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Abstract: Lactate dehydrogenase (LDH) is a key enzyme in the last step of glycolysis, playing a role
in the pyruvate-to-lactate reaction. It is associated with the prognosis and metastasis of many cancers,
including breast cancer. In this study, we investigated the changes in LDH gene expression and
lactate concentrations in the culture media during tamoxifen resistance development in the MCF-7
cell line, and examined LDHB promoter methylation levels. An upregulation of 2.9 times of LDHB
gene expression was observed around the IC50 concentration of tamoxifen in treated cells, while
fluctuation in LDHA gene expression levels was found. Furthermore, morphological changes in the
cell shape accompanied the changes in gene expression. Bisulfate treatment followed by sequencing
of the LDHB promoter was performed to track any change in methylation levels; hypomethylation of
CpG areas was found, suggesting that gene expression upregulation could be due to methylation
level changes. Changes in LDHA and LDHB gene expression were correlated with the increase in
lactate concentration in the culture media of treated MCF-7 cells.

Keywords: LDHB hypomethylation; breast cancer; lactate; LDHA and LDHB gene expression; tamox-
ifen resistance

1. Introduction

Breast cancer remains a major health problem in most parts of the world, despite the
advances achieved in the field [1]. Female breast cancer incidence has exceeded lung cancer
as the most common cancer in 2020, with an estimated 2.3 million new cases [2]. Although
the mortality rate for women with an already confirmed diagnosis has been declining [3],
it remains the leading cause of cancer deaths among women [2].

Tamoxifen treatment in estrogen receptor-positive patients reduced recurrence up
to 9 years after acquiring cancer. Also, breast cancer mortality rates were significantly
reduced by about one third through the first 15 years of follow up among tamoxifen treated
patients [4,5]. However, even in the presence of many therapeutic options, drug resistance
remains a challenging issue in cancer treatment, as approximately a quarter of breast cancer
cases treated with tamoxifen for 5 years displayed tamoxifen resistance (TamR) [4,6].

The mechanisms underlying tamoxifen resistance are complex and many of them
remain unknown [7]. The alteration of gene expression and signaling pathways was
reported to have a role in inducing TamR [8], in which, significant degradation of estro-
gen receptors (ER) was noticed in TamR cancer cells [9]. Additionally, activation of the
mitogen-activated protein kinase (MAPK) signaling pathway and the phosphatidylinositol
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3-kinase/protein kinase B (PI3K/AKT) pathway have been reported to have roles in cell
proliferation, regrowth, autophagy, and endocrine resistance [10,11].

Many cancer cells convert most of the pyruvate to lactate, whether there is oxygen or
not, in a phenomenon called the Warburg effect [12]. In breast cancer, lactate is produced
mainly by the activity of lactate dehydrogenase A (LDHA), and it was studied to be used as
a predictive marker for prognosis and overall survival in patients [13]. On the other hand,
some studies reported that lactate dehydrogenase B (LDHB) gene expression was found to
be reduced in many commonly used breast cancer cell lines due to the hypermethylation
of the promoter area leading to gene silencing [14], while other researchers reported that
upregulated gene and protein expression are seen in triple-negative cells in comparison to
luminal breast cancer cells [15].

In this study, lactate dehydrogenase A and B gene expression levels were determined
during tamoxifen resistance development in MCF-7 cell lines and correlated with the
concentration of lactate secreted to the culture media.

2. Materials and Methods

Cell culturing and tamoxifen treatment
MCF-7 (HTB-22™) cells (ATCC, Manassas, VA, USA) of passage 9 were cultured in

RPMI medium (EuroClone S.p.A., Via Figino, Italy) containing 10% fetal bovine serum
(FBS), 1% penicillin–streptomycin, and sodium pyruvate (EuroClone S.p.A., Via Figino,
Italy). Cells were grown in a humidified incubator under 5% CO2 at 37 ◦C. Growth
medium was routinely replaced. When cells were 70% confluent, they were treated with
low concentrations of tamoxifen starting with a concentration of 10 nM, incubated for
3 days, then fresh media with no tamoxifen was added and the cells were allowed to
grow until 70% confluency before the next tamoxifen concentration was added. Tamoxifen
concentrations were gradually increased up to 40 µM to induce resistance.

Gene expression and DNA methylation analysis
DNA and RNA from treated cells were extracted using the innuPREP DNA/RNA

Mini Kit (Analytik Jena, Jena, Germany) according to the manufacturer’s protocols. DNA
and RNA were quantified to be used in DNA methylation and gene expression analysis,
respectively.

After quantification and a PCR integrity check, total mRNA samples were used to
synthesize cDNA using the SuperScript® VILO™ cDNA Synthesis Kit (Life Technologies,
Grand Island, NY, USA), and gene expression analysis of lactate dehydrogenase A and
lactate dehydrogenase B was performed using the following primers:

LDHA F: 5′ CTCTGGCAAAGTGGATATCTTGAC 3′ and
R: 5′ GGTAACGGAATCGGCTGAA 3′;
LDHB F: 5′ CTCTCCTGGTAGGTTTCGGC 3′ and
R: 5′ GCCGGATGCTCAGAGCTAAA 3′.
DNA methylation analysis:
DNA samples were bisulfate-treated using the EZ DNA Methylation-Gold Kit (ZYMO

Research Corp., Irvine, CA, USA) according to the kit’s protocols. Treated DNA samples
were used to determine the DNA methylation levels of lactate dehydrogenase B promotor.
PCR amplification followed by sequencing was performed using two sets of primers to
sequence LDHB promoter (set 1 and set 2). The sequences of set 1 were previously used
by Leiblich et al. [16] and gave 197bp by PCR with 14 CpG sites, while set 2 was used by
Maekawa et al. [17] and gave 282bp with 14 CpG sites. All primers were ordered from
Integrated DNA Technologies, Inc. (IDT, Coralville, IA, USA)

Set 1 F: 5′ TTTGGTTTATAGGTAAGTTTGATGG 3′ and
R: 5′ ACTACTACCCTCTACCTTCTACTCCTC 3′;
Set 2 F: 5′ AGGGAGTGTGTATATTTGAGTT 3′ and
R: 5′ TCAAACTTACCTATAAACCAAA 3′.
Lactate detection using capillary electrophoresis—conductivity detector (CE-C4D):
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The supernatant media from treated MCF-7 cells were collected, and 1 mL was
transferred into 2 mL of Milli-Q water in a glass vial to form a diluted working solution
with 1:2 in ratio and mixed very well, then filtered with syringe filters of 45 µM pore size.
The analysis operation was performed using the optimized method of an in-house built
CE-C4D as in [18,19] at room temperature, and the flow rate was also optimized for best
analysis to separate each peak of analytes without overlapping or broadening.

The standard solution of lactate (Sigma-Aldrich, St. Louis, MO, USA) was prepared
by dissolving the powdered lactate in 10 mL of Milli-Q water to prepare 200 mM. Then, a
serial dilution was applied to prepare the working solutions with different concentrations
of lactate as follows: 0, 0.5, 1 and 2 mM.

3. Results

Morphological changes of breast cancer cell line MCF-7 were observed during the
process of tamoxifen resistance development as reported previously [20] and are shown
in Figure 1. Cells treated with 30 µM tamoxifen started to lose their epithelial-like shape
and became round. At concentration 40 µM, the cells started to aggregate, and cells’ rate of
growth increased.
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Figure 1. Morphological changes accompanied tamoxifen resistance development; (A) untreated
control MCF-7 cells, (B) MCF-7 cells treated with 30 µM tamoxifen and (C) MCF-7 cells treated with
40 µM tamoxifen. Arrows indicate the change in cell shape in comparison to the epithelial-like shape
of MCF-7 cells. Images were taken using ZOE Fluorescent Cell Imager (Bio-Rad, Hercules, CA USA)
(scale bar 100 µm). Experiments were repeated at 3 different times.

Gene expression analysis of LDHA and LDHB is presented in Figure 2. LDHA gene
expression showed fluctuation but was mostly downregulated with increased tamoxifen
doses. LDHB downregulation was maintained until 30 µM (−1.6), after which a significant
change was seen in MCF-7 cells treated with 35 µM, and the upregulation was maintained in
cells treated with 40 µM, where the fold change was 2.9 in both treated cells. These changes
in LDHB gene expression were accompanied by promoter hypomethylation in these cells
after sequencing of bisulfate-treated DNA samples (Figure S1). Promoter hypomethylation
was observed as seen in Figure 3.
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Figure 2. Fold changes in gene expression of (A) LDHA and (B) LDHB from MCF-7 cells treated with increasing doses of 
tamoxifen. Gene expression concentration results were expressed as mean ± SD (n = 3 runs for each sample). 

Figure 3. Promoter hypomethylation seen in bisulfate-treated DNA samples from cells treated 
with (B) 35 and (C) 40 µM tamoxifen in comparison with untreated control cells (A). Unmethyl-
ated cytosine was replaced with thymine after bisulfate treatment in cells treated with 35 and 40 
µM tamoxifen. 

To detect the changes in lactate concentrations during tamoxifen resistance develop-
ment in MCF-7 cells, the electrophoretic analysis was prepared for RPMI-1640 media 
alone as presented in Figure 4A. The calibration curve of lactate by CE was calculated by
spiking RPMI-1640 media with four different concentrations of lactate (0, 0.5, 1 and 2 mM), 
then the AUC of lactate peaks were calculated and corrected with chloride peaks as an 
internal standard, as shown in Figure 4B. Based on the calculated equation from the cali-
bration curve, the analysis was made for the developed tamoxifen-resistant MCF-7 cells, 
and the lactate concentration was measured in the acquired supernatant media. The con-
centration of lactate was measured from the AUC in electropherograms after correction
with the chloride AUC as an internal standard, as shown in Figure 5. 

Figure 4. (A) Electropherogram of analyzed anions in prepared RPMI-1640 cell culture media. 
Conditions were as follow: 90 cm × 50 µm I.D. fused silica capillary coated with 
HDMB/PSS/HDMB. BGE: 30 mM TRIS/30 mM CHES, pH 8.4 with 0.025% PEI; +30 kV applied to 

Figure 2. Fold changes in gene expression of (A) LDHA and (B) LDHB from MCF-7 cells treated with
increasing doses of tamoxifen. Gene expression concentration results were expressed as mean ± SD
(n = 3 runs for each sample).
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Figure 3. Promoter hypomethylation seen in bisulfate-treated DNA samples from cells treated with
(B) 35 and (C) 40 µM tamoxifen in comparison with untreated control cells (A). Unmethylated cytosine
was replaced with thymine after bisulfate treatment in cells treated with 35 and 40 µM tamoxifen.

To detect the changes in lactate concentrations during tamoxifen resistance develop-
ment in MCF-7 cells, the electrophoretic analysis was prepared for RPMI-1640 media alone
as presented in Figure 4A. The calibration curve of lactate by CE was calculated by spiking
RPMI-1640 media with four different concentrations of lactate (0, 0.5, 1 and 2 mM), then
the AUC of lactate peaks were calculated and corrected with chloride peaks as an internal
standard, as shown in Figure 4B. Based on the calculated equation from the calibration
curve, the analysis was made for the developed tamoxifen-resistant MCF-7 cells, and the
lactate concentration was measured in the acquired supernatant media. The concentration
of lactate was measured from the AUC in electropherograms after correction with the
chloride AUC as an internal standard, as shown in Figure 5.
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Figure 4. (A) Electropherogram of analyzed anions in prepared RPMI-1640 cell culture media.
Conditions were as follow: 90 cm× 50 µm I.D. fused silica capillary coated with HDMB/PSS/HDMB.
BGE: 30 mM TRIS/30 mM CHES, pH 8.4 with 0.025% PEI; +30 kV applied to outlet vial while interface
was grounded. Signal was obtained using a Trace DEC conductivity detector C4D positioned 10 cm
from the outlet. (B) Calibration curve of lactate by CE-C4D, using 4 different concentrations.
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Figure 5. Calculated concentration by CE-C4D of produced lactate from MCF-7 cell supernatant
media normalized with cell density after treatment with tamoxifen in gradual increased doses.
Statistical significance was calculated by one-way ANOVA followed by Tukey post hoc test in
GraphPad prism 8.0 software, considering the statistical significance as follows: * significant at
P ≤ 0.05; results were expressed as mean ± SD (n = 3 runs for each sample).

4. Discussion

Breast cancer cells’ production of lactate under aerobic conditions contribute to their
proliferation, angiogenesis, and aggressive behavior [21]. Lactate was also found to have an
oncometabolic effect, where a transcriptional increase in the PIK3/AKT/mTOR signaling
pathway accompanying lactate exposure in MCF-7 cells was seen [22].

The role of lactate dehydrogenases in lactate metabolism has been studied extensively
in breast cancer, and many have reported that LDHA overexpression is seen under hypoxic
conditions and is associated with c-MYC gene overexpression and glutaminolysis [23].
It was also found to be overexpressed in Taxol-resistant breast cancer cells [24]. On the
other hand, LDHB was reported to be silenced in the estrogen and progesterone-positive
MCF-7 cell line due to promoter hypermethylation [14,25]. However, LDHB was found to
be overexpressed in triple-negative breast cancer cell lines and was correlated with poor
prognosis among breast cancer patients [15]; it was also found to be overexpressed in
highly glycolytic, mesenchymal breast cancer cell lines [26].

In this study, we correlated the changes in lactate levels in MCF-7 culture media
with gene expression of LDHA and LDHB during the process of tamoxifen resistance
development. Gradual increase in TAM doses was accompanied with downregulation of
LDHA gene expression and a significant increase in LDHB gene expression, parallel with
demethylation of certain CpG sites in the promoter region. Interestingly, these changes in
LDHA and LDHB gene expression were in parallel with our reported finding that there was
no c-MYC gene overexpression, with a significant increase in glutamine production during
TamR development [20].

Different methods of tamoxifen resistance development in the MCF-7 cell line could
affect gene expression differently [20]. Using the gradual increase in tamoxifen concentra-
tions reported in this study, we showed that the increase in LDHB gene expression but not
LDHA was correlated with lactate concentration increase in the media during the process
of TamR development.

Lactate overproduction is linked to the Warburg effect in different types of cancer cells.
The Warburg effect is also more favorable in these cells than oxidative phosphorylation for
energy production, despite the presence of an adequate level of oxygen, and consequently
results in the conversion of pyruvate into lactate [27]. Accumulation of lactate in the
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tumor cell microenvironment was reported to have a key role in carcinogenesis and tumor
invasion [28] and could serve as a possible resistance biomarker and drug target.

5. Conclusions

Lactate participation in tumorigenesis is well documented and its role as a metabolic
marker and therapeutic target has been explored, with most reports focused on the role of
LDHA in breast cancer resistance to treatment, and few focused on LDHB. In this study, we
report the potential involvement of lactate dehydrogenase B in breast cancer resistance to
treatment that could provide a molecular marker to detect early resistance to tamoxifen
among patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12050777/s1, Figure S1: DNA sequencing of bisulfate-treated samples file.
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