing” that refers to the payoff
of a player who cooperates in the case he would not have cooperated. However, as we shall see, in Subsection 9.2, the ideas
related to optimal sharing will “survive” for situations where the effective game has the so-called deviation property D1.

18 I.e., coalitional game ΓC where C is a possible coalition structure.
19 Using the notation (4).
20 The formal object of “effective payoff” has a close relation to what is called “valuation” in the theory of partition function

games. However, their precise mathematical structure is different. Using effective payoffs and effective physical actions,
the strategic form structure becomes much more visible.
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So we have the formula
gi(m) = fi(JR(m)(e

(R(m))). (7)

Note that the two-stage coalition formation game is almost completely non-cooperative; the only
place where cooperative aspects enter is in the coordination of the choices by the coalition members.

4.3. Solving the Two-Stage Game

Consider a regular two-stage coalition formation game (N; R; Γ) with effective game G. The game
G is a game in strategic form with M as set of action profiles. In the literature the two-stage game is
solved by determining the Nash equilibria set

E(G)

of G. For every m ∈ E(G) we refer to R(m) as a equilibrium coalition structure.
In the context of a cartel game (with the cartel membership rule Rc), one also is interested in

semi-strict Nash equilibria (see Section 9). Denoting the set of semi-strict Nash equilibria by

Ess(G),

we refer for every m ∈ Ess(G) to Rc(m) as a semi-strict equilibrium coalition structure.

5. Cournot-Like Games

5.1. Notion

When dealing with two-stage coalition formation games, Cournot games and public good games
are popular physical games. As such games have a common structure and admit a unified analysis,
in [32] the following class of games was introduced:

Definition 5. A Cournot-like game is a game in strategic form

(N; (Xi)i∈N ; ( fi)i∈N)

where every Xi is a subset of21 R+ with 0 ∈ Xi and

fi(x) = pi(xi)− xβi
i qi(∑

l∈N
γl xl)

where, with (the Minkowski sum) Y := ∑l∈N γlXl ,

• pi : Xi → R and qi : Y → R;
• βi ∈ {0, 1} and γl > 0. �

The abstract class of Cournot-like games contains various heterogeneous Cournot oligopoly
games: take every βi = 1. It contains all22 homogeneous Cournot oligopoly games: take, in addition,
all qi equal and each γl = 1. It also contains various public good games: take every βi = 0.

5.2. Uniqueness of Coalitional Equilbria

Let us consider the regularity issue for two-stage coalition formation games with a Cournot-like
game as physical game. This issue mainly concerns a Nash equilibrium semi-uniqueness

21 Mostly Xi even is a proper real interval.
22 Disregarding cases with finite action sets.
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problem23 as conditions for existence do not seem to be problematic in the relevant literature;24

in particular equilibrium existence, results, à la Nikaido-Isoda, are useful (see [33]). Already
in the case of one-dimensional action sets, for example in the classical Cournot oligopoly,
the equilibrium semi-uniqueness problem poses more serious problems than the existence problem
(see, for example, [34,35]). For coalitional games this problem is even more complicated, as in such
such games action sets may be higher dimensional.

In [36], the above problem was approached by developing an equilibrium semi-uniqueness result
for games in strategic form with higher dimensional action sets. The next theorem follows from the
results in [36]. This theorem deals with Cournot-like games as physical games.

Theorem 1.

1. Consider a homogeneous Cournot oligopoly game, with fi(x) = ai(xi)− xib(∑l∈N xl), with compact
action sets, differentiable strictly concave ai and with differentiable increasing convex b. Then for every
coalition structure C the game has a unique C-equilibrium.

2. Consider a public good game with fi(x) = ai(xi)− bi(∑l∈N xl), with compact action sets, differentiable
strictly concave ai and with differentiable increasing convex bi. Then for every coalition structure C the
game has a unique C-equilibrium. �

Proof. By Corollary 3 in [36].

Corollary 1. A two-stage coalition formation game (N; R; Γ) with as physical game Γ a Cournot-like game as
in Theorem 1 is regular. �

Example 2. A simple example of a Cournot-like game that does not have the property that for every coalition
structure C there is a unique C-equilibrium, is the following: each player has action set R+ and the payoff
functions are

fi(x) = (∑
l∈N

xl)
1/2 − xi.

In order to see this, consider the coalitional game for the coalition structure {N}. This game has one player:

the meta-player N. The payoff function of this game is the function k 7→ n
(

∑l∈N kl

)1/2
−∑l∈N kl . The set

of Nash equilibria of this game consists of the actions k with ∑n
l=1 kl = n2/4. Thus, there are infinitely many

{N}-equilibria. �

6. Coalitional Equilibria of Symmetric Games

The symmetry notion (1) for a game in strategic form Γ presupposes that each player has the same
action set. This implies for a coalitional game ΓC of Γ that “symmetric” may not be well-defined, even if
Γ is symmetric, since the coalition structure may comprise meta players of unequal size. Proposition 2
below shows that for a symmetric Γ the Nash equilibria of the coalitional games of Γ nevertheless have
some symmetry properties.

In the rest of this section we consider a game in strategic form Γ = (N; (Xi)i∈N ; ( fi)i∈N).
Given a coalition structure C and a permutation π of N, let C ′ be the coalition structure C ′ =

{π<−1>(C) | C ∈ C} and Uπ : ∏C∈C KC → ∏C′∈C ′ KC′ be the mapping defined by

Uπ := J<−1>
C ′ ◦ Tπ<−1> ◦ JC .

23 Equilibrium uniqueness comes down to equilibrium existence and to equilibrium semi-uniqueness, i.e., that there exists at
most one equilibrium.

24 Of course, for concrete games where one can show by straightforward calculation that there is at most one Nash equilibrium
the problem is not serious.
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Uπ is, being a composition of bijections, a bijection. The reason to introduce Uπ is that with it we have
the result in Lemma 1(2). Denoting payoff functions of ΓC with PC and those of ΓC ′ with P′C′ , we have
for this situation the following lemma.

Lemma 1. Suppose Γ is symmetric.

1. For every C ∈ C the identity PC = P′
π<−1>(C) ◦ Uπ holds.

2. Uπ(E(ΓC)) = E(ΓC ′). �

Proof. 1. With (1) we obtain PC = ∑i∈C fi ◦ JC = ∑i∈π<−1>(C) fπ(i) ◦ JC = ∑i∈π<−1>(C) fi ◦Tπ<−1> ◦ JC =
∑i∈π<−1>(C) fi ◦ JC ′ ◦ Uπ = P′

π<−1>(C) ◦ Uπ .

2. First we prove that Uπ(E(ΓC)) ⊆ E(ΓC ′). So suppose k ∈ E(ΓC). Let k′ = Uπ(k). We are going
to prove that k′ ∈ E(ΓC ′). In order to do so, we fix in ΓC ′ , a meta player D′ and an action profile k′′

with k′C′ = k′′C′ (C
′ ∈ C ′ with C′ 6= D′) of this game and show that

P′D′(k
′′) ≤ P′D′(k

′).

Well, let A ∈ C be such that D′ = π<−1>(A) and let d = U<−1>
π (k′′); we have

JC(d) = (Tπ ◦ Tπ<−1> ◦ JC)(d) = (Tπ ◦ JC ′)(k
′′).

We first prove
dC = kC (C ∈ C with C 6= A).

In order to do so, we fix C ∈ C with C 6= A and l ∈ C.
As π<−1>(C) 6= D′, we have k′

π<−1>(C);π<−1>(l) = k′′
π<−1>(C);π<−1>(l). With this

dC;l = (JC(d))l = ((Tπ ◦ JC ′)(k
′′))l = (JC ′(k

′′))π<−1>(l) = k′′
π<−1>(C);π<−1>(l)

= k′
π<−1>(C);π<−1>(l) = (JC ′(k

′))π<−1>(l)

= ((Tπ<−1> ◦ JC)(k))π<−1>(l) = (JC(k))l = kC;l .

As k ∈ E(ΓC), we have PA(d) ≤ PA(k). With this, as Γ is symmetric, we obtain with part 1,
as desired,

P′D′(k
′′) = P′

π<−1>(A)(Uπ(d)) = PA(d) ≤ PA(k) = P′
π<−1>(A)(Uπ(k)) = P′D′(k

′).

In the same way as above we can show that U<−1>
π (E(ΓC ′)) ⊆ E(ΓC). This implies

E(ΓC ′) = (Uπ ◦ U<−1>
π )(E(ΓC ′)) ⊆ Uπ(E(ΓC)).

Proposition 2. Suppose Γ is symmetric. Fix a coalition structure C. Suppose the game ΓC has a unique Nash
equilibrium k = (kC)C∈C .

1. For every C ∈ C, the action kC of meta player C is constant; i.e., kC;i = kC;j (i, j ∈ C).
2. For every C, C′ ∈ C with #C = #C′, it holds that kC and kC′ are the same constant.
3. For every C, C′ ∈ C with #C = #C′, it holds that fi(JC(k)) = f j(JC(k)) (i ∈ C, j ∈ C′).

Further let C ′ be a with C congruent coalition structure.

4. ΓC ′ has a unique Nash equilibrium k′.
5. For every C ∈ C and C′ ∈ C ′ with #C = #C′, the actions kC and k′C′ are the same constant.25

25 By parts 1 and 4, these are indeed constant.
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6. For every C ∈ C and C′ ∈ C ′ with #C = #C′, it holds that fi(JC(k)) = f j(JC ′(k′)) (i ∈ C, j ∈ C′). �

Proof. 1. By contradiction, suppose C ∈ C is such that kC is not constant. Fix l, m ∈ C such that
kC;l 6= kC;m. Let π be a permutation of N with π(B) = B (B ∈ C) such that π(l) = m. Now C ′
in Lemma 1 equals C. Let k′ = Uπ(k). As k′C;l = (JC(k′))l = JC(Uπ(k)) = ((Tπ<−1> ◦ JC)(k))l =

(JC(k))π(l) = kC,π(l) = kC,m 6= kC,l , we have k′ 6= k. By Lemma 1(2), also k′ ∈ E(ΓC), a contradiction
with #E(ΓC) = 1.

2. Fix a permutation π of N such that π(C′) = C. Then C′ = π<−1>(C). Fix j ∈ C′. By part
1, the proof is complete if we show that k′C′ ;j = kC;π(j). Well, k′C′ ;j = (JC ′(k′))j = ((JC ′ ◦ Uπ)(k))j =

((Tπ<−1> ◦ JC)(k))j = (JC(k))π(j) = kC;π(j).
3. Let π be a permutation of N such that π(i) = j, π(C) = C′, π(C′) = C and π = Id on

N \ (C ∪ C′). With C ′ as in Lemma 1, again C = C ′. Lemma 1(2) implies Uπ(k) = k and therefore
(Tπ<−1> ◦ JC)(k) = JC(k). With this, we obtain, f j(JC(k)) = fπ(i)(JC(k)) = fi((Tπ<−1> ◦ JC)(k)) =

fi(JC(k)).
4. Fix a permutation π of N such that C ′ = {π<−1>(A) | A ∈ C}. By Lemma 1(2), Uπ(k) is the

unique Nash equilibrium of ΓC ′ .
5. As C ∼ C ′ and #C = #C′, there exists a permutation σ of N with C ′ = {σ<−1>(A) | A ∈ C}

and C′ = σ−1(C). Fix such an σ. By the proof of part 4, k′ = Uσ(k). Take an arbitrary j ∈ C′; note
that σ9j) ∈ C. We obtain, as desired k′C′ ;j = (JC ′(k′))j = ((JC ′ ◦ Uσ)(k))j = ((Tσ<−1> ◦ JC)(k))j =

(JC(k))σ(j) = kC;σ(j).
6. Choose σ as in the proof of part 5 such that σ(j) = i. Now fi(JC(k)) = fσ(j)(JC(k)) =

f j((Tσ<−1> ◦ JC)(k)) = f j(JC ′ ◦ Uσ)(k)) = f j(JC ′(k′)).

From part 2 of this proposition we see that the actions of the individual players in a unique
coalitional equilibrium of a symmetric game only depend on the size of the coalition and not on
their composition.

7. Case of a Symmetric Physical Game

Theorem 2. Consider a regular two-stage coalition formation game (N; R; Γ) with a symmetric physical game
Γ and a symmetric membership rule R. Let G be the effective game.

1. G is symmetric.

Further, for all m, m′ ∈ Mn and i, j ∈ N, writing C = R(m) and C ′ = R(m′), if C and C ′ are congruent, then

2. #C[i] = #C ′[j] ⇒ [x̂i(m) = x̂j(m′) ∧ gi(m) = gj(m′)]. �

Proof. 1. In order to prove that G is symmetric, we fix a permutation π of N, j ∈ N and m ∈ M.
By (1), we have to prove that gπ(j)(m) = gj(Tπ<−1>(m))). Writing C = R(m) and C ′ = R(Tπ<−1>(m)),
Proposition 1 guarantees that C and C ′ are congruent; note that, by (5), C ′ = {π<−1>(C) | C ∈ C}.
By (7) we have to prove that fπ(j)(JC(e(C))) = f j(JC ′(e(C

′))). So, with k = e(C), k′ = e(C
′) and i = π(j),

we have to prove that fi(JC(k)) = f j(JC ′(k′)). Fix C ∈ C with i ∈ C. Now j = π<−1>(i) ∈ π<−1>(C) ∈
C ′. Applying Proposition 2(6) completes the proof.

2. Suppose #C[i] = #C ′[j]. Write k = e(R(m)) and k′ = e(R(m′)). Then x̂(m) = JC(k) and x̂(m′) =
JC ′(k′). Therefore x̂i(m) = kC[i] ;i and x̂j(m′) = k′C ′

[j] ;j
. Proposition 2(5) guarantees x̂i(m) = x̂j(m′).

Further, we have gi(m) = fi(JC(k)) and gi(m′) = fi(JC ′(k′)). As #C[i] = #C ′[j], Proposition 2(6)
guarantees gi(m) = gj(m′).

Some readers may find Theorem 2 intuitively clear. Yes it is. However, the literature uses reasoning
based on this theorem, but does not provide a proof. Concerning this, it is good to note that there is
almost no literature about general properties of symmetric games in strategic form and systematic
studies are lacking; an exception is the recent [37]. Most text books on game theory even do not give a
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formal definition of a symmetric game. Additionally, there are various misunderstandings about the
definition of such a game.26

8. Binary Action Games

In the next section we deal with a special type of two-stage coalition formation game: the cartel
game. As the effective game of a cartel game is a binary action game, we first consider below, binary
action games. The content of this section is based on [19,38]. For various results also, a proof will be
given.

8.1. Internal and External Stability

In the rest of this section we consider, if not stated otherwise, a binary action game; i.e., a game
in strategic form with player set N = {1, 2, . . . , n} where each player has M = {0, 1} as action set.
We denote the game by G and the payoff function of player i by gi, so gi : Mn → R.

Again as in Example 1, for m ∈ Mn, let

Ŝ(m) = {i ∈ N | mi = 1}, Ŝ?(m) = {i ∈ N | mi = 0}.

We refer to the players in Ŝ(m) as cooperators and to the players in Ŝ?(m) as non-cooperators.
For i ∈ N define Ti : Mn → Mn as follows: Ti(m) is the action profile obtained from m =

(m1, . . . , mn) when player i changes his action (i.e., replaces mi by 1−mi). Let g′i(m) be the marginal
payoff of i at m; i.e.,

g′i(m) = gi(Ti(m))− gi(m).

Note that g′i(Ti(m)) = −g′i(m) and that m is a Nash equilibrium if and only if g′i(m) ≤ 0 for all
i ∈ N.

An interesting notion for binary action games is that of “semi-strict Nash equilibrium":

Definition 6. An action profile m is

1. Weakly internally stable if g′i(m) ≤ 0 for each cooperator i.
2. Strictly externally stable, g′i(m) < 0 for each non-cooperator i.
3. A semi-strict Nash equilibrium if m is weakly internally stable and strictly externally stable. �

These notions of internal and external stability were essentially introduced in [3] and differ entirely
from those in other types of games.

We denote the set of semi-strict Nash equilibria of G by

Ess(G)

and the set of weakly internally stable action profiles by

I(Ŝ).

Note that I(Ŝ) 6= ∅ as 0 ∈ I(Ŝ). Let

UŜ(m) := {i ∈ Ŝ?(m) | g′i(m) ≥ 0}.

Thus, UŜ(m) is the set of players that violate the strict inequality for strict external stability;
m is strictly externally stable if and only if UŜ(m) = ∅.

26 For example, the stone-paper-scissors (bi-matrix) game is not symmetric.
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The next result is at the base for various results about binary action games.

Proposition 3. Consider an action profile m.

1. m ∈ I(Ŝ) ⇒ UŜ(Ti(m)) 6= ∅ (i ∈ Ŝ(m)).
2. UŜ(m) = ∅ ⇒ Ti(m) 6∈ I(Ŝ) (i ∈ Ŝ?(m)).
3. If m is a semi-strict Nash equilibrium, then for every i ∈ N it holds that Ti(m) is not a semi-strict

Nash equilibrium. �

Proof. See Proposition 3 in [38] (see also Lemma 1 in [19]).

Proposition 3(1) states that if an action profile m is weakly internally stable, then for every
cooperator i the action profile Ti(m) is strictly externally unstable. Its part 2 indicates that if an action
profile m is strictly externally stable, then for every non-cooperator i the action profile Ti(m) is weakly
internally unstable. Part 3 shows a typical property of semi-strict Nash equilibria: if m is such an
equilibrium, then if one player changes his action, the resulting action profile is no longer a semi-strict
Nash equilibrium.

8.2. Deviation Property D1

In [38] three so-called deviation properties (i.e., D1, D2 and D3) for binary action games are
defined. In the present article we only consider the following one:

Definition 7. A binary action game has the deviation property D1 if g′j(m) ≤ 0 ⇔ g′i(m) ≤ 0 for each
action profile m and cooperators i, j. �

Terminology: a finite sequence m(0), m(1), . . . , m(k) of action profiles is an enlargement sequence
if Ŝ(m(0)) ⊂ Ŝ(m(1)) ⊂ · · · ⊂ Ŝ(m(k)). An enlargement sequence m(0), m(1), · · · ,
m(k) is called elementary if #Ŝ(m(l+1)) = #Ŝ(m(l)) + 1 for all l.

Theorem 3. Consider a binary action game with the deviation property D1.

1. Let m ∈ Mn. Then i ∈ UŜ(m) ⇒ Ti(m) ∈ I(Ŝ).
2. For each weakly internally stable action profile m(0) there exists an elementary enlargement sequence

m(0), m(1), . . . , m(k) of weakly internally stable action profiles where m(k) is a semi-strict Nash
equilibrium.

3. The game has a semi-strict Nash equilibrium. �

Proof. See Proposition 5 and Theorem 1 in [38].

Theorem 3(2) implies that each binary action game with the deviation property D1 has a semi-strict
Nash equilibrium: indeed, take m(0) = 0.
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Definition 8. A binary action game:

1. Is super-additive if for each action profile m and i ∈ Ŝ?(m)

∑
l∈Ŝ(Ti(m))

gl(Ti(m)) ≥ ∑
l∈Ŝ(m)

gl(m) + gi(m);

2. Has weak negative spillovers if for each action profile m and i, k ∈ Ŝ?(m) with i 6= k

gi(Tk(m)) ≤ gi(m). �

Super-additivity thus means that: given an action profile, the payoff of a meta player consisting of
the cooperators together with a non-cooperator is at least the sum of the payoffs of the cooperators and
this non-cooperator. Weak negative spillovers, in contrast, indicate that the payoff of a non-cooperator
decreases or stays the same if another non-cooperator becomes a cooperator.

Proposition 4. Suppose G has the deviation property D1, is super-additive and has weak negative spillovers.

1. For all m ∈ I(Ŝ) and j ∈ S?(m), it holds that Tj(m) ∈ I(Ŝ).
2. Each action profile is weakly internally stable.
3. Ess(G) = {(1, 1, . . . , 1)}. �

Proof. 1. Let p = Tj(m). Note that m = Tj(p) and Ŝ(p) = Ŝ(m) ∪ {j}. We obtain

∑
l∈Ŝ(p)

gl(Tl(p)) = gj(m) + ∑
l∈Ŝ(m)

gl(TjTl(m))

≤ gj(m) + ∑
l∈Ŝ(m)

gl(Tl(m)) ≤ gj(m) + ∑
l∈Ŝ(m)

gl(m)

≤ ∑
l∈Ŝ(Tj(m))

gl(Tj(m)) = ∑
l∈Ŝ(p)

gl(p).

Here the first inequality holds by weak negative spillovers (noting that j, l ∈ Ŝ?(Tl(m)) and l 6= j),
the second by m ∈ I(Ŝ), and the third by super-additivity. Thus ∑l∈Ŝ(p) g′l(p) ≤ 0. The deviation

property D1 implies p ∈ I(Ŝ).
2. By part 1, as 0 ∈ I(Ŝ).
3. As 1 = (1, . . . , 1) is strictly externally stable, part 2 implies that 1 ∈ Ess(G). Next, by

contradiction we prove Ess(G) ⊆ {1}. So suppose m ∈ Ess(G) with m 6= 1. As m ∈ Ess(G), we have
US(m) = ∅. As m 6= 1, we can fix i ∈ Ŝ?(m). By Proposition 3(2), Ti(m) 6∈ I(Ŝ), a contradiction with
part 2.

8.3. Symmetric Binary Action Games

For a symmetric game in strategic form with a unique Nash equilibrium, this equilibrium may
not be strict as the following bi-matrix game shows: 1; 1 1; 0 0; 1

0; 1 0; 0 1;−1
1; 0 −1; 1 0; 0

.

But, as part 2 of the following proposition shows, it is strict if the game is a binary action game.

Proposition 5. Consider a symmetric binary action game G.
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1. G has the deviation property D1 (and thus, a semi-strict Nash equilibrium).
2. If G has a unique Nash equilibrium, then this equilibrium is strict. �

Proof. See Theorem 5 and Corollary 1 in [38].

Lemma 2. Consider a symmetric binary action game; let S = Ŝ or S = Ŝ?. Then for all action profiles m, m′ and
players i, j with #S(m) = #S(m′), i ∈ S(m) and j ∈ S(m′), it holds that gi(m) = gj(m′) and gi(Ti(m)) =

gj(Tj(m′)). �

Proof. By Lemma 2 in [38].

For a symmetric binary action game, define27

w0(s) = g1(0, 1s, 0) (0 ≤ s ≤ n− 1), (8)

w1(s) = g1(1s, 0) (1 ≤ s ≤ n), (9)

and the function t : {0, 1, . . . , n + 1} → R∪ {−∞,+∞} by

t(s) :=


+∞ if s = 0,
g1(1s, 0)− g1(0, 1s−1, 0) = w1(s)− w0(s− 1) if 1 ≤ s ≤ n,
−∞ if s = n + 1.

(10)

We refer to t as the stability function.

Theorem 4. Suppose G is symmetric. Let m ∈ Mn; write s = #Ŝ(m).

1. m is a Nash equilibrium if and only if, t(s + 1) ≤ 0 ≤ t(s).
2. m is a semi-strict Nash equilibrium if and only if, t(s + 1) < 0 ≤ t(s). �

Proof. By Lemma 2, writing s = #Ŝ(m), for i ∈ Ŝ(m) that gi(m) = g1(1s, 0), gi(Ti(m)) =

g1(0, 1s−1, 0), and therefore, g′i(m) = g1(0, 1s−1, 0)− g1(1s, 0) = g′1(1s, 0). This in turn implies for
i ∈ Ŝ?(m) that g′i(m) = −g′i(Ti(m)) = −g1(0, 1s, 0) + g1(1s+1, 0) = −g′1(1s+1, 0). Having seen this,
observe for all m ∈ Mn and i ∈ N

g′i(m) =

{
−t(#Ŝ(m)) if i ∈ Ŝ(m),
t(#Ŝ(m) + 1) if i ∈ Ŝ?(m).

(11)

2. We use (11). Definition 6(a) together with t(0) = ∞ to imply that m with Ŝ(m) ≥ 1 is weakly
internally stable if and only if t(s) ≥ 0. Definition 6(b) together with t(n + 1) = −∞ implies that m is
strictly externally stable if and only if, t(s + 1) < 0. Thus, the desired results follows.

1. In the same way as 2.

Proposition 6. If G is symmetric, then G is an aggregative game. �

Proof. Note that, for every i ∈ N, the set Ti = ∑l 6=i Ml equals {0, . . . , n − 1}. For z ∈ Ti, define

g̃(z)i : Mi → R by g̃(z)i (mi) := gi(mi, 1z, 0, . . . , 0). Lemma 2 (with j = i) implies, as desired by (2), that

gi(m) = gi(mi; mı̂) = gi(mi; 1∑l 6=i ml , 0, . . . , 0) = g̃
(∑l 6=i ml)

i (mi).

27 1s = (1, 1, . . . , 1) with s times a 1.
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8.4. Potentials

The concept of potential game originated in [39]. As far as we know they still did not find their
way into the two-stage game approach to coalition formation. Roughly said, a game is said to be a
potential game if the incentive of all players to change their strategy can be expressed using a single
global function called the potential function. Nowadays, there exist various types of potential games.
Potential games have interesting properties: a maximiser of the potential function is a pure Nash
equilibrium, and a potential provides insight into (finite-time) convergence of an iterated game towards
a Nash equilibrium and is helpful for performing comparative statics in case the game also has an
aggregative structure ([23]). For an extensive treatment of potential games, we refer the reader to [40].

Theorem 5. A binary action game with the deviation property D1 is a generalised, ordinal potential game. If in
addition for each player his best-reply correspondence is single-valued, then the game is an ordinal potential game.
�

Proof. See Theorem 3 in [38].

By Proposition 5 and Theorem 3, each symmetric binary action game is a generalised ordinal
potential game. But we can do better, as the next theorem shows.

Theorem 6. Consider a symmetric binary action game G.

1. G is an exact potential game. Even, the function P : Mn → R defined by P(m) := ∑
#Ŝ(m)
l=1 t(l) is an

exact potential.
2. G is a congestion game. �

Proof. 1. By Theorems 4 and 5 in [38].
2. By part 1, as each finite exact potential game is a congestion game ([39]).

9. Cartel Games

9.1. Notion

An important example of a membership rule is the cartel membership rule, which is defined
as follows.

Definition 9. The cartel membership rule is the membership rule Rc : M → CN defined by Mi = M =

{0, 1} (i ∈ N) and28

Rc(m) :=

{
{Ŝ(m)} ∪ ∪i∈Ŝ?(m){{i}} if m 6= 0,
{{1}, . . . , {n}} if m = 0.

Here Ŝ, Ŝ? : M→ R are defined by

Ŝ(m) := {i ∈ N | mi = 1} and Ŝ?(m) := {i ∈ N | mi = 0}. �

We refer to the coalition structures in Rc(M) as cartel coalition structures.
Note that

#Ŝ(m) ≤ 1 ⇒ Rc(m) = {{1}, . . . , {n}} (12)

and that Rc : M \ {0} → CN is injective.

28 Note that we distinguish between two cases as {∅} ∪ {{1}, . . . , {n}} 6= {{1}, . . . , {n}}.
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Definition 10. A cartel game is a two-stage coalition formation game (N; R; Γ) where the membership rule R
is the cartel membership rule Rc. �

If #Ŝ(m) = #Ŝ(m′), then there exists a permutation π of N with m′ = Tπ(m). Therefore,
Proposition 1 implies

#Ŝ(m) = #Ŝ(m′) ⇒ Rc(m) ∼ Rc(m′).

The cartel membership rule can be generalised as follows by the following membership rule
Rcc : M→ CN defined by Mi = {0, 1, . . . , p} (i ∈ N) and

Rcc(m) := ∪k=1,...,p with Ŝk(m) 6=∅ {Ŝk(m)} ∪ ∪i∈Ŝ0(m){{i}}

where p ≥ 1 and Ŝk(m) = {i ∈ N | mi = k}.29

Proposition 7. The membership rule Rcc is symmetric. �

Proof. Let π be a permutation of N and m ∈ M.
First note that Ŝk(Tπ(m)) = π<−1>(Ŝk(m)). Indeed: i ∈ Ŝk(Tπ(m)) ⇔ k = (Tπ(m))i =

mπ(i) ⇔ π(i) ∈ Ŝk(m) ⇔ k ∈ π<−1>(Ŝk(m)). This implies, as desired, Rcc(Tπ(m)) =

{Ŝ1(Tπ(m)), . . . , Ŝs(Tπ(m))} ∪ ∪i∈Ŝ0(Tπ(m)){{i}} = {π<−1>(Ŝ1(m)), . . . , π<−1>(Ŝs(m))} ∪
∪i∈π<−1>(Ŝ0(m)) {{i}} = {π<−1>(C) | C ∈ Rcc(m)}.

9.2. Equilibrium Coalition Structures

In this subsection we consider a regular cartel formation game (N; Rc; Γ). Again, G denotes its
effective game.

As all membership action sets Mi equal M := {0, 1}, G is a binary action game. A useful
observation is that G has, by (6) and (12), the following property:

gi(m) = gi(0) for all i ∈ N and m ∈ Mn with #Ŝ(m) = 1. (13)

(13) implies that for each player i the best reply to the strategy profile 0 of its opponents equals
{0, 1}. Thus, no best-reply correspondence is single-valued.

With the stability function t as given by (10), (13) implies for a symmetric G

t(1) = 0. (14)

For the effective game G the literature not only considers its Nash equilibria set E(G) but also its
semi-strict Nash equilibrium set

Ess(G).

As Ess(G) ⊆ E(G), we then have for every m ∈ Ess(G) a semi-strict equilibrium coalition
structure Rc(m). Property (13) implies

#Ŝ(m) ≤ 1 ⇒ m ∈ I(Ŝ), 0 ∈ E(G), 0 6∈ Ess(G). (15)

As Rc(0) = {{1}, . . . , {n}}, we obtain:

29 So choosing an action not equal to 0 means that a player is willing to cooperate. Concerning real world interpretations: each
of the actions 1, . . . , p may represent different “circumstances” for cooperation.



Games 2020, 11, 3 20 of 31

Proposition 8. The ineffective coalition structure {{1}, . . . , {n}} is for each cartel game an equilibrium
coalition structure. �

However, (15) does not exclude that the ineffective coalition structure is a semi-strict equilibrium
cartel coalition structure: indeed, if m is a semi-strict Nash equilibrium with #Ŝ(m) = 1, then the
ineffective coalition structure is a semi-strict equilibrium cartel coalition structure.

Example 3. Consider again, Example 1. There we found that for n ≥ 3 the equilibrium coalition structures are
exactly the cartel coalition structures with zero, two, or three cooperators and that for n = 2 the equilibrium
coalition structures are exactly the cartel coalition structures with zero or two cooperators. With Theorem 6(2),
we see that the semi-strict equilibrium coalition structures are for n ≥ 3 exactly the cartel coalition structures
with 3 cooperators and for n = 2 exactly the cartel coalition structures with 2 cooperators. �

Proposition 9. If G is a super-additive cartel game and has the deviation property D1, then each action profile
p with #Ŝ(p) = 2 is weakly internally stable. �

Proof. We may suppose that Ŝ(p) = {1, 2}. So Ŝ?(p) = N \ {1, 2}. We have to prove that
g1(p) ≥ g1(T1(p))∧ g2(p) ≥ g2(T2(p)). As the game is a cartel game, this becomes g1(p) ≥ g1(0)∧
g2(p) ≥ g2(0). As the game has the deviation property D1, we have g1(p) ≥ g1(T1(p)) ⇔ g2(p) ≥
g2(T2(p)). Thus, the proof is complete if we can show that

g1(p) + g2(p) ≥ g1(0) + g2(0).

Applying Definition 8 with m = (1, 0, . . . , 0) and i = 2 (and noting that Ti(m) = p) gives the result.

Theorem 7. Consider a regular cartel game (N; Rc; Γ) with a symmetric physical game Γ. Let G be its
effective game.

1. G is a symmetric game, an aggregative game, an exact potential game, and a congestion game and has the

deviation property D1. The function P(m) = ∑
#Ŝ(m)
l=1 t(l) is an exact potential.

2. G has a semi-strict Nash equilibrium, and therefore, a semi-strict equilibrium cartel coalition structure.
3. If G has a unique Nash equilibrium, then 1 is this equilibrium, this equilibrium is strict, {N} is a semi-strict

equilibrium cartel coalition structure and there is no other equilibrium cartel coalition structure.
4. If there exists a membership action profile m with two cooperators such that gi(m) ≥ gi(0) for some

cooperator i, then there exists an effective semi-strict equilibrium cartel coalition structure. �

Proof. 1. Noting that by Proposition 7 the membership rule Rc is symmetric, Theorem 2(1) applies
and guarantees that G is symmetric. Next, apply Theorem 6, Proposition 5(1) and Proposition 6.

2. As, by part 1, G is a symmetric binary action game, it has by Proposition 5(1) a semi-strict
Nash equilibrium.

3. Let m be this equilibrium. By Proposition 5(2), m is strict. As G is symmetric, m is symmetric.
As, by (15), 0 is not a semi-strict Nash equilibrium, m = 1 follows. Thus Rc(m) = {N} is a semi-strict
equilibrium cartel coalition structure. Of course, there is no other equilibrium cartel coalition structure.

4. As #Ŝ(m) = 2, we have #Ŝ(Ti(m)) = 1, and therefore, by (13), gi(m) ≥ gi(0) = gi(Ti(m)).
So gi(m) ≥ gi(Ti(m)). As by part 1 the game has the deviation property D1 it follows that
gk(m) ≥ gk(Tk(m)) for all k ∈ Ŝ(m). Thus m is weakly internally stable. Theorem 3(2) implies that
there exists a semi-strict Nash equilibrium a with #Ŝ(a) ≥ #Ŝ(m) = 2. Thus, Rc(a) is an effective
semi-strict equilibrium cartel coalition structure.

The nice thing in Theorem 7(1,2,3) is that its results almost solely depend on the qualitative
properties of the primitives of the physical game, namely being symmetric. We write “almost” as there
is the additional assumption that the cartel game is regular.
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It is well-known that each maximiser of a finite exact potential game is a Nash equilibrium.
Let us now, for Example 1 identify the Nash equilibria obtained by maximising the potential P in
Theorem 7(5):

Example 4. Consider again, Example 1. There we obtain for the exact potential P in Theorem 7(1), writing
s = #Ŝ(m),

P(m) =
s

∑
l=1

t(l) =
s

∑
l=1

(−1
2

l2 + 2l − 3
2
)

b2

a
= (−1

6
s3 +

3
4

s2 − 7
12

s)
b2

a
.

The maximisers of P are the strategy profiles with 2 or 3 cooperators (i.e., s = 2 or s = 3). �

Proposition 10. Consider a regular cartel game (N; Rc; Γ). Suppose that the effective game G has deviation
property D1.

1. G is a generalised ordinal potential game.
2. G has a semi-strict Nash equilibrium, and therefore, a semi-strict equilibrium cartel coalition structure.
3. If there exists a membership action profile m with #Ŝ(m) ≥ 2 such that gi(m) ≥ gi(0) for some player

i ∈ Ŝ(m), then there exists an effective semi-strict equilibrium coalition structure. �

Proof. 1. By Theorem 3 in [38].
2. By Theorem 3(2).
3. Exactly the same (but omitting “by part 1” there) as Theorem 7(4).

10. Further Examples

To illustrate and compLemmant our general results from the previous section, we now determine
the (semi-strict) equilibrium cartel coalition structures for some concrete cartel formation games with
a Cournot-like game as physical game.

Example 5. Consider the cartel game with a physical game the Cournot-like public good game with common
action set X = R+ and with payoff functions

fi(x) = −ci(xi) + bi

n

∑
l=1

xl

where ci is continuously differentiable, strictly convex, and strictly increasing with limxi→∞ c′i(xi) = ∞, bi > 0
and bi ≥ c′i(0). With this example we provide a more general variant of Example 1: it will relax the assumption
of a quadratic (cost) function ci.

Note that ci : R+ → [ci(0), ∞ [, c′i : R+ → [c′i(0), ∞ [, and c′i
<−1> : [c′i(0), ∞ [→ R+. For A ⊆ N we

denote b(A) := ∑l∈A bl .
The payoff function P̂C of meta player C ∈ Rc(m) in terms of the action profile x ∈ X = Xn equals

P̂C(x) =

{
−ci(xi) + bixi + bi ∑l 6=i xl if C = {i} with i ∈ Ŝ?(m),
∑i∈C(−ci(xi) + b(C)xi) + b(C)∑l 6∈C xl if C = Ŝ(m),

the effective physical actions are

x̂i(m) =

{
xi (i ∈ Ŝ?(m)),
xi(m) (i ∈ Ŝ(m)),

where xi = c′i
<−1>(bi) and xi(m) = c′i

<−1>(b(Ŝ(m))) and the effective payoffs are

gi(m) =

{
−ci(xi) + bi(∑l∈Ŝ(m) xl(m) + ∑l∈Ŝ?(m) xl) if mi = 0,
−ci(xi(m)) + bi(∑l∈Ŝ(m) xl(m) + ∑l∈Ŝ?(m) xl) if mi = 1.
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Although the further analysis also is analogous to that in Example 1, we shall proceed from here on by
referring to the theory developed in the meanwhile.

In order to simplify, further suppose that c1 = · · · = cn =: c and b1 = · · · = bn =: b. As the physical
game is symmetric, the effective game G is so too by Theorem 2.30

Now let us determine the stability function t. We already know that

t(0) = +∞, t(1) = 0, t(n + 1) = −∞.

For the functions w0 and w1 in (8) and (9) writing s = #Ŝ(m) and x(s) = c′<−1>(sb) (s ≥ 1)

w0(s) = g1(0, 1s, 0) = −c(x(1)) + b((n− s)x(1) + sx(s)) (1 ≤ s ≤ n− 1),

w1(s) = g1(1s, 0) = −c(x(s)) + b((n− s)x(1) + sx(s)) (1 ≤ s ≤ n).

So for s ≥ 2, we obtain t(s) = w1(s)−w0(s− 1) = −c(x(s))+ b((n− s)x(1)+ sx(s))− (−c(x(1))+
b((n − (s − 1))x(1) + sx(s − 1))) = −c(x(s)) + c(x(1)) + bsx(s) − bx(1) − b(s − 1)x(s − 1) =

−c(x(s)) + c(x(1)) + b
(

s(x(s)− x(s− 1)) + x(s− 1)− x(1)
)

. Thus for 2 ≤ s ≤ n we get the formula

t(s) = c(x(1))− c(x(s)) + b
(

s(x(s)− x(s− 1)) + x(s− 1)− x(1)
)

. (16)

(For n ≥ 3) this formula implies t(2) = c(x(1))− c(x(2)) + b(2x(2)− 2x(1)) and t(3) = c(x(1))−
c(x(3)) + b(3x(3)− 2x(2)− x(1)).

Further suppose c(x) = a
p xp with a > 0 and p > 1. Then c′<−1>(y) = (y/a)1/(p−1), x(s) =

s1/(p−1)x(1), x(1) = (b/a)1/(p−1) and c(x(s)) = sp/(p−1) b
p x(1)). Therefore for 2 ≤ s ≤ n we find

t(s) = bx(1)
( 1

p
(1− sp/(p−1)) + sp/(p−1) − 1− (s− 1)p/(p−1)

)
.

Let us consider various cases. First suppose n = 2. We have t(0) = ∞, t(1) = 0, t(3) = −∞ and

t(2) = x(1)b(− 3
2 + 2

1
p−1 ). This implies t(2) ≤ 0 ⇔ p ≥ log3/2 3 and t(2) = 0 ⇔ p = log3/2 3 .

It follows that for n = 2 the equilibrium cartel coalition structures are exactly the cartel coalition structures
with 0 and with 1 cooperators if p > log3/2 3, the cartel coalition structures with 0, 1 and 2 cooperators if
p = log3/2 3 and the cartel coalition structures with 0 or 2 cooperators if p < log3/2 3. Also for n = 2 the
semi-strict equilibrium cartel coalition structures are exactly the cartel coalition structures with 1 cooperator if
p > log3/2 3 and the cartel coalition structures with 2 cooperators if p ≤ log3/2 3.

A further analysis (with numerical simulations) shows that for n ≥ 3 and p an integer with p ≥ 3 the
equilibrium cartel coalition structures are exactly the cartel coalition structures with 0 and with 2 cooperators. �

Example 6. Consider the cartel game with as physical game the Cournot-like public bad game with common
action set X = [0, 1] and with payoff functions

fi(x) = βxi − δi

n

∑
l=1

xl

where 0 ≤ δi ≤ 1 < β. Also suppose that maxi∈N δi = 1 and there does not exist m ∈ Mn with β =

∑l∈Ŝ(m) δl .

30 Of course, this also follows from the explicit expression for gi(m).
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Consider for m ∈ Mn the coalitional game ΓRc(m). In terms of the action profile x ∈ Xn the payoff function
of meta player C ∈ Rc(m) equals

P̂C(x) =

{
(β− δi)xi − δi ∑l 6=i xl if C = {i} with i ∈ Ŝ?(m),
∑i∈C(β−∑l∈C δl)xi − (∑l∈C δl)∑l 6∈C xl if C = Ŝ(m).

It is clear that in this coalitional game each meta player C = {i} has 1 as a strictly dominant action.
Additionally, meta player C = Ŝ(m) has a strictly dominant action: if β > ∑l∈Ŝ(m) δl , then each of its members
plays 1 and if β < ∑l∈Ŝ(m) δl , then each of its members plays 0. Thus, this game has a unique Nash equilibrium,
the two-stage coalition formation game is regular and for the with this equilibrium corresponding action profile
x̂(m) we have

x̂i(m) =


1 if i ∈ Ŝ?(m),
1 if i ∈ Ŝ(m) in case β > ∑l∈Ŝ(m) δl ,
0 if i ∈ Ŝ(m) in case β < ∑l∈Ŝ(m) δl .

Now further suppose that δ1 = · · · = δn = 1 and let us consider the effective game G. For its effective
payoffs gi(m) = fi(x̂(m)), we obtain

gi(m) =


β− n if i ∈ Ŝ?(m) in case β > #Ŝ(m),
β− n + #Ŝ(m) if i ∈ Ŝ?(m) in case β < #Ŝ(m),
β− n if i ∈ Ŝ(m) in case β > #Ŝ(m),
#Ŝ(m)− n if i ∈ Ŝ(m) in case β < #Ŝ(m).

Define the integer s? as follows

if β < n : s? is the unique integer such that β < s? < β + 1,

if β > n : s? = n.

Note that 2 ≤ s? ≤ n. Now, writing s = #Ŝ(m),

gi(m) =


β− n if i ∈ Ŝ?(m) in case s ≤ s? − 1,
β− n + s if i ∈ Ŝ?(m) in case s ≥ s?,
β− n if i ∈ Ŝ(m) in case s ≤ s? − 1,
s− n if i ∈ Ŝ(m) in case s ≥ s?.

Again the effective game is symmetric. Now let us determine the stability function t. For the functions w0

and w1 in (8) and (9) we obtain

w0(s) = g1(0, 1s, 0) =

{
β− n (0 ≤ s ≤ s? − 1),
β− n + s (s? ≤ s ≤ n− 1),

w1(s) = g1(1s, 0) =

{
β− n (1 ≤ s ≤ s? − 1),
s− n (s? ≤ s ≤ n).

With (10) we obtain t(0) = ∞, t(s) = (β− n)− (β− n) = 0 (1 ≤ s ≤ s? − 1), ts? = (s? − n)−
(β− n) = s? − β > 0, ts = (s− n)− (β− n + s− 1) = 1− β < 0, t(n + 1) = −∞. It follows that the
equilibrium coalition structures are exactly the cartel coalition structures with 0, 1, . . . , s?− 2 and s? cooperators.
The semi-strict equilibrium coalition structures are exactly the cartel coalition structures with s? cooperators. �
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Example 7. Consider the cartel game with as physical game the Cournot-like public good game with common
action set X = R+ and with payoff functions

fi(x) = −γixi + bi(
n

∑
l=1

xl)

where 0 < γ1 < · · · < γn and bi continuously differentiable, strictly concave, and strictly increasing with

0 < b′i(0) < γi and lim
y→∞

b′i(y) = 0.

We shall prove that for each semi-strict Nash equilibrium m? its associated physical action profile x̂(m?) is
the action profile 0.

Consider, for m ∈ Mn, the coalitional game ΓRc(m). In terms of the physical action profile x the payoff of
meta player C is

P̂C(x) =

{
bi(xi + ∑l 6=i xl)− γixi if C = {i} with i ∈ Ŝ?(m),
∑l∈C bl(∑i∈C xi + ∑j 6∈C xj)−∑l∈C γl xl if C = Ŝ(m).

It follows that each meta player C = {i} has 0 as strictly dominant strategy. However, the best-reply
correspondence of meta player C = Ŝ(m) depends on ∑j 6∈C xj which means that such a meta player does not
have a strictly dominant strategy.

The above implies that k = (kC)C∈Rc(m) is a Nash equilibrium of ΓRc(m) if and only if

ki = 0 (i ∈ Ŝ?(m))

and kŜ(m) is, with Z := ∏l∈Ŝ(m) R+, a solution of the concave programming problem

MAXk∈Z ∑
l∈Ŝ(m)

bl( ∑
r∈Ŝ(m)

kr)− ∑
l∈Ŝ(m)

γlkl .

As Z is not open, special attention has to be given to analyse this problem with a (standard)
Karush–Kuhn–Tucker like theorem. Concerning this, we note that bi can be extended to an open interval
J containing R+ on which bi is continuously differentiable, strictly concave, and strictly increasing.
The Karush–Kuhn–Tucker theorem guarantees that kŜ(m) is a solution of the concave programming problem if
and only if, writing C = Ŝ(m), there exists λj (j ∈ C) such that

for all i ∈ C : ki ≥ 0;

for all j ∈ C : λj ≥ 0;

for all i ∈ C : ∑
l∈C

b′l(∑
r∈C

kr)− γi + λi ≤ 0;

for all i ∈ C : ki

(
∑
l∈C

b′l(∑
r∈C

kr)− γi + λi

)
= 0;

for all j ∈ C : λjk j = 0.

This concave programming problem has a unique solution. In order to formulate this solution we define for
a non-empty subset A of N, the function hA : R+ → R by hA := ∑l∈A b′l . Note that hA is strictly decreasing
and that its image hA(R+) = ]0, hA(0)] equals ]0, ∑l∈A b′l(0)]. The unique solution is:31

31 Here is a proof. First we prove that if there is a solution; then, it is the one given by the three above case expressions.
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ki =


0 if there exists j ∈ C \ {i} with γj < γi,

0 if for all j ∈ C \ {i} one has γj > γi ∧ hC(0) ≤ γi,

h<−1>
C (γi) if for all j ∈ C \ {i} one has γj > γi ∧ hC(0) > γi.

The conclusion is that the two-stage coalition formation game is regular and that its effective physical
actions are

x̂i(m) =


0 if i ∈ Ŝ?(m),

0 if i ∈ Ŝ(m) and ∃j ∈ Ŝ(m) \ {i} with γj < γi,

0 if i ∈ Ŝ(m) and ∀j ∈ Ŝ(m) \ {i}one has γj > γi ∧ hŜ(m)(0) ≤ γi,

h<−1>
Ŝ(m)

(γi) if i ∈ Ŝ(m) and ∀j ∈ Ŝ(m) \ {i} one has γj > γi ∧ hŜ(m)(0) > γi.

Introducing for m 6= 0, im := min(Ŝ(m)) we can rewrite x̂i(m) as follows

x̂i(m) =


0 if i ∈ Ŝ?(m),

0 if i ∈ Ŝ(m) \ im,

0 if i ∈ Ŝ(m) ∧ i = im ∧ hŜ(m)(0) ≤ γim ,

h<−1>
Ŝ(m)

(γim) if i ∈ Ŝ(m) ∧ i = im ∧ hŜ(m)(0) > γim .

Note that we have ∑n
l=1 x̂l(m) = x̂im(m) (m 6= 0) and ∑n

l=1 x̂l(0) = 0. For the effective payoffs
gi(m) = fi(x̂(m)), we obtain gi(0) = bi(0) and, for m 6= 0,

gi(m) = −γi x̂i(m) + bi(x̂im(m))

=


bi(x̂im(m)) if i ∈ Ŝ?(m),

bi(x̂im(m)) if i ∈ Ŝ(m) ∧ i 6= im,

bim(x̂im(m)) if i ∈ Ŝ(m) ∧ i = im ∧ hŜ(m)(0) ≤ γim ,

−γim x̂im(m) + bim(x̂im(m)) if i ∈ Ŝ(m) ∧ i = im ∧ hŜ(m)(0) > γim .

The assumptions on bi imply that −γixi + bi(xi) is a strictly decreasing function of xi. With this we
obtain for m 6= 0,

gim(m) =

bim(0) if hŜ(m)(0) ≤ γim ,

< bim(0) if hŜ(m)(0) > γim .

Note that for m 6= 0 we have hŜ(m)(0) = ∑l∈Ŝ(m) b′l(0) = b′im(0) + ∑l∈Ŝ(m)\im b′l(0). As b′im(0) < γim ,
this implies

hŜ(m)(0) > γim ⇒ #Ŝ(m) ≥ 2.

Now we are ready to prove the desired result, that for each semi-strict Nash equilibrium m? it holds that
x̂(m?) = 0. This we do by contradiction. So suppose m? is a semi-strict Nash equilibrium m? with x̂(m?) 6= 0.

First case: fix j with γj < γi . By contradiction suppose ki 6= 0. Then λi = 0 and hC(∑r∈C kr) = γi . Also hC(∑r∈C kr) ≤
γj − λj < γi − λj ≤ γi , a contradiction.

Second case: suppose hC(0) ≤ γi . If λi 6= 0, then ki = 0. Now suppose λi = 0. By contradiction suppose ki 6= 0.
Then hC(∑r∈C kr)− γi − λi = hC(∑r∈C kr)− γi < hC(0)− γi ≤ 0, and therefore, ki = 0, a contradiction.

Third case: here i = min(C). The first case implies that k j = 0 (j 6= i). First we prove that ki 6= 0. Well, ki = 0 would imply
hC(0)− γi + λi ≤ 0, and therefore, hC(0) ≤ γi − λi ≤ γi , a contradiction with hC(0) > γi . As ki 6= 0, we have λi = 0 and
hC(ki)− γi = 0. Thus ki = h<−1>

C (γi). Next, the given ki indeed provides a solution as for these kis there exists λj (j ∈ C)
such that the above five Karush–Kuhn–Tucker conditions are satisfied.
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Then m? 6= 0. Fix i ∈ N with x̂i(m?) > 0. By the above i = im? and hŜ(m?)(0) > γim? . Noting that
im? ∈ Ŝ(m?) and Tim? (m?) 6= 0 (as #Ŝ(m?) ≥ 2) we obtain g′im?

(m?) = gim? (Tim? (m))− gim? (m?) =

bim? (x̂iTim? (m?)
(Ti(m?)))− gim? (m?) > bim? (x̂iTim? (m?)

(Tim? (m?)))− bim? (0) ≥ 0, which is impossible as

m? cannot be a semi-strict equilibrium. �

Example 8. Consider the cartel game with a physical game the Cournot-like public good game with common
action set X = {0, 1} and with payoff functions

fi(x) = −cxi + βi

n

∑
l=1

xl

where c > 1 and βi ∈ {α, 1} with 0 < α < 1. We suppose that there does not exist integers k1, k2 with
αk1 + k2 = c. Let N1 be the set of players i with βi = α and N2 be the set of players i with βi = 1. We refer to
the players in Nt as “type t players."

We obtain for the payoff of meta player C in the coalitonal game ΓRc(m) in terms of the physical action
profile x

P̂C(x) =

{
−cxi + βi ∑l∈N xl if C = {i} with i ∈ Ŝ?(m),

−c ∑i∈C xi + (∑i∈C βi)(∑l∈C xl + ∑l 6∈C xl) if C = Ŝ(m).

From this follows that the coalitional game ΓRc(m) has a unique Nash equilibrium in strictly dominant
strategies with effective physical actions

x̂i(m) =


0 if i ∈ Ŝ?(m),

0 if i ∈ Ŝ(m) ∧ αk1(m) + k2(m) < c,

1 if i ∈ Ŝ(m) ∧ αk1(m) + k2(m) > c.

where kt(m) = #{i ∈ Ŝ(m) | i ∈ Nt} (t = 1, 2). Thus the two-stage game is regular and the effective payoffs
are given by

gi(m) =


0 if i ∈ Ŝ?(m) ∧ αk1(m) + k2(m) < c,

βi(k1(m) + k2(m)) if i ∈ Ŝ?(m) ∧ αk1(m) + k2(m) > c,

0 if i ∈ Ŝ(m) ∧ αk1(m) + k2(m) < c,

−c + βi(k1(m) + k2(m)) if i ∈ Ŝ(m) ∧ αk1(m) + k2(m) > c.

Simply writing k1 = k1(m) and k2 = k2(m) we obtain the following formulas for g′i(m).
If i ∈ Ŝ?(m), then

g′i(m) =



0 if α(k1 + 1) + k2 < c ∧ αk1 + k2 < c ∧ i ∈ N1,

α(1 + k1 + k2)− c if α(k1 + 1) + k2 > c ∧ αk1 + k2 < c ∧ i ∈ N1,

(1 + k1 + k2)− c if αk1 + k2 + 1 > c ∧ αk1 + k2 < c ∧ i ∈ N2,

0 if αk1 + k2 + 1 < c ∧ αk1 + k2 < c ∧ i ∈ N2,

α− c if αk1 + k2 > c ∧ i ∈ N1,

1− c if αk1 + k2 > c ∧ i ∈ N2.
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And if i ∈ Ŝ(m), then

g′i(m) =



0 if αk1 + k2 < c ∧ i ∈ N1,

0 if αk1 + k2 < c ∧ i ∈ N2,

c− α if α(k1 − 1) + k2 > c ∧ αk1 + k2 > c ∧ i ∈ N1,

c− α(k1 + k2) if α(k1 − 1) + k2 < c ∧ αk1 + k2 > c ∧ i ∈ N1,

c− 1 if αk1 + k2 − 1 > c ∧ αk1 + k2 > c ∧ i ∈ N2,

c− (k1 + k2) if αk1 + k2 − 1 < c ∧ αk1 + k2 > c ∧ i ∈ N2.

The conditions for a semi-strict Nash-equilibrium require that g′i(m) ≤ 0 for each cooperator i and
g′i(m) < 0 for each non-cooperator i. From the possible cases for g′i(m) above, we see that for a non-cooperator
g′i(m) < 0 is only possible for the cases 2, 5, 6 in the above formula of g′i(m). Requiring g′i(m) ≤ 0 for each
cooperator, we see that this only possible for the cases 1, 2, 4, 6 in the above formula of g′i(m). Combining
these conditions (5 and 6 for non-cooperators with 4 and 6 for cooperators) it follows that for a membership
profile m with

0 ≤ k1(m) ≤ #N1 ∧ 0 ≤ k2(m) ≤ #N2,

a sufficient condition for being a semi-strict equilibrium is:

c + α > αk1(m) + k2(m) > c ∧ α(k1(m) + k2(m)) > c;

note that here it holds that k1(m) 6= 0. But when looking for semi-strict Nash equilibria with k1(m) 6= 0 or
k2(m) 6= 0 each of the following two conditions separately, are sufficient:

c + α > αk1(m) > c ∧ k2(m) = 0;

c + 1 > k2(m) > c ∧ k1(m) = 0. �

11. Things to Do (Instead of Conclusions)

‘The time has come,” the Walrus said, “To talk of many things: Of shoes—and ships—and
sealing-wax—Of cabbages—and kings. And why the sea is boiling hot—And whether pigs
have wings.” (Lewis Carroll)

Although two-stage coalition formation games have been studied already for more than 30 years,
their theoretical features have still not been sufficiently investigated. For example, to the best of
our knowledge, there is no theoretical result about the existence of an effective equilibrium coalition
structure for a regular cartel game that holds for a (sufficiently) abstract Cournot-like physical game in
terms of its qualitative properties, although it is the simplest type of a two-stage coalition formation
game. Only results for concrete (mostly symmetric) physical games with quite simple payoff functions
are available. Therefore, all claims in the literature concerning such situations, for example, on the
sizes of the coalitions in equilibrium coalition structures, are only supported by specific examples.
In this section we make some suggestions how further progress can be made.

We see three reasons why such full results for two-stage coalition formation games are, presently,
not available in the literature:

I. A lack of sufficient conditions in terms of the primitives of the physical game for each possible
coalitional game to have a unique Nash equilibrium.

II. A lack of results concerning the qualitative properties of the effective payoffs in terms of the
primitives of the physical game.

III. A lack of general results concerning the structure of the Nash equilibrium set of finite games,
such as binary action games, that arise as effective games in the theory of the two-stage game
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approach to coalition formation. In particular, for these effective games, a lack of general results
on the validity of the “paradox of cooperation.”

These problems may be the basis for a research program. We discuss them now in more detail.

Problem I. This problem concerns regularity of two stage coalition formation games. Regularity
is very fundamental for the two-stage approach.32 One needs sufficient conditions in terms of the
primitives of the physical game for the two stage coalition formation game to be regular. As the
ineffective coalition structure often (as in a cartel game) is a possible coalition structure, one has
to understand in particular the Nash equilibria of the physical game. Let us mention here that,
although Cournot-like games and in particular Cournot oligopolies belong to the most studied games
in the literature, this problem is, as recent literature (e.g., [35,41,42]) shows, still an active research
subject. Of course, for coalitional Nash equilibria the equilibrium uniqueness problem is even more
complicated. The only abstract result for equilibrium uniqueness for coalitional equilibria in the
literature for Cournot-like games is, as far as we know, Theorem 1, taken form [36].33 It may be good
to improve this theorem as follows, along various lines.

1. Theorem 1 provides sufficient conditions for each coalitional game to have a unique Nash
equilibrium. However in a cartel game not all coalition structures are possible. So for a cartel game,
improvements may be possible if we restrict ourselves to the subset of possible coalitional games.

2. Theorem 1 deals with compact action sets. As various games in the literature deal with
situations where each player has R+ as action set, variants of Theorem 1(using some “effective
compactness condition’) for this situation are needed.

3. The results in Theorem 1 use assumptions that, loosely speaking, make that the actions are
strategic substitutes (having downward sloping best replies). These assumptions are popular. However,
in [20,43] it is argued that one should also give more attention to situations where the actions are
strategic complements (and have upward sloping best replies). This could be helpful for the analysis
of climate cooperation when countries have the ability to adapt to climate change.34

Problem II. In order to understand the qualitative properties of the payoffs of the effective game
G in terms of the primitives of the physical game Γ, one first has to have some insight in the properties
of the mapping that assigns the membership action profile (via the unique Nash equilibrium of the
coalitional game ΓR(m)) to the effective physical action profile x(m). Various initial, simple results
concerning this mapping exist (see [46] and references therein). Next one has to obtain insight into the
mapping that assigns to a membership action profile m, for i ∈ N, the effective payoff gi(m).

An intuitive general result (with a quite technical proof) in this context is Theorem 2 in the case of
a symmetric physical game and a symmetric membership rule: its first part states that the effective
game G is symmetric and its second part specifies further qualitative properties of the effective payoff
functions. In the literature, other properties of the effective game, such as super-additivity, are dealt
with, but there are no results for these properties in terms of the primitives of the physical game (even
if it is symmetric). Upon approaching these problems, we suggest the following.

1. A careful study of the concrete examples in the literature in order to find the crucial assumptions.
A good starting point is the case of a cartel game with a symmetric physical game.

2. Providing sufficient conditions in terms of the primitives of the physical game for the effective
game to be super-additive.

32 Up to now, how to solve the two-stage game in the case it is not regular, has not been addressed in the literature.
33 The technique for proving equilibrium uniqueness of of coalitional equilibria in [36] goes back to [31] and was generalised and

refined in [32,34]. This technique relies on an analysis of first order conditions by means of so-called “marginal reductions."
34 See, for example, [44,45].
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3. A generalisation of a symmetric game, where players are “identical," is a game where there are
two types of players (as in Example 8 in section 10). It would be very interesting to have a variant of
Theorem 2 for such a game.

Problem III. Understanding the set of equilibrium coalition structures of a regular two-stage
coalition formation game comes down to understanding of the Nash equilibrium set of its effective
game G. This game is a finite game, and due to its construction has a special structure. For example, for
the popular case of a cartel game, it is a binary action game. We have seen (Proposition 6, Theorem 6,
Proposition 5) that a symmetric binary action game is an aggregative game, an exact potential game,
a congestion game and has the deviation property D1. Also (Theorem 5) a binary action game with the
deviation property D1 is a generalised ordinal potential game and has a semi-strict Nash equilibrium.
Next steps in understanding the equilibrium set of the effective game in case of a regular cartel game
could entail the following.

1. Give sufficient conditions (in terms of the primitives of the physical game) for the effective
game to have single valued best-reply correspondences. And give sufficient conditions (in terms of the
primitives of the physical game) for the effective game to have the deviation property D1.

2. There exists nowadays, a considerable literature about aggregative games (see, for instance, [22,47]).
However, in the present article this was not exploited. Especially it seems to be interesting to further study
aggregative binary action games which allow for a potential function.

3. The structure of the Nash equilibrium set of the effective game ultimately determines the
coalition size of the cooperators in equilibrium coalitional structures. Concerning this size it would be
interesting to formalise the so-called paradox of cooperation (see [30] and references therein) and to
analyse its claim. The “paradox” was first established by [6] for a public good game with quadratic
costs and quadratic benefits in a Stackelberg setting (3-stage game). It refers to the finding that
large coalitions are stable when the gains from cooperation are small. If gains are large, only small
coalitions will be stable, if any. Later, similar features of stable coalitional equilibria were established
in 2-stage games. For example in [48] evidence for the “paradox” was found from a large number of
simulations.35 Still the paradox is not well understood, let alone characterised more formally.36

4. In (16) in Example 5, x(s) and c(x(s)) are strictly increasing functions of s. This implies that w0

is a strictly increasing function of s. A further analysis of (16) would be interesting. Concerning this,
we want to note that the cartel game in [49] is a variant of Example 5. The formula (16) applies to this
variant: instead of our c(x) = a

p xp, [49] deals with c(x) = x + a
p xp. This slight modification leads to

completely different equilibrium cartel coalition structures.

Needless to say, our list of problems is not exhaustive.
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