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Abstract: The Angudan Orogeny affected Cryogenian to earliest Cambrian sedimentary rock
formations of the Jabal Akhdar Dome of the Oman Mountains. These rocks were folded and cleaved
at 525 ± 5 Ma. We studied the Cambro-Ordovician (Terreneuvian to Darriwillian) Amdeh Formation
of the neighboring Saih Hatat Dome to see whether this formation was also affected by the Angudan
Orogeny. The Angudan deformation within the Jabal Akhdar Dome is known for its folds and
cleavage. Due to age considerations (see above), we studied the folds and cleavages within the two
oldest members of the Amdeh Formation (Am 1 and Am 2) in order to compare them with the ones
that are known from the Jabal Akhdar Dome to possibly detect Angudan-related deformation in Am
1 and Am 2. Angudan folds of the Jabal Akhdar Dome display fold axes that are oriented NE/SW,
but the two lowest members of the Amdeh Formation reveal one set of folds with subhorizontal
fold axes that trend NW-NNW/SE-SSE. The lack of Angudan-related folds suggests that the lowest
Amdeh Member (Am 1) postdates the Angudan Orogeny. The age of Am 1 is uncertain. Based on our
structural results, we consider an upper Terreneuvian age (late stage 2) for Am 1. The folds in Am
1 and 2 are related to the Late Cretaceous–Cenozoic Semail Orogeny (term introduced here). The
observed fold vergences (mainly to the W and SW) were caused by shear deformation during descent
into the subduction zone by simple shear. The contact between the stratigraphically underlying Hiyam
Formation and the Amdeh Formation is generally considered to be an unconformity. We observed
a distinct NW/SE-striking deformation zone along the contact of both formations which is located
in proximity to the largest observed fold. Tectonically, this contact is defined by the sinistral Wadi
Amdeh Fault (name introduced here). The unconformity should be present in the subsurface of the
southwestern fault block. Near the contact between the Hiyam and the Amdeh formations, a 20 cm
thick unit of reddish cataclasite/tectonic breccia occurs within the basal part of Am 1 which represents
a deformed acidic layer or sill. This rock unit could be the first evidence for Cambrian igneous activity.

Keywords: folds; Angudan Unconformity; early Paleozoic volcanism; Ara Rift; Semail Orogeny;
Wadi Amdeh Fault
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1. Introduction

Recent work in the Jabal Akhdar Dome (Figure 1) has demonstrated two Early Cambrian folding
events within Cryogenian to earliest Cambrian rocks [1]. The older deformation episode correlates
with the Cadomian Orogeny and the younger episode with the Angudan Orogeny [1]. From Iran
(NW) to Afghanistan/NW Pakistan (SE), the Cadomian event is younging from 557 to 516 Ma [1], ([2],
their Figure 11a), and the Angudan event dates as 525 ± 5 Ma [3]. The main compression during the
Cadomian orogeny was directed NE-SW and NW-SE during the Angudan event [1]. In the course of
the Angudan Orogeny, the Cadomian folds were refolded. While the Cadomian folds are associated
with shallow, gently dipping slaty cleavage and fold axial planes, the Angudan folds exhibit a steeply
dipping system of slaty cleavage and fold axial planes [1].

The Cadomian folds display amplitudes of 5 to 50 m and low-dipping axial planes (10–30◦).
The Angudan folds are open to close with much larger amplitudes and wavelengths ranging from
several hundred meters to 3 and 5 km, respectively. These younger folds exhibit steeply dipping to
vertical axial planes striking ENE and fold axes that plunge either ∼50◦ to the ENE or ∼30◦ to the
WSW [1].

We studied the folds of the 3.4 km thick Amdeh Formation of the Saih Hatat Dome (Figure 1)
which has been considered to be Ordovician in age [4]. Recently, it was suggested that the five members
of the formation (Am 1 to Am 5) can be correlated with subsurface formations to the SSW to the interior
of Oman ranging from the Cambrian to the Middle Ordovician (Figure 2) ([5], their Figure 2). However,
correlation of the oldest Amdeh Member (Am 1) is less certain than for the other Amdeh members
(Figure 2). This member may or may not partly correspond to the Fortunian (Lower Terreneuvian)
Karim Formation (Figure 2).
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The primary stratigraphic contact between the Amdeh Formation and the underlying Hiyam
Formation is an unconformity [4]. This contact displays in most cases deformation to varying degrees [4].
The unconformity of [4] seems to correlate with the Angudan Unconformity which has been introduced
and established for central east Oman [7–9].
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The overall fold style of the Saih Hatat area is characterized by overturned to recumbent folds [10]
or regional isoclinal folds [11], respectively (see also [12]). This deformation is related to Late Cretaceous
active margin tectonics which include the obduction of the Semail Ophiolite (e.g., [10,11]. The study
area occupies a structural position within the upper limb of a regional recumbent isoclinal fold, distant
from the fold closure which is located to the NE ([4], their Figure 2).

Since there is evidence for two Early Cambrian folding events in the Jabal Akhdar area [1] and
the possibility of a lower Cambrian age of the Amdeh Formation (Figure 2) [5], we want to determine
whether the two oldest Amdeh members show the same fold pattern as the Cryogenian to earliest
Cambrian rocks of the Jabal Akhdar Dome. If the lower Amdeh members would have experienced
the same tectonic evolution as the Cryogenian to earliest Cambrian rocks of the Jabal Akhdar area,
we could demonstrate that the Saih Hatat Dome was also affected by the Cadomian and/or Angudan
orogenies, and the age of the Amdeh Formation would include a corresponding early Cambrian age.
If none of the Early Cambrian deformation intervals could be detected, the oldest Amdeh members
would have to postdate the Angudan Orogeny and deformation would have to be attributed to the
Late Cretaceous active margin tectonics. To solve these issues, we studied folds within the lowest two
Amdeh members in the western part of the Saih Hatat Dome.

Furthermore, we studied the contact between the Hiyam and Amdeh formations as it is located
close to the largest fold element that we encountered (syncline of Figure 3) to clarify the stratigraphic
and tectonic nature of the contact. If the Angudan unconformity is present in the study area,
Angudan-related folds should not exist in the overlying Amdeh Formation, not to mention the even
older Cadomian folds. In the case that the folds of the Amdeh Formation are not related to the
Cadomian and Angudan events, we want to understand if and how they are related to the mountain
building processes that led to formation of the Oman Mountains since the Late Cretaceous.
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Figure 3. Contact between the Amdeh and Hiyam formations. The contact is marked by the sinistral
Wadi Amdeh Fault (dashed white line). Note the slickenlines between the two black dashed lines. The
two white arrows point to the red cataclasite/tectonic breccia in close proximity to the fault. Note that
the red cataclasite/tectonic breccia is obliquely oriented to the fault, being in contact with the fault
in the foreground and separated from the fault in the background. Coordinates of the fault: 23◦19′

45.12”N/58◦23′43.95” E.

We will summarize our field data related to the folds and deformation at the Hiyam and Amdeh
contact. Our interpretations will focus on comparing the fold data of the Amdeh Formation with
those of the Cadomian and Angudan folds of the Jabal Akhdar Dome and the possible maximum
stratigraphic age of the Amdeh Formation. We will also suggest a deformation path for Am 1 and
Am 2 of the study area.
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2. Geological Setting

The Oman Mountains contain a diverse association of thick Neoproterozoic to Neogene carbonates
and siliciclastics, as well as some volcanic rocks. This succession was affected by various Phanerozoic
deformation intervals. Neoproterozoic and Early Paleozoic rocks only crop out in the cores of the large
Jabal Akhdar and Saih Hatat domes (Figure 1), and it has to be noted that the stratigraphy of these
formations differs between the two domes (e.g., [13–19]) as summarized in Figure 4. All pre-Permian
formations shown in Figure 4 (in light gray) for the Jabal Akhdar Dome were subjected to Cadomian
folding and Angudan refolding [1].
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Figure 4. Different stratigraphies of the Jabal Akhdar and Saih Hatat domes, drawn after [13–15].
Note the pronounced differences among the Early Paleozoic formations. The lowermost five formations
of the Jabal Akhdar Dome (in light gray) were affected by the Cadomian and Angudan orogenies.
The scale applies to both logs.

The earliest Phanerozoic deformation of the area of the Oman Mountains is the Early Cambrian
Cadomian Orogeny [1]. The age of the Cadomian Orogeny postdates the Fara Formation (Figure 4).
Considering U-Pb ages of zircons from volcanic layers of the Fara Formation by [20,21], the top of the
Fara Formation dates as 542 Ma.

The Cadomian Orogeny was followed by the slightly younger but still Early Cambrian Angudan
Orogeny [9] which is related to the collision of East and West Gondwana (∼540–520 Ma; [3,6,7] ([9], his
figure 6a) [22–24]. According to the compilation of [3], the Angudan event occurred 525 ± 5 Ma ago.
Two K/Ar crystallization ages of chlorite of 329± 11 and 321± 10 Ma from the Neoproterozoic Mu’aydin
Formation of the Jabal Akhdar Dome [13] coincide with the Late Paleozoic Hercynian Orogeny centered
in Europe, (e.g., [25,26]). However, the idea of the Hercynian Orogeny being present in the Oman
Mountains appears to be obsolete (see review in [1]). At that time, the study area and the Arabian Plate
were only affected by arch formation as depicted by [27] and [28] and block faulting [13,14]. Instead of
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the Hercynian Orogeny the breakoff of the Cimmeria Superterrane from Gondwana took place [29],
regionally represented by the Lut and Afghan terranes [30], and one can consider a major regional
thermal event [31].

During the Late Paleozoic, northern Oman was affected by the Permian Pangea Rifting e.g., [32–34].
Together with the breakoff of Cimmeria, rifting of Pangea caused a major unconformity, above which
the ~2 km thick Permo-Mesozoic Hajar Supergroup accumulated. These sediments are mostly of
shallow marine facies, dominated by carbonates, representing the Arabian shelf.

Rifting led to drifting and creation of the Tethys Ocean also referred to as the “Neo-Tethys Ocean”.
For early drift stage paleogeographic maps, see [35] as well as [36]. From this ocean, the famous
Semail Ophiolite originates which is widely and well-exposed in the Oman Mountains. The Semail
Ophiolite consists mainly of igneous rocks, representing oceanic mantle and crust which formed in the
Semail Basin which opened at a new spreading center ([36] and sources therein) at the southern margin
of the Tethys Ocean around 96 Ma [37]. The ophiolite was obducted onto the continental Arabian
Plate from the northeast due to Late Cretaceous ocean closure and caused folding. Fold axes of the
two domes generally trend parallel to the orientation of the Oman Mountains which is NNW/SSE or
NW/SE, respectively (Figure 1 for overview). Deep marine Tethys sediments of Permo-Mesozoic age
were also obducted (Hawasina Allochthon) along with the Semail Ophiolite. The Hawasina sediments
occupy a structural position below the ophiolite. The obducted rock masses overthrust the Arabian
shelf deposits of the Hajar Supergroup, and their combined load formed the Aruma Foreland Basin.
The Late Cretaceous sediments of this foredeep (Aruma Group) were also overthrust by the obducted
rock units [38–44].

During Late Cretaceous obduction of the Tethyan rocks, parts of the northeastern margin of
the Arabian Plate, including the Saih Hatat area, were subducted and metamorphosed under HP/LT
conditions, reaching the glaucophane-eclogite facies conditions (e.g., [12,36,45]). The autochthonous
Amdeh Formation of the western Saih Hatat Dome was exposed to this metamorphism at conditions of
the deep anchizone to pumpellyite/lawsonite zone [12,36,46]. This metamorphism is of Cenomanian age,
and there is evidence for exhumation and retrograde metamorphism (review in [36]. By comparison,
only the NE corner of the Jabal Akhdar Dome was affected by pumpellyite/lawsonite facies conditions.
Towards the SW, the deep and the upper anchizones follow, indicating an overall lower metamorphic
grade as in the Saih Hatat Dome [36]. Evidently, the rocks of the Saih Hatat area were subducted to
greater depths than those of the Jabal Akhdar region (e.g., [36,47,48].

Following obduction, the flanks of the two domes (i.e., the obducted rocks) were covered by
fluvio-deltaic clastic rocks of the Late Cretaceous Al-Khod Formation and Cenozoic shallow marine
carbonates, [16,49]. Obduction was followed by unsteady exhumation of the Saih Hatat and Jabal
Akhdar domes during the Late Cretaceous and Cenozoic [47,48,50,51]. Doming was associated with
extension related to gravitational collapse [47,48,52–55]. Extension led to the formation of large-scale
listric normal faults bounding the flanks of the domes [54]. A paleostress analysis was carried out
by [53] for the Late Cretaceous to the Pliocene for areas to the north, and west of the Saih Hatah Dome,
not including the study area (Figure 5). In reference to the important Semail Ophiolite, we introduce
the term “Semail Orogeny” to summarize all mountain building processes that produced the modern
Oman Mountains (or “Hajar Mountains”) since the Late Cretaceous.
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Figure 5. Overview of the changing Late Cretaceous to Pliocene paleostress directions of the eastern
Oman Mountains, drawn after [53].

3. Methods

We studied the folds of Am 1 and Am 2 and determined the orientation of the fold axes, either by
measuring them directly or by reconstructing the intersection linears of the fold limbs. For optimum
accuracy, we used a fabric compass after [56] for the structural measurements. Accordingly, our fabric
measurements indicate (dip direction/dip angle) or (plunge direction/plunge angle). We measured
folds of different sizes, recorded the fold style (interlimb angle), and inspected the studied outcrops for
possible refolded folds. We plotted the fold axes as poles in a Schmidt net and decided by the tightness
of the obtained point distribution that 30–40 fold axes represent a sufficiently meaningful data set.
Focal linears of fold axes clusters were determined with Gefuege 3 by [57]. Our investigation of the
contact between the Hiyam and Amdeh formations required the analysis of five thin sections, three
XRD samples, and one XRF sample. From the XRF sample, we produced six measurements.

4. Outcrops and Lithologies of Am 1 and Am 2

We studied natural outcrops of the lower Amdeh Formations (Am 1 and Am 2) in the type area
around Wadi Amdeh within the western part of the Saih Hatat Dome (Figure 1). These outcrops mainly
occur in Wadi Amdeh and its southern tributary, Wadi Qahza. Some outcrops are also located in a
small western tributary of Wadi Qahza.

The lower part of Am 1 consists of metasiltstone with intercalated fine-grained quartzites and
some conglomerates. The crystal size of the metasiltstones exceeds that of phyllites. The metasiltstones
are mica-bearing, quartz-rich schists. Towards the top, the grain size increases within Am 1. The upper
part of Am 1 is characterized by metaturbidites (some conglomeratic) and conglomeratic metadebrites.



Geosciences 2020, 10, 48 8 of 23

Am 1 lacks metashale partings and is known as the “Lower Siltstone Member” with a thickness of
240 m [4].

The lower part of Am 2 displays monotonous quartzites with rare ripple marks. Towards the
top, ripple marks of various kinds become very frequent. The upper part of Am 2 also exhibits
frequent cross-bedding and flat-bedded quartzite, as well as occasional sand volcanoes. Am 2 also
lacks metashale partings. It is referred to as the “Lower Quartzite Member” and measures 253 m in
thickness [4].

The contact between the Hiyam and Amdeh formations was studied on the northeastern valley
flank of Wadi Amdeh (Figure 6; coordinates 23◦19′45.12” N/58◦23′43.95” E, 170 m above valley floor).
The upper part of the Hiyam Formation consists of shallow marine limestones which have been
widely dolomitized and partly silicified. At the contact, the Amdeh Formation is represented by Am 1
displaying a monotonous quartz-rich siltstone succession with some interbedded sandstone layers and
some reworked pebbles and cobbles of the underlying Hiyam Formation.

5. Results

5.1. Folds

We measured 12 folds in Wadi Amdeh, 16 in Wadi Qahza, and eight in the western tributary
of Wadi Qahza (Figure 6). The folds are all of meter-scale size except for the much larger syncline
depicted in Figure 3. The folds display a harmonious fold style. Most folds exhibit (1) open interlimb
angles, (2) axes plunging to the SE-SSE (Figure 7A), (3) steep fold axial planes (Figures 7B and 8A), and
(4) the preferred vergence to the W and SW. There are no refolded folds. It is not uncommon for the
folds to display thickened hinge areas and thinned limbs (Figure 8A,B).Geosciences 2019, 9, x FOR PEER REVIEW 9 of 23 
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Figure 7. Schmidt nets with equal lower hemisphere projection. (A) Orientation of the 36 fold axes in
Am 1 and Am 2, as well as representative S1 (Am 1 and 2), S2 and S3 (Am 1) values. There is a clear
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Figure 8. Folds in quartzites of Am 2 with thickened hinge areas and thinned limbs in Wadi Qahza.
(A) Typical open folds with vertical or steeply dipping fold axial planes. The folds are clarified by white
dashed lines. (B) Anticline with bedding and fold-related cleavage (S1). The steeply dipping cleavage
is marked by yellow lines. The intersection lineations between bedding and cleavage (indicated by red
lines) are parallel to the fold axes. Coordinates: 23◦19′29.62” N/58◦22′58.52” E.
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In line with the preferred steeply dipping orientation of the fold axial planes (Figure 7B),
the cleavage planes also dip steeply (Figure 8B). Some outcrops expose this widely spaced and steeply
dipping cleavage and reveal that it is related to folding as their intersections with bedding surfaces
produce lineations that are parallelly oriented to the fold axes (Figure 8B).

Generally, the trend of the fold axes parallels the local and regional orientation of the Oman
Mountains [58] and the long axis of the Saih Hatat Dome [15,53]. The plot of the determined fold axes
(Figure 7A) also reflects that. The folds lack slip features, and most of the fold axial planes are steeply
dipping (Figure 7B). The trend of the Amdeh fold axes (Figure 7A) indicates the orientation of the
shortening direction which is 240/060◦.

5.2. Contact between the Hiyam and Amdeh Formations

The bedding of Am 1 (S0) is (237/67). Am 1 displays three cleavage systems (Figures 7A and 9).
The attitude of S1 is (236/57) and, thus, similar to that of S0. S1 is a closely spaced (mm scale) slaty to
schistose cleavage, displaying little orientational scatter (Figure 9A). S2 dips more gently with scattered
orientations (Figure 9A,B). Their focal orientation is (070/35; Figure 7A). It is a widely spaced (up to
several cm) crenulation cleavage. S3 is a fracture cleavage (spaced cleavage).

This steeply dipping cleavage system (Figures 7A and 9B) is represented by two conjugate sets:
(320/86) and (140/80). The intersection of both sets with each other and with the trend of the fold axes
creates a highly symmetric system (axial symmetry) of equivalent angles (Figure 7A), typical for a
fold-related conjugate cleavage system.

Approaching the contact between the Hiyam and Amdeh formations from the wadi (i.e., from
the W; see Figure 3) towards the base of Am 1, bedding becomes slightly steeper from (225/64) to
(245/70). Within a 20 m wide zone adjacent to the contact a distinct deformation zone exists displaying
an increased intensity of deformation towards the contact as expressed by the occurrence of (1) quartz
veins, which parallel S0 and/or S1, (2) boudins, (3) gently dipping quartz-filled veins, (4) widened and
steeply dipping calcite-filled faults (260/79) which are paralleled by arrays of widened, right-stepping
Riedel shears that are also calcite-filled, (5) sheared and rotated bedding and cleavage fabrics, as well
as (6) a cataclasite/tectonic breccia. The contact itself is marked by a large slickenside with horizontal
slickenlines. The related fault parallels the trend of Wadi Amdeh in this segment and is referred to
here as the “Wadi Amdeh Fault” (name introduced here).

The quartz veins, which parallel S0 and/or S1, have a lateral extent of centimeters to decimeters.
Epidote is associated with these veins which are dragged by S2.

The boudins in this distinct deformation zone are mainly reworked beige dolostone clasts from
the Hiyam Formation. The stretched clasts are embedded in metasiltstone to metasandstone matrix
and are interpreted to represent clasts within matrix-supported metadebrites. The clasts are roughly
parallelly oriented. Stretching is manifested in symmetric and some asymmetric boudins. The latter are
associated with Riedel shears (Figure 10). The stretching direction of the clasts is shown in Figure 10,
as well as an asymmetric boudin indicating the top-to-the-NE transport. The scatter of the plunge
angle values is attributed to different original shapes of the clasts and their original position in the
sediment. The stretching directions are perpendicular to the trend of the fold axes and parallel to the
transport direction of the folds (vergences) but with the opposite transport polarity.
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Figure 9. S0 and cleavage sets in Am 1. The outcrop shows two lithologies. In the upper left area is
beige sandstone, and the rest is gray siltstone. Red pocket knife for scale is in the same position in
both photographs. (A) Closely spaced S1 cleavage with little orientational scatter. The orientation
of S1 is subparallel to S0 (bedding). S1 is more widely spaced in quartzites (Figure 8B). S2 is more
widely spaced than S1 with some orientational scatter. (B) Detail of Figure 9A, showing S2 and S3. S3 is
indicated by white arrows whose heads are pointing to individual S3 surfaces.

The Riedel shears of the calcite-filled fracture system indicate sinistral slip (Figure 11). The attitude
of the fault shown in Figure 11 is (263/79). Individual shear veins are oriented (224/67) and
intersected/segmented by S3. Shearing ensued approximately in N-S direction.

The attitude of the gently dipping quartz-filled veins is shown in Figure 12. Most of these veins
follow S2 or display a similar orientation to S2 (Figure 12). The thickness of these veins is ≤ 3 cm.
The veins are not folded and are not cross-cut by any cleavage. They display some fractures and contain
minute calcite shear veins (veins in veins) that are ≤ 1 mm thick with a lateral extent of ≤ 1 cm. These
veins are very numerous in the distinct deformation zone close to the contact between the Amdeh and
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Hiyam formations. Isolated from these veins we found one thicker quartz vein (10 cm thick) with a
corresponding attitude occurring in 350 m distance to the south but still within Am 1.Geosciences 2019, 9, x FOR PEER REVIEW 13 of 23 
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Figure 10. Boudin associated with Riedel shear (left of the hammer). The Riedel shear indicates
top-to-the-NE transport. The outcrop is a steeply inclined surface. The Schmidt net shows the stretching
direction of four measured boudins.

The sheared and rotated bedding and cleavage fabrics occur within a zone 5–10 m south of the
Wadi Amdeh Fault. Even closer to the fault, the cataclasite/tectonic breccia is exposed (Figure 13). It is
a 20 cm thick, reddish layer (sill) with a vertical attitude of mainly fine-grained material occuring on
the southwestern fault block which features the Amdeh Formation (Figure 13). This unit does not mark
the contact between the Hiyam and Amdeh formations as it is obliquely oriented with respect to the
Hiyam Formation or the Wadi Amdeh Fault, respectively (Figure 13). Reddish rocks are neither known
to occur in Am 1 and Am 2 nor in the upper part of the Hiyam Formation. Thin section evidence shows
that it is a cataclasite/tectonic breccia. This rock unit lacks linear structures that could be observed
in the field. Under the microscope foliation, flow fabrics, S-C fabric, brittlely sheared mineral grains,
as well as porphyroclast-like objects can be identified (Figure 14A–D). These features indicate that
deformation conditions may have reached the brittle-ductile transition. The compositional details of
this rock unit are summarized below.
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Figure 11. Sinistral calcite-filled fracture system with a minor fault (left) and a parallel fracture (right).
Between the fault and the fracture is a parallel array of widened, right-stepping Riedel shears (marked
by “R”). The red pocket knife for scale is positioned parallelly to the calcite shear veins. (A) Natural
appearance of structures. (B) Fractures marked by black lines for easier perception.Geosciences 2019, 9, x FOR PEER REVIEW 14 of 23 
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Figure 12. Gently dipping quartz veins (Q) following the scattering crenulation cleavage S2 or displaying
a similar orientation to S2. The Schmidt net shows the orientation of the gently dipping quartz veins.
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Figure 13. Contact between the Amdeh and Hiyam formations. The contact is marked by the sinistral
Wadi Amdeh Fault (dashed white line). Note the slickenlines between the two black dashed lines. The
two white arrows point to the red cataclasite/tectonic breccia in close proximity to the fault. Note that
the red cataclasite/tectonic breccia is obliquely oriented to the fault, being in contact with the fault
in the foreground and separated from the fault in the background. Coordinates of the fault: 23◦19′

45.12”N/58◦23′43.95” E.

The contact surface of the Hiyam Formation with the Amdeh siltstones is marked by a large
slickenside of the Wadi Amdeh Fault (Figure 15) which is exposed over an area of several m2.
The slickenside is associated with the Hiyam Formation which represents the northeastern fault block
(see Figure 3). It is steeply dipping to the SW (220-225/86-88), exhibiting horizontal slickenlines which
plunge (142/04) and (315/03). Some areas of the slickenside are polished/reflective. The shear sense is
sinistral as indicated by corresponding Riedel shears and decimeter scale drag folds on the northeastern
fault block. The slickenlines reveal strike-slip parallel to the contact surface of both formations.

Thin section evidence shows that the material of the cataclasite/tectonic breccia is dominated
by feldspar, quartz, and muscovite, indicating that it may represent a deformed felsic igneous rock.
Feldspar may be highly sericitized. There are carbonate cements. By X-ray diffraction the silicates
quartz, anorthoclase, as well as muscovite and kaolinite were identified, and the carbonates are
represented by dolomite and ankerite (Appendix A: Figures A1–A3). The presence of anorthoclase,
muscovite, and kaolinite seems to indicate the elevated presence of the alkaline elements sodium
(Na) and potassium (K). An elevated concentration of potassium (K) is also manifested in six X-ray
fluorescence measurements. The used XRF device does not quantify concentrations of Na.
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Figure 14. Thin section micrographs of the reddish cataclasite/tectonic breccia which formed at the
brittle–ductile transition. Note the foliation and flow fabrics! (A) Foliated sample with S-C fabric. (B)
Altered feldspar crystal in dark matrix, sheared into three fragments (center), which become larger to
the right. Shearing ensued parallel to the foliation. Note that the fragments display size and shape
match across the shear planes. The shear planes are mineralized (light surfaces in dark matrix; left shear
plane is deformed). (C) Altered feldspar crystal, sheared into two fragments (center) parallel to the
foliation. The fragments display size and shape match across the shear planes. (D) Large porphyroclast
system with pressure shadows displaying stair-stepping geometry (center bottom). Moreover, note the
probable synthetic shear plane displacing the foliation (upper right and upper center). The long sides
of the micrographs are parallel to the main foliation. All PPL.Geosciences 2019, 9, x FOR PEER REVIEW 16 of 23 
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Figure 15. Part of the large slickenside in the Hiyam Formation of the Wadi Amdeh Fault with
horizontal slickenlines (black dashed lines). The slickenside marks the contact between the Amdeh and
Hiyam formations.
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Although an arkose or an arkosic arenite could also be composed in the same way, we rule out that
this reddish rock is a deformed sandstone because it would be unlikely for such an immature sandstone
to occur as an isolated, “exotic” layer in the midst of a mature quartz-rich siltstone succession. These
siltstones are compositionally mature (quartz) and texturally mature (fine-grained, well-sorted).

6. Interpretation

During the Late Cretaceous, folding took place in the subduction zone (see below). The folds
were later tilted during late Cretaceous to Cenozoic doming. The orientation of the Amdeh fold axes is
approximately parallel to the overall trend of the Saih Hatat Dome, whose SW margin of Mesozoic
rocks was tilted by ~30◦ to the SW during doming (map by [15]), but this had no effect on the trend of
the Amdeh fold axes and the orientation of the related shortening direction, respectively.

Our results allow us to compare the characteristics of the studied folds of the Amdeh Formation of
the Saih Hatat Dome with the Cadomian and Angudan folds from the Jabal Akhdar Dome. Considering
the steeply dipping axial planes and cleavage surfaces (Figure 7A,B) of the measured Amdeh folds,
they cannot be attributed to the Cadomian Orogeny. Taking into account that the orientation of the
studied folds is perpendicular to that of the Angudan folds, they cannot be related to the Angudan
Orogeny. The lack of Cadomian and Angudan folds in the Amdeh Formation suggests that Am 1 must
have accumulated after 525 ± 5 Ma (compare Figure 2). Thus, we rule out a Fortunian age as too old
for Am 1 (compare Figure 2). An Upper Terreneuvian age (late stage 2) could be considered.

Instead, the folds in the Amdeh Formation are related to the Semail Orogeny. The rocks of the
Jabal Akhdar and Saih Hatat domes were exposed to overthrusting by the obducted rock masses during
the Late Cretaceous. They were also exposed to subduction and exhumation from the subduction zone
(e.g., [36,54,59]). However, the rocks of the Saih Hatat area were subducted to greater depths than those
of the Jabal Akhdar region [36,47,48]. Since the Saih Hatat rocks were exposed to greater subduction
depth and subsequently to a more extensive exhumation process than the Jabal Akhdar rocks, different
deformation patterns between both areas can be explained. (compare [36], their Figure 4a).

The fold vergences observed in the Amdeh Formation could be related to deformation that was
acquired by simple shear while descending into the subduction zone and were preserved in the
process of exhumation (no or no significant shearing with opposite shear sense). Geometrically and
kinematically, the fold vergences could also be explained by overthrusting of the obducted rock masses.
The vergences could also have formed by a combination of both processes. However, it should be
noted that no such folds have been described from siliciclastic rocks of the Jabal Akhdar Dome which
were subjected to relatively shallow subduction (and only moderate exhumation). Thus, we suggest
that the folds of the Saih Hatat Dome probably did not form by overthrusting/obduction as this process
should have affected rocks in both domes in a similar way. Instead, the studied folds have formed
more likely during Late Cretaceous subduction. Deformation related to this process is assigned to D1.

The folding-related cleavage is S1 (Figures 7A, 8B and 9A). Thus, S1 was also acquired during
subduction along with folding and is also assigned to D1. Since there is a geometric relationship
between the fold axes and S1, S2, and S3 (Figure 7A), the three cleavage systems are related to the
Semail Orogeny.

The observed thinning of fold flanks and thickening of quartzite fold hinges (Am 2) indicates ductile
flow of quartz which requires certain temperature conditions. According to [60], quartz becomes ductile
at 300 ◦C. This temperature defines the upper limit of the cooling temperature estimates of 200–300 ◦C
for Late Cretaceous burial and was determined by analyzing low-temperature geochronology rock
samples from the Amdeh Formation near Wadi Qahza [50,59]. The peak temperature could have been
even higher, reached within the subduction zone. This supports our interpretation that the Amdeh
folds had formed during the Late Cretaceous.

S2 has likely formed during exhumation when the subducted slab was exhumed out of the
subduction channel. Deformation related to this process is assigned to D2. The transport direction
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indicated by the asymmetric boudins is compatible with the exhumation process. Thus, we suggest
that boudinage also represents D2.

The observation that boudins which mainly consist of reworked beige dolostone clasts of the
Hiyam Formation (see [4]) occur so frequently near the Wadi Amdeh Fault is due to the fact that beds
of Am 1 near the fault are the oldest exposed beds of the Amdeh Formation and their stratal proximity
of the subjacent Hiyam Formation. These beds of the Amdeh Formation are expected to contain the
most reworked dolostone fragments of the unconformably underlying Hiyam Formation.

The widened and steeply dipping calcite-filled faults that are paralleled by arrays of widened,
right-stepping Riedel shears or tension gashes that are also calcite-filled represent a sinistral fracture.
However, this system is unrelated to the sinistral Wadi Amdeh Fault as the orientation of this fracture
system is neither parallel to the master fault nor to the synthetic direction within a sinistral system
(Figure 16). As the shear veins are intersected/fragmented by S3, we suggest that this fracture system is
related to unspecifiable movements related to the D2 interval.
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Figure 16. Geometric relationship between the Wadi Amdeh Fault (master fault) and the calcite-filled
fracture system. Note that this system cannot be a synthetic element of a sinistral master fault if
compared with a respective strain ellipse model (ellipse drawn after [61]).

As S3 postdates S1 and S2 it must be related to a tectonic process that postdates exhumation from
the subduction channel. Since the bisector of the two conjugate S3 sets trends perpendicularly to the
trend of the fold axes and parallel to the horizontal σ1, S3 should be related to a late process of the
Semail Orogeny. We propose that S3 formed in the course of obduction of the Semail Ophiolite as an
extensional fracture system, caused by extension perpendicularly oriented to the thrust direction. This
interpretation also takes into account the conjugate arrangement of S3. Deformation related to this
process is assigned to D3.

The orientations of the gently inclined quartz veins largely conform to the orientation of S2.
There is evidence that many of these veins follow S2 (Figure 12), and none of these veins is folded.
Therefore, they postdate folding. However, there are particular differences among veins of this set as
the majority of the thin veins occurs in the distinct deformation zone in proximity to the Wadi Amdeh
Fault while the thickest quartz vein occurs remotely from the majority of the thin veins. The fracture of
the thick vein may have opened in the course of obduction of the Semail Ophiolite after folding of the
Amdeh Formation was completed. Horizontal compression may have led to local vertical extension.
Deformation related to this process is assigned to D3. Since most of these veins (thin veins) occur
in close proximity to the Wadi Amdeh Fault, we suggest that fissure formation was due to frictional
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effects and/or compensation movements related to shearing along the strike-slip fault. Deformation
related to this process is assigned to D4. Thus, we imply that similarly oriented quartz veins may have
formed by two different processes.

Since D4 represents a process that postdates folding, the paleostress analysis by [53] may provide
a possible clue as to when sinistral shearing could have occurred although our study area was not
included in the investigation by [53]. Taking into account that the deduced sinistral slip implies E-W
compression (Figure 16), the paleostress analysis reveals that E-W compression was detected only for
the Early Miocene (Figure 5). The cause of this compression is unclear [53]. The map by [15] indicates
the presence of straight faults at/near Wadi Amdeh which strike similarly to the Wadi Amdeh Fault
(see also Figure 6).

D4 also includes sheared and rotated bedding and cleavage fabrics, as well as the formation
of the cataclasite/tectonic breccia. The orientation of the largest fold of the study area (Figure 3) is
indistinguishable from that of the other observed folds. It is intriguing that of all folds, the largest fold
occurs near the Wadi Amdeh Fault and displays an axis whose orientation is also consistent with the
orientation of fold axes that would form due to sinistral slip (Figure 16). Whether this is significant or
not remains to be seen.

A novel discovery is the reddish cataclasite which is of felsic origin, representing a volcanic
layer (or sill) within the lower part of Am 1. The alkaline character would be compatible with a rift
interpretation and may indicate that rift pulses continued from the Ara rifting which is partly time
equivalent to the volcanic deposits of the Fara Formation of the Jabal Akhdar Dome [6] (Figure 4)
through the Cambrian to the “mid-Ordovician rift pulse” identified by [62].

7. Conclusions

The folds of the Amdeh Formation did not form during the Cadomian and Angudan orogenies.
Based on our structural and paleotemperature considerations, the folds formed in the course of the
Semail Orogeny, probably during Late Cretaceous subduction. Moreover, our structural findings
indicate that the age of Am 1 is not equivalent to the Karim Formation. It appears possible that the age
of Am 1 overlaps with the upper part of the Haradh Formation (compare Figure 2).

The contact between the Hiyam and Amdeh formations is the sinistral and almost vertical
Wadi Amdeh Fault. It is not a stratigraphic contact and, thus, not an unconformity. However, the
frequent occurrence of the Hiyam dolostones in the lowermost exposed parts of Am 1 may indicate a
stratigraphic contact between both formations in the subsurface of the southwestern fault block, and
this could well be an unconformity.

At this point, our observations and interpretations of alkaline volcanic material is only of
preliminary character. Future absolute age dating and more extensive geochemical analyses will
enhance our present state of knowledge. Future structural work in the Hiyam and Hatat formations
(Figure 4) will clarify whether the Neoproterozoic formations of the Saih Hatat Dome were affected by
the Cadomian and Angudan orogenies or not.
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