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Abstract: Genetic factors play a critical role in the development of human diseases. Recently, several
molecular genetic studies have provided multiple lines of evidence for a critical role of genetic factors
in the expression of human bladder exstrophy-epispadias complex (BEEC). At this point, ISL1 (ISL
LIM homeobox 1) has emerged as the major susceptibility gene for classic bladder exstrophy (CBE),
in a multifactorial disease model. Here, GWAS (Genome wide association studies) discovery and
replication studies, as well as the re-sequencing of ISL1, identified sequence variants (rs9291768,
rs6874700, c.137C > G (p.Ala46Gly)) associated with CBE. Here, we aimed to determine the molecular
and functional consequences of these sequence variants and estimate the dependence of ISL1 protein
on other predicted candidates. We used: (i) computational analysis of conserved sequence motifs to
perform an evolutionary conservation analysis, based on a Bayesian algorithm, and (ii) computational
3D structural modeling. Furthermore, we looked into long non-coding RNAs (lncRNAs) residing
within the ISL1 region, aiming to predict their targets. Our analysis suggests that the ISL1 protein
specific N-terminal LIM domain (which harbors the variant c.137C > G), limits its transcriptional
ability, and might interfere with ISL1-estrogen receptor α interactions. In conclusion, our analysis
provides further useful insights about the ISL1 gene, which is involved in the formation of the BEEC,
and in the development of the urinary bladder.
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1. Introduction

The bladder exstrophy–epispadias complex (BEEC) is the most severe of all human congenital
anomalies of the kidney and urinary tract (CAKUT), and involves the abdominal wall, pelvis, all of
the urinary tract, the genitalia, and occasionally the spine and anus [1]. Within the severity-spectrum
of the BEEC, classic bladder exstrophy (CBE) represents the most common form, with an estimated
birth-prevalence of about 1 in 37,000 live births having exstrophy–epispadias complex and bladder
abnormalities [2].

Despite advances in surgical techniques, and improved understanding of the underlying
anatomical defects, in later life many male and female patients experience chronic upper and lower
urinary tract infections, sexual dysfunction, and urinary, or in the case of cloacal exstrophies, both
urinary and fecal incontinence [1].

Recently, using genome-wide association methods in CBE patients of Central European
background, we found an association with a region of approximately 220 kb on chromosome 5q11.1.
This region harbors the ISL1 (ISL LIM homeobox 1) gene, a master control gene expressed in pericloacal
mesenchyme. Multiple markers in this region showed evidence for an association with CBE, including
84 markers with genome-wide significance [3]. In this study, the most significant marker (rs9291768)
achieved a P value of 2.13 × 10−12. In a follow-up study with 268 CBE patients of Australian,
British, German, Italian, Spanish, and Swedish origin; 1354 ethnically matched controls; and 92 CBE
case-parent trios from North America; we were able to replicate this association. A meta-analysis of
marker rs6874700 from our previous genome wide association study (GWAS) and our follow-up study,
achieved a P value of 9.2 × 10−19. In a very recent re-sequencing study of ISL1 in 125 BEEC patients of
Swedish background, Arkani et al. (2018) detected 21 single nucleotide variants including a potentially
novel missense variant, c.137C > G (p.Ala46Gly); substituting an amino acid, strictly conserved at its
position as far down as Xenopus [4]. This variant was inherited from an unaffected mother. Using
developmental biology models, we characterized the location of ISL1 activity in the forming urinary
tract. Genetic lineage analysis of ISL1 expressing cells by the lineage tracer mouse model, showed
ISL1-expressing cells in the urinary tract of mouse embryos at E10.5, and distributed in the bladder
at E15.5. Expression of ISL1 in zebrafish larvae, staged 48 hpf, was detected in a small region of
the developing pronephros, supporting the observations in mice. These genetic and developmental
biology data support ISL1 as a major susceptibility gene for CBE, and as a regulator of urinary tract
development [5]. ISL1 is a member of LIM/Homeodomain (LHX) family of transcription factor genes,
located at human chromosome 5, and has been shown to interact with estrogen receptor alpha [6].

Here, we aimed to determine the molecular and functional consequences of ISL1 variants and
estimate the dependence of ISL1 protein on other predicted candidates. We used: (i) computational
analysis of conserved sequence motifs based on a Bayesian algorithm, and (ii) 3D structural modeling.
Furthermore, we looked into long non-coding RNAs (lncRNAs) residing within the ISL1 region, aiming
to predict their targets.

2. Materials and Methods

The ISL1 sequence variants (rs9291768, rs6874700, and c.137C > G (p.Ala46Gly), known to be
associated with CBE, were selected for the comprehensive analysis. From our own previous studies,
we chose the variants rs9291768 and rs6874700 for further analysis, as these were the variants with the
most significant association with classic bladder exstrophy. Although the coding variants rs2303751
and rs41268419 were previously found to be in linkage-disequilibrium with rs9291768 and rs6874700,
we did not follow up on these two coding variants in the current analysis, since these variants are
synonymous in nature and do not alter the protein structure, nor function. Variant c.137C > G was
chosen because it was found to be associated with BEEC in an independent study by Arkani et al. 2018.
The minor allele frequencies of the investigated variants have been provided, according to genomAD
database [7] in Supplementary File 8.
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2.1. Sequence Homology-Based Single Nucleotide Polymorphism Prediction Using PolyPhen-2 & CADD

Pathogenicity of the ISL1 p.Ala46Gly variant (corresponding to c.137C > G) was ascertained
using PolyPhen-2 (Polymorphism Phenotyping-2) [8]. The methodology is based on the procedure
used previously [9] with some modifications. For PolyPhen-2, a non-synonymous single nucleotide
polymorphism (SNP), present in the coding region of a gene, is predicted to be “damaging” if the
prediction score is above the threshold value (cutoff is 0.96). For SNP classification using CADD [10],
the required variant information such as chromosome number, position, reference base pair, and
altered base pair have been used as input files for predicting and generating CADD scores.

2.2. Identification of Conserved Residues and Sequence Motifs Using Consurf

The UniProtKB amino acid sequence of the sixteen proteins in FASTA format, was used as input
for computational analysis of conserved sequences and motifs using Consurf web server [11], carrying
out evolutionary conservation analysis based on a Bayesian algorithm. The output of the Consurf
analysis shows degrees of conservation of an amino acid residue in the test protein, by means of
color coding (conservation scores: 1–4 variable, 5–6 intermediate, and 7–9 conserved). Exposed
(functional) and buried (structural) residues, with high conservation levels, were scored in the amino
acid sequence respectively.

2.3. Computational 3D Structural Modelling

3D structure models were built using I-TASSER (Iterative Threading ASSEmbly Refinement),
which employs an integrated combinatorial approach comprising of comparative modelling, threading
and ab initio modeling [12] using the procedure adopted by Dakal et al. [13]. The stereo chemical
status of modelled structures was validated using PROCHECK at SAVES [14,15]. The superimposition
of ISL1 Ala46Gly, and ISL1 wild type protein, was done using the Superpose version 1 program
(wishart.biology.ualberta.ca/superpose), with a minimum sequence similarity of 80%, similarity and
dissimilarity cutoffs of 2 and 3Å respectively, and subdomain matching “on”. The predicted ISL1
model was successfully obtained from I-TASSER using the best quality structure among generated
models, derived by using the template (PDB ID: 4JCJA) with confidence score (Cscore:4.35), Template
Modeling Score (TM:0.26 ± 0.08), and the Root-Mean-Square Deviation (RMSD:17.6 ± 2.6 Å.) for wild
type protein. In the same way, for variant c.137C > G the best predicted model was obtained with
Cscore: 4.54; TM: 0.24 ± 0.07; RMSD: 18.1 ± 2.4 Å. The sequence similarity with the template (PDB ID:
4JCJA) was 37% and model length was 359 aa for both structural models generated.

2.4. Prediction of Functional Consequences of Non-Coding Variants and Prediction of Long Noncoding
RNA Targets

In order to predict the functional consequences of non-coding variants (rs9291768, rs6874700),
GWAVA was used. The dbSNP rsIDs of these variants were used as the input files, and prediction
scores were retrieved based on annotations available from ENCODE/GENCODE [16]. Additionally, in
the present study, lncRNA targets were predicted based on the prediction of their cis function [17–19].
The closest coding genes 10 kb upstream and downstream of lncRNAs (may not be its direct target),
were screened using the BEDTools v2.25.0 program [20] Using the UCSC Genome browser, the genes
located downstream of rs9291768 and rs6874700 were mapped. LncTar was used for predicting if the
gene upstream or downstream of rs9291768 such as ISL1 and PARP8 are RNA targets of lncRNA [21],
using the default parameters.

2.5. Generation of Long Noncoding RNA Secondary Structures

To assess the impacts of SNPs on lncRNA secondary structures, we first extracted lncRNA
transcript sequences from the human reference genome (hg38 version), according to the lncRNA
transcript BED file, as Ref-transcripts. The secondary structure of the lncRNA was predicted using the
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RNAfold program [22], which constructs the lncRNA secondary structure using the input sequence,
and by calculating the minimal free energy (MFE, ∆G). Energy change of RNA structures (∆∆G) was
calculated by the minimal free energy differences using ∆∆G = [∆Galt − ∆Gref], where ∆Gref and ∆Galt
are the MFEs of the reference and altered transcript, respectively. The detailed information regarding all
IDs (proteins, genes, lncRNA), tool versions and databases, has been provided in Supplementary File 5.

2.6. Protein-Protein Interaction Network Analysis

We analyzed 72 genes that, according to literature, are putatively associated with BEEC
(Supplementary File 6), for functional protein–protein interactions (PPI) via STRING (Search tool for
the Retrieval of Interacting Genes/Proteins) [23]. STRING is a large-scale database of experimentally
verified and manually curated protein-protein interactions, as well as others that are inferred on the
basis of shared signals across genomes, text mining, gene co-expression, and protein homology [24].
That means, edges in PPI networks that are derived from STRING, represent shared biological functions
and not necessarily physical interactions. These genes were also investigated for their functionality
in different developmental stages of mice, with regards to their bladder and cloacal formation using
mouse gene expression database (GXD) [25].

3. Results

3.1. Characterization of Genetic Variants and Associated Long Noncoding RNA

All rsIDs associated with non-coding regions were subjected to GWAVA analysis. We found that
all rsIDs showed a GWAVA score less than 0.5, which indicates that the variants are non-functional
and they are likely to be associated with the disease conditions (Supplementary File 4). From the
GWAVA analysis, we also computed the distance of the rsIDs associated SNPs from the nearest
transcription start site (TSS). We found that the nearest transcript start sites were 4288 and 6467 bp
rs6874700 and rs9291768 respectively. This also indicates that these non-coding variants are potentially
disease-associated, as most disease-associated variants are generally found nearer TSSs [16]. The
two ISL1 associated markers, rs9291768 and rs6874700, were analyzed for their potential association
with any regulatory function (Figure 1a). While our analysis did not reveal regulatory functions
for rs6874700, rs9291768 was found to be associated (overlapped) with the region annotated as
lncRNA (NONCODE_v5_lncRNA: NONHSAT249106), which was located 27.2 Kbp downstream of
ISL1 (Figure 1). In addition, apart from a few pseudogenes (HMGB1P47, RNU6-1296P, RNU6-480P,
RNA5SP182, RP11), we identified one protein-coding gene, PARP8 (536,870 bp upstream), in the vicinity
of rs9291768. Since ISL1 and PARP8 are the only protein coding genes mapped closely to rs9291768,
we considered the mRNA of these two genes for further analysis. Our analysis, using web-tool LncTar,
confirmed that neither ISL1 nor PARP8 mRNA is a target of this lncRNA (NONCODE_v5_lncRNA:
NONHSAT249106) and therefore, the potential functional consequence of SNP rs9291768 has been
assumed to be neutral. However, we cannot exclude the possibility that lncRNA NONHSAT249106
may have a functional impact on the transcripts of distantly located genes.

Considering the effect of SNP rs9291768 on the secondary structure of lncRNA (NONHSAT249106),
which could potentially alter its stability, expression, or function, we compared the minimal free energy
(MFE) secondary structure and the centroid secondary structure generated from the transcripts of
both reference and altered IncRNAs, by using the RNAfold program. We found that the lncRNA
secondary structure of both the reference and altered (re9291768) transcript showed a similar secondary
structure, with MFE = −11.40Kcal/mol, suggesting that rs9291768 entails no structural change in
lncRNA structure (Figure S1). Apart from this 3’lncRNA (NONHSAT249106), one other notable
lncRNA, (LonLOC642366), overlaps with first exon of the ISL1 gene, whose function is still unclear.
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Figure 1. Characterization of ISL1 genomic variants. (A) The exon/intron structure of ISL1 with
genomic variants is presented. (B) Structural modeling of ISL1 wild type and c.137C > G (p.Ala46Gly))
mutant protein.

3.2. Structural Modeling of ISL1 Wild Type Protein and the ISL1 Variant, p.Ala46Gly

A novel missense variant, c.137C > G (p.Ala46Gly), was investigated to build the
three-dimensional structure of ISL1 wild type, and the p.Ala46Gly variant protein. The structures
were generated using the wild type amino acid sequences (UniProt ID: P61371) and the mutant
amino acid sequence (with p.Ala46Gly), by the Iterative Threading ASSEmbly Refinement method
(I-TASSER) available online. For generating both models, I-TASSER used the template of the 4JCJ
crystal structure from the PDB database [26]. Since alanine (wild type) and glycine (variant type) are
both small and non-polar amino acids, we expected no extensive structural changes in the variant
ISL1 Ala46Gly protein, compared to the wild type. Consistent with this, structural modeling of the
ISL1 wild type and the variant protein showed no change in the local, as well as the overall, protein
structure (Figure 1B, Supplementary File 3). We next subjected the amino acid of the ISL1 wild type
protein to Consurf, which computes the evolutionarily conserved, structural (buried), and functional
(exposed) residues, in a protein. We found that the p.Ala46Gly position is highly conserved, which
suggests that this variant might be functional in nature (Figure 2, Supplementary File 7). Additionally,
structure homology based SNP prediction tools such as PolyPhen-2 and CADD also predicted the
ISL1 p.Ala46Gly variant protein to be damaging (score = 0.997; sensitivity: 0.41; specificity: 0.98; and
CADD of score= 25.8). The stereochemical quality of the modeled structures were validated for steric
clashes, using a Ramachandran plot analysis by PROCHECK, available at SAVES. The ISL1 wild type
and ISL1 Ala46Gly protein variants modelled using I-TASSER, possess approximately 95% of residue
accurately, while the remaining 5.6% in the wild type, and 3.3% in Ala46Gly variant protein, were
found in disallowed regions within the Ramachandran plot. To explore the position of the substitution
in the reconstructed protein structure, we have computed the variant c.137C > G in dG, using I-Mutant
version 2, comparing it to the ISL1 wild type, and observed that the ISL1 c.137C > G resulted in
decreased protein stability.
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Figure 2. Structural conformation and conservation analysis of p.Ala46Gly. Analysis of evolutionary
conserved amino acid residues of p.Ala46Gly by ConSurf. The color coding bar shows the coloring
scheme representation of conservation scores.

We assume that the C>G variant in ISL1 at position c.137 might have functional consequences.
Being a transcription factor, ISL1 protein acts by binding to the promoter of the target genes, and thereby,
modulates their gene expression. From a structural point of view, the p.Ala46Gly is present at a loop
turn, close to the N-terminal region of the ISL1 protein, and is also close to the DNA binding homeobox
domain (amino acids 181–240). Since the LIM domain of ISL1 is known to interact with estrogen
receptor α, the p.Ala46Gly variant protein may influence ISL1-estrogen receptor α interactions.

3.3. Protein–Protein InteractionsNetwork Analysis

Functional PPI analysis via STRING resulted into a network of 50 proteins (Figure 3A). This was
done to understand potential functional associations of ISL1 with other proteins. Notably, members of
the pre-mRNA processing factors (PRPF8, PRPF38), and proteins associated with sex chromosomes
(SRY, SHOX), were highly connected with each member without any additional interacting partners.
The network showed a high statistical overrepresentation (hyper-geometric test, false discovery rate
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<1%) of genes involved into several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [27],
namely Hedgehog, Hippo, and Wnt signaling, which is consistent with the agreement with the
previous investigations [28–30]. Notably, our approach does not predict the chronological contribution
of these proteins to the disease phenotype. But, our analysis suggests that mutational events in the
ISL1 gene alone are not sufficient enough to create a severe phenotype.

To better understand the functionality of these selective 50 genes in a STRING network, we
investigated their putative involvement in different developmental stages of mice (Figure 3B). We
found that all these genes are distributed from embryonic to postnatal stages (E14.5-P8), in the urinary
bladder and in early embryonic stages (E10.5–E11.5), for the cloacal region. We also noticed that the
expression patterns of certain genes (e.g., PAX3, TBX3) are required during all early stages of bladder
formation, while interplay with several other genes related to the Wnt signaling pathway are required
as development proceeds.
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Figure 3. STRING analysis showing enrichment of protein-protein interactions. (A) Protein-protein
interactions of 72 genes linked to the bladder exstrophy–epispadias complex (BEEC) are shown. ISL1,
as a major interaction partner, is marked in red. (B) Distributions of essential and viable genes for the
formation of the urinary bladder and cloaca across different stages of mouse development.

4. Discussion

In an attempt to strengthen our understanding of the involvement of the ISL1 gene in the
etiology of the BEEC, our analysis provides novel insights about the consequences of genetic variants
embedded within the ISL1 genomic landscape. In the present study, we investigated four genomic
variants, and one recently introduced missense variant, linked to the BEEC. By performing structural
analysis, we showed that although rs9291768, which is a part of lncRNA (NONCODE_v5_lncRNA:
NONHSAT249106), ISL1 mRNA does not seem to be the main target of this lncRNA. Our amino
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acid sequence conservation analysis using Consurf, demonstrates that the p.Ala46Gly position (in
LIM domain of ISL1 gene) is evolutionary conserved. However, the homeobox domain (amino acids
181-240), at the C-terminal region of ISL1, plays a unique role in DNA binding and the amino acid
change of p.Ala46Gly, which resides at a loop turn close to the N-terminal region. Thus, it might have
functional effects possibly interfering with the binding of ISL1 to estrogen receptor α.

ISL1 protein has been very strongly conserved during evolution, perhaps due to the involvement
of different protein interaction networks. The multiplicity of ISL1 function is mirrored by its role
in different diseases, such as BEEC, diabetes type I/II, and congenital heart defects [31–33]. The
dependence of all these functions stemming from one and the same molecular structure, might in part
be responsible for the paucity of disease-specific substitutions.

To understand the functional role of the ISL1 protein and other mutually exclusive proteins, for
their involvement in the formation of the BEEC in more depth, we selected 72 genes which have been
putatively linked to the BEEC, and performed PPI analysis. We found an interaction network between
50 proteins previously associated with the BEEC. Our approach does not predict the chronological
contribution of these proteins to the disease phenotype. As the ISL1 protein shows up as a major
interaction partner in our network analysis, we speculate that the involvement of mutational events
in the ISL1 gene alone is not sufficient enough to create a severe phenotype. In addition, pathway
enrichment analysis further suggests an involvement of hedgehog, hippo, and Wnt signaling pathways,
in the etiology of BEEC. This in turn suggests that regardless of the complexity of the BEEC, pathway
crosstalk also plays a significant role in pathogenesis of the disease. Importantly, the molecular
framework of pathway integration, with regard to the ISL1 protein, needs further investigation.

In conclusion, our study characterized three genetic variants within the coding and non-coding
region of ISL1. Previously, GWAS has identified the ISL1 locus to be associated with BEEC. Here,
we investigated whether the most significantly associated variants rs9291768 and rs6874700 might
constitute potential targets of the lncRNA (NONHSAT249106), residing in their close vicinity. However,
the results of our analysis do not support this hypothesis. Interestingly, our analysis suggests that
the ISL1 variant c.137C > G, results in decreased protein stability. In addition, by integrating multiple
parameters, we provide novel insights about the involvement of ISL1 in the etiology of BEEC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/12/609/s1,
Figure S1: Long non coding RNA overlapping with rs9291768 (upper) and secondary structure of Long noncoding
RNA (NONCODE_v5_lncRNA: NONHSAT249106) associated with rs9291768 (A: Secondary Structure MFE =
−11.40 kcal/mol, B: Centroid Secondary Structure MFE = −10.30Kcal/mol) is shown (below), Figure S2: Genomic
landscape of rs6874700, Supplementary File 3: (ISL1 local protein changes), Supplementary File 4: (GWAVA and
Ramachandran plots), Supplementary File 5: (Information of IDs, tool versions and databases), Supplementary
File 6: (List of genes involved in BEEC), Supplementary File 7: (ISL1 alignment), Supplementary File 8: (Minor
allele frequencies of the investigated variants).
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