Table S1. Target analytes and corresponding internal standards.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Internal Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamphetamine</td>
<td>Methamphetamine-d8</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>Amphetamine-d8</td>
</tr>
<tr>
<td>3,4-Methylenedioxymethamphetamine</td>
<td>3,4-Methylenedioxymethamphetamine-d5</td>
</tr>
<tr>
<td>3,4-Methylene-dioxyamphetamine</td>
<td>3,4-Methylene-dioxyamphetamine -d5</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Ketamine-d4</td>
</tr>
<tr>
<td>Norketamine</td>
<td>Norketamine-d4</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>6-Acetylmorphine-d6</td>
</tr>
<tr>
<td>Morphine</td>
<td>Morphine-d3</td>
</tr>
<tr>
<td>Codeine</td>
<td>Codeine-d6</td>
</tr>
<tr>
<td>Methadone</td>
<td>Methadone-d9</td>
</tr>
<tr>
<td>2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine</td>
<td>2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine-d3</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Cocaine-d3</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>Benzoylecgonine-d3</td>
</tr>
<tr>
<td>Cathinone</td>
<td>Cathinone-d5</td>
</tr>
<tr>
<td>Mephedrone</td>
<td>Mephedrone-d3</td>
</tr>
<tr>
<td>p-Methoxymethamphetamine</td>
<td>p-Methoxymethamphetamine-d3</td>
</tr>
<tr>
<td>Benzylpiperazine</td>
<td>Benzylpiperazine-d7</td>
</tr>
<tr>
<td>1-(3-chlorophenyl) Piperazine</td>
<td>1-(3-chlorophenyl) Piperazine-d8</td>
</tr>
<tr>
<td>3-Trifluoromethylphenylpiperazine</td>
<td>3-Trifluoromethylphenylpiperazine-d4</td>
</tr>
<tr>
<td>4-Iodo-2,5-Dimethoxyphenethylamine</td>
<td>4-Iodo-2,5-Dimethoxyphenethylamine-d3</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Tramadol-13C-d3</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Fentanyl-d5</td>
</tr>
<tr>
<td>Methylone</td>
<td>Methylone-d3</td>
</tr>
<tr>
<td>3,4-Methylenedioxypyrovalerone</td>
<td>3,4-Methylenedioxypyrovalerone-d8</td>
</tr>
</tbody>
</table>
Figure S1. The elution gradient of mobile phase B (MeOH).
Figure S2. Chromatogram of 24 analyzed substances (a) and their corresponding deuterated (b).
Table S2. MS parameters (quantifier and qualifier ions), declustering potential, collision energy and retention time.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Retention time (min)</th>
<th>Precursor Ion (m/z)</th>
<th>Declustering Potential (V)</th>
<th>Quantifier</th>
<th>Qualifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamphetamine</td>
<td>5.08</td>
<td>150.1</td>
<td>35</td>
<td>119.2</td>
<td>91.2</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>4.76</td>
<td>136.1</td>
<td>40</td>
<td>119.1</td>
<td>91.2</td>
</tr>
<tr>
<td>Ketamine</td>
<td>5.96</td>
<td>238.1</td>
<td>50</td>
<td>207.1</td>
<td>125.1</td>
</tr>
<tr>
<td>Norketamine</td>
<td>5.80</td>
<td>224.1</td>
<td>40</td>
<td>125.1</td>
<td>207.1</td>
</tr>
<tr>
<td>Morphine</td>
<td>3.40</td>
<td>286.2</td>
<td>90</td>
<td>165.1</td>
<td>201.3</td>
</tr>
<tr>
<td>Codeine</td>
<td>4.64</td>
<td>300.1</td>
<td>108</td>
<td>199.1</td>
<td>165.1</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>5.16</td>
<td>328.1</td>
<td>90</td>
<td>165.2</td>
<td>211.1</td>
</tr>
<tr>
<td>Cocaine</td>
<td>7.08</td>
<td>304.1</td>
<td>114</td>
<td>182.2</td>
<td>150.3</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>6.00</td>
<td>290.1</td>
<td>107</td>
<td>168.1</td>
<td>105.1</td>
</tr>
<tr>
<td>3,4-Methylenedioxyamphetamine</td>
<td>5.32</td>
<td>193.8</td>
<td>70</td>
<td>162.9</td>
<td>134.9</td>
</tr>
<tr>
<td>3,4-Methylene-dioxymethamphetamine</td>
<td>5.04</td>
<td>180.1</td>
<td>41</td>
<td>162.9</td>
<td>135.0</td>
</tr>
<tr>
<td>Methadone</td>
<td>10.05</td>
<td>310.3</td>
<td>110</td>
<td>265.1</td>
<td>105.1</td>
</tr>
<tr>
<td>2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine</td>
<td>9.29</td>
<td>278.2</td>
<td>100</td>
<td>234.2</td>
<td>249.2</td>
</tr>
<tr>
<td>p-Methoxymethamphetamine</td>
<td>5.48</td>
<td>180.2</td>
<td>50</td>
<td>149.2</td>
<td>121.2</td>
</tr>
<tr>
<td>Methylone</td>
<td>4.68</td>
<td>208.2</td>
<td>55</td>
<td>160.0</td>
<td>190.1</td>
</tr>
<tr>
<td>4-Iodo-2,5-Dimethoxyphenethylamine</td>
<td>5.60</td>
<td>308.2</td>
<td>55</td>
<td>291.0</td>
<td>275.8</td>
</tr>
<tr>
<td>Mephedrone</td>
<td>4.80</td>
<td>150.0</td>
<td>80</td>
<td>160.0</td>
<td>145.2</td>
</tr>
<tr>
<td>Cathinone</td>
<td>4.28</td>
<td>178.1</td>
<td>80</td>
<td>132.1</td>
<td>117.1</td>
</tr>
<tr>
<td>3,4-Methylenedioxypropyralerone</td>
<td>7.08</td>
<td>276.1</td>
<td>80</td>
<td>126.1</td>
<td>135.0</td>
</tr>
<tr>
<td>Benzylpiperazine</td>
<td>3.88</td>
<td>177.1</td>
<td>80</td>
<td>91.0</td>
<td>85.1</td>
</tr>
<tr>
<td>3-Trifluoromethylphenylpiperazine</td>
<td>7.64</td>
<td>231.0</td>
<td>80</td>
<td>188.0</td>
<td>119.0</td>
</tr>
<tr>
<td>1-(3-Chlorophenyl) Piperazine</td>
<td>6.64</td>
<td>197.0</td>
<td>80</td>
<td>154.1</td>
<td>119.2</td>
</tr>
<tr>
<td>Tramadol</td>
<td>6.52</td>
<td>264.4</td>
<td>50</td>
<td>58.1</td>
<td>246.3</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>8.57</td>
<td>337.4</td>
<td>50</td>
<td>188.1</td>
<td>216.1</td>
</tr>
<tr>
<td>Methamphetamine-d8</td>
<td>5.04</td>
<td>158.1</td>
<td>40</td>
<td>124.2</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Molecular Formula</th>
<th>MW</th>
<th>retention time (m)</th>
<th>enantiomer purity (%)</th>
<th>Alkylation Position</th>
<th>Sample Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphetamine-d8</td>
<td></td>
<td></td>
<td>4.68</td>
<td>144.1</td>
<td>40</td>
<td>127.1</td>
</tr>
<tr>
<td>3,4-Methylenedioxymethamphetamine-d5</td>
<td></td>
<td></td>
<td>5.32</td>
<td>199.1</td>
<td>65</td>
<td>165.0</td>
</tr>
<tr>
<td>3,4-Methylene-dioxyamphetamine-d5</td>
<td></td>
<td></td>
<td>5.04</td>
<td>185.1</td>
<td>55</td>
<td>168.0</td>
</tr>
<tr>
<td>Ketamine-d4</td>
<td></td>
<td></td>
<td>5.92</td>
<td>242.1</td>
<td>60</td>
<td>129.1</td>
</tr>
<tr>
<td>Norketamine-d4</td>
<td></td>
<td></td>
<td>5.76</td>
<td>228.1</td>
<td>45</td>
<td>129.1</td>
</tr>
<tr>
<td>6-Acetylmorphine-d6</td>
<td></td>
<td></td>
<td>5.16</td>
<td>334.2</td>
<td>90</td>
<td>211.2</td>
</tr>
<tr>
<td>Morphine-d3</td>
<td></td>
<td></td>
<td>3.44</td>
<td>289.1</td>
<td>90</td>
<td>181.1</td>
</tr>
<tr>
<td>Codeine-d6</td>
<td></td>
<td></td>
<td>4.60</td>
<td>306.2</td>
<td>103</td>
<td>165.2</td>
</tr>
<tr>
<td>Methadone-d9</td>
<td></td>
<td></td>
<td>10.05</td>
<td>319.3</td>
<td>60</td>
<td>268.2</td>
</tr>
<tr>
<td>2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine-d3</td>
<td></td>
<td></td>
<td>9.29</td>
<td>281.2</td>
<td>100</td>
<td>234.2</td>
</tr>
<tr>
<td>Cocaine-d3</td>
<td></td>
<td></td>
<td>7.08</td>
<td>307.1</td>
<td>105</td>
<td>185.1</td>
</tr>
<tr>
<td>Benzoylecgonine-d3</td>
<td></td>
<td></td>
<td>5.96</td>
<td>293.2</td>
<td>93</td>
<td>171.2</td>
</tr>
<tr>
<td>Cathinone-d5</td>
<td></td>
<td></td>
<td>3.96</td>
<td>155.3</td>
<td>50</td>
<td>137.1</td>
</tr>
<tr>
<td>Mephedrone-d3</td>
<td></td>
<td></td>
<td>5.60</td>
<td>181.1</td>
<td>80</td>
<td>163.0</td>
</tr>
<tr>
<td>Benzylpiperazine-d7</td>
<td></td>
<td></td>
<td>7.08</td>
<td>184.1</td>
<td>80</td>
<td>98.0</td>
</tr>
<tr>
<td>1-(3-chlorophenyl) Piperazine-d8</td>
<td></td>
<td></td>
<td>6.60</td>
<td>205.1</td>
<td>80</td>
<td>158.1</td>
</tr>
<tr>
<td>3-Trifluoromethylphenylpiperazine-d4</td>
<td></td>
<td></td>
<td>7.60</td>
<td>235.1</td>
<td>80</td>
<td>190.0</td>
</tr>
<tr>
<td>4-Iodo-2,5-Dimethoxyphenethylamine-13C-d3</td>
<td></td>
<td></td>
<td>7.60</td>
<td>312.3</td>
<td>53</td>
<td>294.9</td>
</tr>
<tr>
<td>Fentanyl-d5</td>
<td></td>
<td></td>
<td>8.57</td>
<td>342.3</td>
<td>90</td>
<td>187.9</td>
</tr>
<tr>
<td>Tramadol-13C-d3</td>
<td></td>
<td></td>
<td>6.52</td>
<td>268.4</td>
<td>50</td>
<td>58.1</td>
</tr>
<tr>
<td>Methylone-d3</td>
<td></td>
<td></td>
<td>4.68</td>
<td>211.3</td>
<td>50</td>
<td>162.9</td>
</tr>
<tr>
<td>3,4-Methylenedioxypyrovalerone-d8</td>
<td></td>
<td></td>
<td>7.04</td>
<td>284.1</td>
<td>80</td>
<td>134.2</td>
</tr>
</tbody>
</table>
Table S3. Method validation parameters: recovery, matrix effect, repeatability, reproducibility, LOD, LOQ and procedure bank.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Recovery 400 ng/L (n = 3) (%)</th>
<th>Matrix 10 μg/L (n = 5) (RSD %)</th>
<th>Repeatability</th>
<th>Reproducibility</th>
<th>LOD *</th>
<th>LOQ *</th>
<th>Procedure Bank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamphetamine</td>
<td>92.2 ± 4.2</td>
<td>−5.5 ± 8.8</td>
<td>2.3</td>
<td>4.3</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Amphetamine</td>
<td>98.7 ± 5.5</td>
<td>−2.1 ± 0.9</td>
<td>5.8</td>
<td>8.8</td>
<td>2.0</td>
<td>4.0</td>
<td><LOD</td>
</tr>
<tr>
<td>Ketamine</td>
<td>97.6 ± 5.5</td>
<td>−3.0 ± 2.3</td>
<td>4.3</td>
<td>5.8</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Norketamine</td>
<td>98.2 ± 6.2</td>
<td>4.9 ± 5.8</td>
<td>2.5</td>
<td>3.9</td>
<td>2.0</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Morphine</td>
<td>95.6 ± 13.6</td>
<td>−6.1 ± 4.7</td>
<td>1.6</td>
<td>6.1</td>
<td>0.5</td>
<td>2.0</td>
<td><LOD</td>
</tr>
<tr>
<td>Codeine</td>
<td>95.3 ± 6.2</td>
<td>0.2 ± 10.0</td>
<td>4.9</td>
<td>9.1</td>
<td>0.5</td>
<td>2.0</td>
<td><LOD</td>
</tr>
<tr>
<td>6-Acetylmorphine</td>
<td>83.6 ± 10.1</td>
<td>17.2 ± 7.3</td>
<td>3.6</td>
<td>3.6</td>
<td>0.5</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Cocaine</td>
<td>95.1 ± 8.2</td>
<td>−4.2 ± 2.0</td>
<td>4.8</td>
<td>5.5</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Benzoylecgonine</td>
<td>96.1 ± 3.6</td>
<td>−6.3 ± 1.3</td>
<td>2.0</td>
<td>3.7</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>3,4-Methylenedioxymethamphetamine</td>
<td>104.9 ± 6.2</td>
<td>10.9 ± 8.3</td>
<td>3.4</td>
<td>3.3</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>3,4-Methylene-dioxyamphetamine</td>
<td>90.2 ± 5.5</td>
<td>−5.8 ± 2.1</td>
<td>0.5</td>
<td>1.4</td>
<td>2.0</td>
<td>4.0</td>
<td><LOD</td>
</tr>
<tr>
<td>Methadone</td>
<td>102.4 ± 4.1</td>
<td>−1.2 ± 5.5</td>
<td>1.2</td>
<td>5.1</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine</td>
<td>104.9 ± 3.8</td>
<td>0.6 ± 4.1</td>
<td>3.9</td>
<td>4.0</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>p-Methoxymethamphetamine</td>
<td>86.4 ± 4.8</td>
<td>−10.3 ± 3.5</td>
<td>2.8</td>
<td>6.4</td>
<td>2.0</td>
<td>4.0</td>
<td><LOD</td>
</tr>
<tr>
<td>Methylone</td>
<td>104.8 ± 7.6</td>
<td>2.2 ± 4.0</td>
<td>3.9</td>
<td>2.5</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>4-Iodo-2,5-Dimethoxyphenethylamine</td>
<td>100.2 ± 7.0</td>
<td>−3.0 ± 1.7</td>
<td>6.9</td>
<td>8.7</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Substance</td>
<td>Result</td>
<td>LOQ</td>
<td>LOQ</td>
<td>LOD</td>
<td>LOD</td>
<td>LOD</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Mephedrone</td>
<td>101.2 ± 3.7</td>
<td>5.3 ± 3.5</td>
<td>1.1</td>
<td>5.9</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Cathinone</td>
<td>99.6 ± 11.7</td>
<td>−7.2 ± 2.5</td>
<td>2.3</td>
<td>2.4</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>3,4-Methylenedioxyoxypyrroleone</td>
<td>102.7 ± 5.1</td>
<td>6.2 ± 2.6</td>
<td>6.1</td>
<td>7.1</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Benzylpiperazine</td>
<td>88.2 ± 9.7</td>
<td>8.3 ± 9.6</td>
<td>6.3</td>
<td>14.8</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>3-Trifluoromethylphenylpiperazine</td>
<td>102.3 ± 8.7</td>
<td>1.8 ± 2.7</td>
<td>4.6</td>
<td>9.3</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>1-(3-chlorophenyl) Piperazine</td>
<td>96.7 ± 5.2</td>
<td>−0.4 ± 3.6</td>
<td>4.0</td>
<td>6.7</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Tramadol</td>
<td>91.0 ± 5.1</td>
<td>−10.1 ± 6.6</td>
<td>3.8</td>
<td>6.3</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>100.4 ± 5.7</td>
<td>−1.8 ± 1.9</td>
<td>1.6</td>
<td>3.0</td>
<td>0.2</td>
<td>0.8</td>
<td><LOD</td>
</tr>
</tbody>
</table>

* LOD—limit of detection; b LOQ—limit of quantification; c RSD—relative standard deviation.
Table S4. The human excretion factors of the target drugs, molecular weight ratio of parent and metabolite and typical dose.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Selected Biomarker</th>
<th>Excretion Factor (%)</th>
<th>MW_p/MW_m</th>
<th>Typical Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamphetamine</td>
<td>Methamphetamine</td>
<td>43[1]</td>
<td>1.00</td>
<td>30 [2]</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Ketamine</td>
<td>16 b[2,3]</td>
<td>1.00</td>
<td>75 [2]</td>
</tr>
<tr>
<td>MDMA</td>
<td>MDMA</td>
<td>26 [4]</td>
<td>1.00</td>
<td>100 [1]</td>
</tr>
<tr>
<td>Codeine</td>
<td>Codeine</td>
<td>30 [5]</td>
<td>1.00</td>
<td>38 [3]</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Tramadol</td>
<td>30 [2]</td>
<td>1.00</td>
<td>50 [2]</td>
</tr>
<tr>
<td>Cocaine</td>
<td>Benzoylcegonine</td>
<td>29 [6]</td>
<td>1.05</td>
<td>100 [1]</td>
</tr>
<tr>
<td>Morphine</td>
<td>Morphine</td>
<td>77.7 [7]</td>
<td>1.00</td>
<td>20 d[8]</td>
</tr>
</tbody>
</table>

MW_p/MW_m—molecular weight ratio of parent and metabolite; Mean excretion factor; MDMA—3,4-Methylenedioxyamphetamine; d Assume the typical dose is same to heroin based on the similar structures.

Table S5. Number of drug dependents of amphetamine-type stimulants and opiates in Malaysia from 2013–2017 [10].

<table>
<thead>
<tr>
<th>Year</th>
<th>Opiates</th>
<th>Methamphetamine</th>
<th>Amphetamine-type stimulants tablets *</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>16041</td>
<td>3008</td>
<td>476</td>
</tr>
<tr>
<td>2014</td>
<td>14502</td>
<td>5356</td>
<td>1774</td>
</tr>
<tr>
<td>2015</td>
<td>16616</td>
<td>8807</td>
<td>1309</td>
</tr>
<tr>
<td>2016</td>
<td>16985</td>
<td>12738</td>
<td>3395</td>
</tr>
<tr>
<td>2017</td>
<td>10154</td>
<td>14785</td>
<td>5130</td>
</tr>
</tbody>
</table>

* Includes methamphetamine, ecstasy type (MDMA) and amphetamine.

References:

