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Abstract: Exposure to fine particles in ambient air has been estimated to be one of the leading
environmental health risks in Finland. Residential wood combustion is the largest domestic source of
fine particles, and there is increasing political interest in finding feasible measures to reduce those
emissions. In this paper, we present the PM2.5 emissions from residential wood combustion in Finland,
as well as the resulting concentrations. We used population-weighed concentrations in a 250 × 250 m
grid as population exposure estimates, with which we calculated the disease burden of the emissions.
Compared to a projected baseline scenario, we studied the effect of chosen reduction measures in
several abatement scenarios. In 2015, the resulting annual average concentrations were between 0.5
and 2 µg/m3 in the proximity of most cities, and disease burden attributable to residential wood
combustion was estimated to be 3400 disability-adjusted life years (DALY) and 200 deaths. Disease
burden decreased by 8% in the 2030 baseline scenario and by an additional 63% in the maximum
feasible reduction scenario. Informational campaigns and improvement of the sauna stove stock were
assessed to be the most feasible abatement measures to be implemented in national air quality policies.

Keywords: residential wood combustion; population exposure; disease burden; mortality; morbidity;
particulate matter; fine particle concentrations

1. Introduction

Exposure to air pollution, especially fine particles (PM2.5), is linked to substantial impacts on
public health (e.g., [1,2]). Concentrations of air pollutants in ambient air are formed from a combination
of long-range transported pollutants, as well as national and local emissions. Lehtomäki et al. [3]
estimated the burden of disease and deaths in Finland attributable to ambient particulate matter (PM2.5

and PM10), nitrogen dioxide, and ozone exposures from all sources in 2015. They estimated PM2.5 to
cause 26,000 disability-adjusted life years (DALY) and 1600 deaths, which comprised 75% and 80% of
the total disease burden of air pollution, respectively.

Particulate emissions from most major sources, like transport and industrial-size combustion
plants, have been regulated by law for decades. The implementation of continually stricter legislation
has effectively decreased the emissions during this time [4]. Emissions from residential wood
combustion (RWC), however, have not been regulated thus far. RWC has become the largest source of
PM2.5 in many European countries [5] and is estimated to be among the most important contributors
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to air quality in urban areas [6]. In Helsinki, PM2.5 concentrations attributable to RWC have been
estimated to be 18–29% in urban measurement sites and 31–66% in suburban measurement sites during
the heating season [7]. RWC sources were found to be responsible for 12–40% of the local urban
contributions to the PM2.5 concentrations at four stations in the Helsinki Metropolitan Area annually
in the 2010s [8]. However, due to the substantial regional background of the PM2.5 concentrations, the
contributions of RWC to the total PM2.5 concentrations in the Helsinki region ranged from negligible
to approximately 15% at those stations. The relative contributions of RWC to the PM2.5 concentrations
have also substantially increased since the 1980s [8]. In another study, it was found that the annual
average contributions of RWC to the PM2.5 concentrations within the Helsinki region in 2013 ranged,
spatially, from negligible to 15% [9]. The RWC contributions were largest within the suburban areas
situated to the west, north, and northeast of the city centre of Helsinki.

Many intergovernmental treaties, such as the EU’s National Emission Ceilings (NEC) directive
(2016/2284), require countries to control their emissions and achieve specific emission reduction goals.
The NEC directive also compels EU countries to produce an air pollution control programme, to
ensure that necessary measures will be identified and implemented to reach those goals. As RWC
is becoming relatively more important as a source of air pollutants, figuring out feasible emission
reduction measures and policies has recently received increasing attention.

In this work, we calculate the PM2.5 emissions from RWC in Finland and model the resulting
concentrations in ambient air. Concentrations are used to calculate population exposure to PM2.5 due
to RWC, and assess the resulting health impacts. We also assess the projected change in emissions
between 2015 and 2030, and study a set of abatement measures for their efficiency and applicability.
The objectives of this work are to: (1) Quantify the negative health impacts caused by RWC in Finland;
(2) estimate how the impacts will change in the future, with and without additional abatement measures;
and (3) point out feasible measures to be implemented in national air quality policies. The results were
used in the planning of the National Air Pollution Control Programme 2030.

2. Materials and Methods

2.1. PM2.5 Emissions

In this work, RWC includes all wood burning in residential and recreational houses, as well as
direct wood heating of commercial, industrial, and agricultural buildings. The emissions for base year
2015 and scenarios up to 2030 were estimated with the national emission scenario model FRES [10].
The main principles of the emission calculations in the model are explained below, and the detailed
calculation scheme for RWC emissions have been reported in Savolahti et al. [11,12].

Emissions of PM2.5 are a product of wood consumption and emission factors for a given appliance.
For the year 2015, the amount of wood consumption was taken from Statistics Finland [13], and
for 2030 from the latest national Energy and Climate Strategy [14]. The allocation of wood use to
various appliance types was based on national questionnaire surveys [15], as well as other available
information, historical trends, and expert judgement. The primary energy of total wood consumption
in the residential sector was 61 PJ in 2015, and it is estimated to increase to 67 PJ in 2030. Most of the
wood is used for heating. The share of cooking and recreational use cannot be explicitly extracted
from the surveys. Most common appliances are various kinds of masonry stoves, automatic or
manual boilers and sauna stoves. Detailed wood consumption by appliance type and the projected
changes in the appliance stock have been presented earlier in Savolahti et al. [12]. The calculation of
emissions includes specific emission factors for five types of small-scale boilers and eight types of
stoves, based mostly on Finnish measurements. It also includes separate emission factors for normal
and smouldering combustion of stoves, as well as the assumed share of smouldering combustion in
the baseline. Smouldering combustion represents the situation with typical user mistakes, namely
suboptimal batch sizes and ignition, insufficient air supply, and poor quality of fuel (wet wood or
waste). The shares of normal and smouldering combustion determine the applied emission factor of
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an appliance. All emission measurements have been conducted from diluted flue gases. In normal
combustion, PM2.5 emission factors for stoves range from 33 mg/MJ (modern masonry heater) to
578 mg/MJ (open fireplace). For boilers the range is even larger; from 16 mg/MJ (wood chip boiler) to
700 mg/MJ (manually-fed log boiler without accumulator).

Total annual emissions were spatially distributed into a 250 m × 250 m grid, using several proxies.
The emissions were distributed into detached and semidetached houses based on their average wood
consumption. The wood consumption of a house depended on: (1) Main heating method, (2) residential
area type and (3) heating degree day. The average wood consumptions were based on questionnaires.
The calculation parameters are presented in Paunu et al. [16]. Distribution of recreational building
emissions was based on floor space and heating degree day. Consumption in boilers was distributed
only to buildings with wood heating as the primary heating method. The national building and dwelling
register was used to identify building locations and primary heating methods. For supplementary
heating (use of stoves), only detached and semidetached houses were assumed to have consumption.
Houses in urban areas of Southern Finland, with district heating as their primary heating method,
were supposed to use the least wood for supplementary heating. In other building types than detached
and semidetached houses, i.e., row and apartment houses, wood burning appliances are rare (in 2015
they attributed to less than 2% of the fuelwood consumed in residential buildings [13]), and they were
not taken into account in the spatial distribution of emissions. No estimation was made for spatial
changes in the building stock after 2015. Thus, the spatial distribution of emissions followed the same
principles for 2015 and 2030, although total emissions and emissions per unit of fuel were assumed to
change during the time span.

2.2. Studied Scenarios and Abatement Measures

The baseline scenario and scenarios including additional measures to reduce emissions from
residential wood combustion are described in Table 1. Each studied scenario includes an additional
emission reduction measure, which is assumed to be implemented cumulatively on top of the previous
one(s). The order of the measures is based on the ease of implementation and/or their social acceptability;
we considered scenario 1 to be the easiest to implement. This way, the scenarios represent the level of
ambition in mitigation, and the last scenario (4) can be viewed as maximum feasible reduction (MFR).

Informational campaigns for better stove use and wood storing have already been conducted in
some Finnish municipalities. However, it has been difficult to evaluate the impact of such campaigns,
and potential effects have been numerically explored in Savolahti et al. [11]. For sauna stoves, a
harmonised emission measurement protocol will be needed for the labelling of a “modern stove”.
The possibility to create and apply such a protocol is currently being explored in Finland. Small-scale
electrostatic precipitators (ESPs) for residential use are available, but the technology is not currently
widely used, and these will need to be further developed before a widespread implementation will
be possible. Combustion bans have been opposed by most decision-makers up to date; these have
therefore been considered to be the last resort measure.

Table 1. Residential wood combustion (RWC) emission reduction measures in the studied scenarios.
The scenarios from 1 to 4 have been applied cumulatively.

Scenarios Description and Scope

Baseline Projected RWC emissions in 2030 with existing measures. Includes the
Ecodesign Directive (Directive 2009/125/EC).

1 Information campaign

Training stove users in good practices of a stove. We assumed the
maximum estimated effect from Savolahti et al. (2016) for the campaign.
This halves the amount of smouldering combustion initially assumed
for stoves.
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Table 1. Cont.

Scenarios Description and Scope

a Cities only Implemented in municipalities with a population centre of 20,000+
inhabitants.

b Whole country Implemented throughout the country.

2 1b + national sauna legislation

On top of 1b, national regulation similar to Ecodesign, but covering
only sauna stoves (which are excluded in Ecodesign): Only modern
sauna stoves allowed to be sold after 2022. We assume modern sauna
stoves to produce 50% fewer emissions than conventional ones.
Average lifetime of a sauna stove was assumed to be 12.5 a, which was
used to estimate the penetration rate of new appliances to the stock.

3 2 + ESP installations

On top of 2, requirement to install end-of-stack electrostatic
precipitators (ESP) to residential-size wood boilers. Implemented to all
boilers in the country. ESPs were assumed to have PM2.5 emission
reduction efficiency of 80%.

4 3 + urban combustion ban

On top of 3, prohibiting of all residential wood combustion in urban
areas of municipalities with a population centre of 20,000+ inhabitants.
Urban areas were classified as grid cells with at least 200 residents and
the distance between buildings less than 200 m.

2.3. Dispersion of Emissions

The treatment of the atmospheric dispersion processes in the study is based on the use of
pre-computed source-receptor matrices (SRMs) with a resolution of 250 m × 250 m. Matrices are
derived from a Gaussian dispersion model, Urban Dispersion Modelling system (UDM-FMI) [17].
In computing the SRMs, meteorological data for ten different Finnish locations were used, from a
period of 2000–2005. For these ten spatial domains, the source receptor matrices were then calculated
separately on a monthly level. The different temporal distributions of wood use in the appliance
classes were taken into account in the monthly distribution of the emissions. For simplicity, the release
heights, including the plume rise, for all the residential combustion emissions were assumed to be
7.5 m. The principles of the method are explained in Karvosenoja et al. [18], based on coarser resolution
SRMs. The impact of climate change on the meteorological conditions was not taken into account in
the dispersion modelling.

2.4. Assessment of Population Exposure

On a country level, building and dwelling register (BDR) population data for 2014 was used
to calculate population-weighted primary fine particle (PPM2.5) concentration (PWC), originating
from residential wood combustion. The same population data was used for 2030 to assess the impact
of changing emissions only. Statistics Finland population grid data (Figure 1) at 1 km resolution,
presented in a Finnish geographic coordinate system (ETRS-TM35FIN), were used to calculate PWC
for municipalities [19].

Population-weighted concentrations were calculated according to Equation (1).

PWC =

∑n
i=1 CiPi∑n

i=1 Pi
, (1)

where n is the number of grid cells, C is the outdoor concentration in ith cell, and P is number of
persons in ith cell.
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2.5. Assessment of Health Impacts

Health impacts of RWC were estimated using the health impacts of air pollution (ISTE) model
developed at the National Institute for Health and Welfare (THL) [3]. The ISTE model estimates the
health impacts in DALYs, years of life lost (YLLs), years lived with disability (YLDs), and number
of deaths using burden of disease methods [20]. The model includes global health estimates (GHE)
baseline health data by WHO for 2015 [21], and a large set of concentration-response (C-R) functions.
The C-R functions used in this work are listed in Table 2. A log-linear shape was assumed.

Table 2. Relative risk (RR) estimates with confidence intervals used in this work [22].

Health Outcome Age Group RR per 10 µg/m3 (95% CI)

Natural mortality >30 year 1.062 (1.040–1.083)
ardiovascular diseases (hospital admissions) All 1.0091 (1.0017–1.0166)
Respiratory (hospital admissions) All 1.0190 (0.9982–1.0402)

Baseline health burden for natural mortality was calculated by subtracting injuries and violent
causes (GHE code 151) from all causes (GHE code 0). Morbidity (YLD) of cardiovascular diseases
(GHE code 110) and respiratory diseases (118) were used for baseline health data instead of hospital
admission data.

The attributable disease burden (EBoD) was calculated by combining population attributable
fraction (PAF) with background disease burden (BoD) (Equation (2)).

EBoD = PAF× BoD (2)
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where PAF is calculated as Equation (3).

PAF =
f× (RRE − 1)

f× (RRE − 1) + 1
(3)

where f is the percentage of the exposed population in the whole target population, and RRE is the
relative risk of the population at the prevailing exposure level.

Burden of disease attributable to different RWC scenarios was calculated using the attribution
method [23] (Equation (4)).

EBoDRWC =
PWCRWC_on − PWCRWC_o f f

PWCRWC_on
× EBoDtot(RWC_ON) (4)

where EBoDRWC is the burden of disease attributable to the scenario, PWCRWC_on is the total
population-weighted PM2.5 concentration, PWCRWC_o f f is the total population-weighted PM2.5

concentration without concentration from the scenario, and EBoDtot(RWC_ON) is the total burden
attributable to PM2.5.

Health benefits of abatement measures were estimated using the subtraction method [23] by
subtracting from the total burden of disease attributable to PM2.5 the burden which is attributable to
other sources of PM2.5 than RWC (Equation (5)).

EBoDRWC = EBoDtot(RWC_ON) − EBoDtot(RWC_OFF) (5)

where EBoDRWC is the burden of disease attributable to residential wood combustion scenario which
can be reduced if the scenario is implemented, EBoDtot(RWC_ON) is the burden of disease attributable to
total PM2.5 (including RWC), and EBoDtot(RWC_OFF) is the burden of disease attributable to PM2.5 from
other sources (excluding RWC).

3. Results

3.1. Emissions in the Baseline and Reduction Scenarios

Total PM2.5 emissions from RWC were 10.5 Gg in 2015 (Table 3). In the baseline scenario, emissions
decreased slightly from 2015 to 2030, despite a small increase in wood consumption. This is due to the
Ecodesign Directive (Commission Regulations (EU) 2015/1185 and 2015/1189), and other changes in the
appliance stock. The average emission factors of stove and boiler stocks are assumed to decrease slowly,
as the equipment is updated. The Ecodesign Directive will further enhance this turnover rate, as all new
stoves (except for sauna stoves) and boilers must meet the emission limit requirements after 2022 and
2020, respectively. Also, the share of pellets as a fuel in boilers is assumed to increase in the baseline, and
the most polluting manually-fed boilers are expected to be almost phased out by 2030. The scenarios
represent the cumulative impact in reduced emissions when each new measure is implemented on
top of the previous one(s). The biggest reductions are achieved with the implementation of the sauna
stove legislation and ESP installations to boilers. With maximum feasible reduction, the emissions
would decrease by almost 50% from the 2030 baseline. Sauna stove legislation and urban combustion
bans are measures that overlap with previous ones in the scenarios, which is why the impact of those
measures cannot be fully singled out. If either of those measures was to be implemented separately on
top of the baseline, their impact on emission reductions would be slightly larger than the differences
between scenarios 1 and 2 or 3 and 4.

3.2. Resulting PM2.5 Concentrations in Ambient Air

Modelled annual averages of PM2.5 concentrations [µg/m3] resulting from RWC are presented
in Figure 2. The highest concentrations (up to ~2 µg/m3) occur in the residential areas of the largest
cities, while most areas in Southern Finland are somewhat affected. In 2015, the measured PM2.5



Int. J. Environ. Res. Public Health 2019, 16, 2920 7 of 14

concentrations in the Helsinki Metropolitan Area were between 5 and 8 µg/m3 [8], and therefore the
>1 µg/m3 around major cities is a notable increase to the background concentrations. All population
centres are visible on the concentration maps, but on closer inspection, the downtown areas of major
cities have lower concentrations than the surrounding suburbs. This is due to downtowns having a
large number of apartment buildings, to which no wood consumption is allocated. On the other hand,
the highest densities of detached buildings are in the suburbs of major cities. The modelling result is
in line with measurements (see chapter 4). Only a slight decrease in the concentrations is noticeable
between 2015 and the 2030 baseline.

1 
 

Figure 2. The PM2.5 concentrations [µg/m3] resulting from RWC in 2015 and the baseline scenario
in 2030.

The reductions of modelled PM2.5 concentrations in each scenario are presented in Figure 3.
Infocampaign (that affects all stove types) and sauna legislation show effects with similar spatial
patterns. As sauna stoves are widely used in all area types, where other residential wood combustion
also takes place, they have not been treated separately from other supplementary heating in the spatial
distribution of emissions. However, recreational and residential houses have been treated separately,
and sauna stoves are relatively more common in recreational houses. Due to this, the impacts of
scenario 2 were weighed slightly more towards rural areas than the impacts of scenario 1. Sauna
legislation was estimated to be more effective in reducing emissions, which is why the changes in
concentrations are considerably higher in scenario 2. As ESP installations only affect boilers, which are
more common in rural areas, the changes in concentrations are located mostly in those areas. Effects
are visible throughout Finland, but are most pronounced in Western Finland, where boilers are more
common according to the national building and dwelling register. In the fourth scenario where urban
combustion bans are added, the centres of the most population-dense municipalities are highlighted.
While reducing the concentrations significantly in the biggest population centres, the combustion ban
does not cover many of the smaller municipalities, which still have suburban areas with considerable
concentrations and population exposure.
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Figure 3. Reduction potentials of PM2.5 concentrations [µg/m3] associated with the studied scenarios.
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3.3. Health Impacts

The burden of disease estimates for the evaluated scenarios are presented in Table 3, and the
reductions of annual deaths between the scenarios in Figure 4. The estimated disease burden caused
by RWC was 3420 DALY in 2015, which decreased to 1150 DALY in the MFR scenario for 2030. Deaths
attributable to RWC were 204 in 2015 and 68 in the MFR scenario in 2030. Overall, the disease burden
was dominated by mortality, as YLL comprised ~98% of DALY.

The largest reductions in health impacts were achieved in scenarios 2 and 4, with the additions
of sauna legislation and urban combustion bans (Figure 4). When calculated as reductions in health
impacts per abated unit of emissions, installing ESPs was the least efficient measure. Measures
specifically targeted to urban areas were the most efficient, as expected. Urban combustion ban was the
most efficient, since it only targeted emissions in the actual population centre, whereas infocampaigns
in cities were assumed to effect emissions in the whole municipality, including recreational houses.

Table 3. Estimates for disease burden attributable to RWC in the studied scenarios. The scenarios have
been evaluated with respect to Baseline in 2030. The scenarios are cumulative, i.e., they also include
the measures defined in the previous scenarios. The notations: DALY = disability adjusted life years,
YLL = years of life lost, YLD = years lived with disability, ∆ DALY/∆ Gg PM2.5 = changes compared to
2030 baseline.

Scenario PM2.5
Gg/a

PWC
µg/m3 DALY YLL YLD Deaths ∆DALY/∆Gg

PM2.5

2015 10.5 0.70 3410 3410 55 204 -
2030 Baseline 9.1 0.64 3120 3070 51 187 -
1. Infocampaign

a Cities 9.0 0.62 2990 2940 48 179 1140
b All areas 8.5 0.59 2860 2810 46 172 400

2. Sauna legislation 7.0 0.49 2360 2320 38 141 351
3. ESP installations 5.5 0.44 2140 2100 35 128 140
4. Urban combustion bans 4.8 0.24 1140 1120 18 68 1480
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Figure 4. Reduction of annual deaths attributable to RWC in each scenario in 2030, with respect to the
previous one, as new measures are added. Baseline 2030 has been compared to annual deaths in 2015.

Annual deaths in 2015 attributable to RWC, classified by population in each municipality, are
shown in Table 4. The largest health impacts occur in municipalities with a population size of
20,000–50,000 inhabitants. In 2015, it was the group with second most population after the biggest cities
of 200,000+ inhabitants [24]. Attributable deaths per capita in the municipality groups was highest in
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group of 50,000–100,000 inhabitants, although all groups between 10,000 and 200,000 inhabitants were
relatively even. Incidence of deaths per capita was lowest in the group of 200,000+ inhabitants.

Table 4. Deaths attributable to RWC, classified by population size in a municipality.

Population Inhabitants Deaths Deaths/100,000
Inhabitants

>200,000 1,335,224 31 2.3
100,000–200,000 737,646 30 4.1
50,000–100,000 742,217 36 4.9
20,000–50,000 1,057,312 45 4.3
10,000–20,000 686,257 28 4.1
5000–10,000 570,376 19 3.3
2500–5000 248,826 6.0 2.4

<2500 112,387 2.6 2.8

4. Discussion

Some verification to our emission and dispersion modelling can be provided by measurements
made previously. Measured annual total concentrations from all sources in Finnish urban and suburban
areas are typically between 5 and 8 µg/m3. In those areas, our modelled concentrations attributable to
RWC were typically between 0.5 and 2 µg/m3. Our modelled PM2.5 concentrations, caused by RWC in
2015, were in line with measured estimations of the share of RWC contribution to total concentrations [7].
However, a direct comparison cannot be made due to differences in the study settings.

Lehtomäki et al. [3] calculated the total burden of disease in Finland attributable to PM2.5 from
all sources. Compared with their results, the disease burden attributable to RWC in our work would
constitute approximately 13% of the total disease burden caused by PM2.5 concentrations in Finland.
The uncertainties due to concentration-response relationships in the burden of disease estimates for
different RWC scenarios range from –34% to +39%. Lehtomäki et al. [3] estimated uncertainties related
to population-weighted concentrations as well, using the same emission data as in this work, but a
different dispersion model. They found that for PM2.5 the uncertainties were ±8%.

One limitation of this study is that we were not able to estimate the contribution of RWC to
household air pollution. Burden of disease from residential wood combustion is closely related to
household air pollution as the emission source is indoors. Treating of ambient and household RWC
exposure as separate risk factors can lead to double counting due to their interrelated nature [25].
Therefore, our results should not be combined with burden of disease estimates of indoor RWC
exposure, in order to avoid double counting. Instead, an integrated population-weighted exposure
method should be applied [25].

Some recent studies suggest that the C-R curves are supra-linear at low PM2.5 concentration levels
(e.g., [26–28]). Use of these curves would lead to relatively higher reduction potential as the risk curve
is steeper than the log-linear used in this work. In our work, we applied C-R functions recommended
by WHO HRAPIE working group [21] without a threshold.

In this study, we did not assess the impact of different RWC sources separately. Karvosenoja
et al. [18] have calculated the population-weighed concentration (PWC) caused by PM2.5 emissions
from primary wood heating (boilers), supplementary wood heating (stoves in residential houses), and
recreational wood heating (heating in recreational houses). They used a similar modelling setting to
ours, but in a coarser resolution of 1 × 1 km. They estimated that supplementary wood heating caused
68% and primary heating 29% of the PWC, respectively. Our study showed a congruent result, in
that measures to boilers (primary heating) were less effective than measures to stoves. It is a robust
supposition that similar relative shares can be applied to the health impacts of the three groups in our
study. Assessment of population exposure and health impacts in 2030 did not account for changes in
the population data after 2015. Statistics Finland [20] has estimated that total population will increase
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by ~5% between 2015 and 2030. On the other hand, the share of people living in municipalities of
>200,000 inhabitants will also increase from 24% to 35%.

Since the calculations of this study, a new, comprehensive set of measurements has been conducted
for Finnish sauna stoves [29]. In our calculations, the emission factor for sauna stoves was based on a
small sample size, which was considered an uncertainty. New measurements show that our emission
factor is probably an overestimation, and suggested that the design of sauna stoves has improved in
recent years. As the share of the improved stoves in the appliance stock increases, the average emission
factor is assumed to decrease further, whereas in our baseline it stays constant. This then overestimates
the emissions and the theoretical reduction potential in 2030. However, the best sauna stoves in the
new set of measurements were considerably cleaner than our estimation for “modern sauna stove”,
and the variation in emission factors between the stoves was significant. In this regard, it still seems a
robust assumption that notable emission reduction potential from sauna stoves exists.

When assessing the real-world implementation potential of the studied measures, economical,
technological, political feasibility, and social acceptability are important to take into account.
The implementation costs of the measures (excluding combustion bans) have been assessed in
Savolahti et al. [11]. Informational campaigns were estimated to clearly be the most cost-efficient
measure to reduce emissions. The second most cost-efficient measure was updating the stock of sauna
stoves, and installing ESPs was the least cost-efficient. In most cases, the costs of implementation are
paid by the users of wood combustion appliances. In the case of informational campaigns, however,
the costs are paid by the municipality or government, and the user can actually gain direct financial
benefits. One problem with combustion bans is that for many people, access to wood is free, which is
not the case for any alternative source of energy. From a technological point of view, small-scale ESPs
are not widely available, and there are still some technological challenges to solve in order for them to
be attractive for consumers. Sauna stoves with lower emissions have been developed and brought
into the market by sauna stove manufacturers in earlier years, i.e., there are no technological barriers
for them. However, because of the higher price and no incentives, they have not succeeded in the
market, and currently there are no sauna stove models that are marketed as low-emission alternatives.
Recently, Finnish sauna stove manufacturers have expressed interest and a positive attitude to the
idea of bringing cleaner stoves to the market. However, a uniform, accessible, and reliable method to
measure the emissions is currently lacking. Such a method needs to be established before incentives
can be created to promote cleaner models.

Assessing the impact of informational campaigns involves large uncertainties. It is difficult to
point out and quantify the changes in behaviour they might produce, and we have assumed the change
to be substantial. On the other hand, our calculation method only takes into account the change in
emissions, when the same amount of wood is combusted better. Although this can make a significant
difference if the initial combustion practices are poor, the campaigns might also have other effects: It
could reduce wood consumption. Increasing awareness of the harmful health impacts could lead to
less unnecessary combustion in urban areas. Better understanding of the proper use of the stove might
also lead to notable increases in net heating efficiency, which would then reduce the amount of wood
needed to heat the house. These effects are not included in the assessment of informational campaigns.
Overall, even with large uncertainties in the effect of such campaigns, their potential benefits seem to
be worth the relatively low costs.

The studied measures were taken into consideration in the preparation of the National Air
Pollution Control Programme 2030 [30], which aimed at giving concrete recommendations to improve
air quality and reduce harmful health impacts in Finland. The preparation process included the
participation of main interest groups, e.g., industries and NGOs, and public hearings. Thus, this process
could be considered as a test for political and social feasibility. The measures of the first two scenarios,
i.e., wide implementation of information campaigns and support for processes described above, that
could lead to the introduction of low-emission sauna stoves into the market, were recommended in the
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Programme. The use of small-scale ESPs and combustion bans were not considered plausible measures
due to technological risks and lack of social acceptance, respectively.

5. Conclusions

In this study, we modelled concentrations of PM2.5 resulting from primary particle emissions
of RWC in Finland. Concentrations were calculated for 2015 and as projections for 2030, including
abatement scenarios of increasing ambition level. Without measures, the resulting annual average
concentrations were between 0.5 and 2µg/m3 in the proximity of most cities. Disease burden attributable
to RWC was estimated to be 3400 DALY and 200 deaths in 2015. This disease burden accounted for
13% of that caused by total PM2.5 concentrations in Finland. Most of the population exposure and thus
estimated heath impacts were caused by supplementary heating in residential houses, i.e., the use of
stoves. Use of boilers for primary heating, which usually happens in more rural areas, was less harmful
per unit of emissions, and emissions from recreational houses were the least harmful. This perception
is important when planning measures to reduce the disease burden. In the baseline scenario for 2030,
attributable disease burden and deaths due to RWC emissions decreased by 8%, compared to 2015. In
the MFR scenario, the decrease was 63%, compared to the 2030 baseline. The most effective measures
were urban combustion bans and implementing a legislation that sets emission limits for sauna stoves.
Informational campaigns targeted to urban areas were shown to be very efficient in terms of reduced
disease burden per reduced unit of emissions.

This work supports the Finnish policy-making processes as it influenced the planning of National
Air Pollution Control Programme 2030. Informational campaigns and improvement of the sauna stove
stock were the two measures included in the recommendations for actions given in the Programme,
as means to further improve air quality in Finland. The Finnish Ministry of the Environments is
currently surveying the possibilities to create a harmonised emission measurement standard for sauna
stoves, upon which a policy to promote cleaner stoves could be built. Informational campaigns have
mostly been carried out in the Helsinki metropolitan area and other major population centres. In this
study, however, we propose that a major share of the harmful health impacts occur in relatively small
municipalities of 20,000–100,000 people. Thus, successful policies to reduce the health impacts of RWC
should include measures that also target these smaller municipalities.
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