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Abstract: The urban forest is a green infrastructure system that delivers multiple environmental, 

economic, social and health services, and functions in cities. Environmental benefits of urban trees 

are well understood, but no review to date has examined how urban trees affect human health. This 

review provides a comprehensive summary of existing literature on the health impacts of urban 

trees that can inform future research, policy, and nature-based public health interventions. A 

systematic search used keywords representing human health, environmental health, and urban 

forestry. Following screening and appraisal of several thousand articles, 201 studies were 

conceptually sorted into a three-part framework. Reducing Harm, representing 41% of studies, 

includes topics such as air pollution, ultraviolet radiation, heat exposure, and pollen. Restoring 

Capacities, at 31%, includes attention restoration, mental health, stress reduction, and clinical 

outcomes. Building Capacities, at 28%, includes topics such as birth outcomes, active living, and 

weight status. The studies that were reviewed show substantial heterogeneity in purpose and 

method yet indicate important health outcomes associated with people’s exposure to trees. This 

review will help inform future research and practice, and demonstrates why urban forest planning 

and management should strategically promote trees as a social determinant of public health. 

Keywords: urban forest; green infrastructure; urban greening; greenspace; ecosystem services; 

public health; social determinant; health promotion 

 

1. Introduction 

Trees are some of the most prominent natural features in towns and cities from both visual and 

functional perspectives. The urban forest is a key type of green infrastructure system [1] and a 

consequential component of other urban ecosystems and landscapes [2–4]. Comprised of diverse tree 

species and vegetation structures, the urban forest includes individual trees, assemblages of trees in 

parks, groves, and extensively forested natural areas, which are distributed across public and private 

properties and along streets, waterfronts, railways, and riverbanks [5,6].  
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The ecological functions and services of urban forests have been investigated extensively in 

recent decades [7–11]. Benefits include the ability of trees to reduce greenhouse gases through carbon 

storage [12–14], decrease stormwater runoff through interception and absorption of rainwater [15], 

and mitigate the urban heat island effect through reductions in surface and air temperatures at a local 

scale [16,17]. However, knowledge about the relationship between urban trees and human health is 

still developing. The academic literature on the linkages between nature and human health has 

grown rapidly using various specifications of nature, such as urban greening, green space, open 

space, parks, therapeutic landscapes, and restorative settings. As the evidence base has expanded, 

reviews have consolidated knowledge of associated health outcomes, but many have focused broadly 

on nature [17–22], green space [23–28], and greenness [22,29]. 

More information about specific qualities of urban tree conditions and exposures are needed in 

order to help guide and inform planning, design, and implementation decisions. Local governments 

and other organizations show increased interest in promoting and enhancing community-based 

nature as a social determinant of health [30,31]. From a practical standpoint, effective implementation 

requires better articulation of specific elements of nature and how they may influence health 

outcomes. Policy, professional staffing, and budgets are often allocated less to generalities of nature 

and more specifically to departmental administrations addressing parks, trees, vegetation in rights-

of-way, natural areas or landscapes associated with development. 

While other studies have focused on nature, green space and greenness, no comprehensive 

review has assessed the full range of evidence on the human health responses associated specifically 

with trees in urban areas. A review by Salmond et al. focused on street trees and health [32] but did 

not address other forms and configurations of the urban forest. To address this gap in the literature, 

this scoping review synthesizes empirical findings about how urban trees and forest experiences can 

impact human health. Scoping reviews are used to assess “the extent, range, and nature of research 

activity in a topic area” [33] (p. 371) and are used for ‘reconnaissance’ to clarify working definitions 

and conceptual boundaries of a topic or field, especially for a large and diverse body of literature that 

is not amenable to a systematic review [34,35]. We conducted a literature screening across varied 

disciplines (including epidemiology, medicine, environmental and atmospheric sciences, 

psychology, and other social sciences), sources and study methods, then summarized results in a 

conceptual framework that can inform future research questions and methods. 

This scoping review also has practical implications. In the United States, urban tree canopy cover 

is estimated to be declining at a rate of roughly four million trees per year due to rapid urbanization 

and tree diseases and pests [36]; other countries may be experiencing similar losses. Understanding 

how urban trees are associated with human health can inform how health professionals, urban 

foresters, town and city planners, and urban designers can maximize the public health benefits 

generated by urban trees by supporting better tree policy, planning, and management. 

2. Methods  

2.1. Search and Inclusion Strategies 

The review was conducted in accordance with PRISMA-ScR (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) [37]. Published findings of quantified relationships between 

urban trees and human health were collected by searching Embase, Ovid Medline, PsycINFO, and 

PubMed. Keywords used included terms related to trees, land cover, urban settings, public health 

and known health outcomes (Table 1).  

The initial search produced a collection of 3358 peer-reviewed articles; the number was reduced 

to 1663 after duplicates and non-relevant publications were removed (Figure 1). The resulting article 

collection was limited to English language and peer-reviewed journal articles; no other limits were 

applied.  

Search results were qualitatively screened independently by two authors based on titles, 

abstracts, keywords and study approaches. Articles were retained based on the following inclusion 

criteria: (a) original research article; (b) use of quantitative or mixed-methods to quantify the  



Int. J. Environ. Res. Public Health 2020, 17, 4371 3 of 30 

 

Table 1. Search terms used to access publications concerning urban trees and human health. 

Database Search Terms 

Used in All 

Searches 

AND/OR(tree, trees, treed, sapling*, seedling*, wooded, canop*), OR(urban*, suburban*, 

cities, city, town*, neighbourhood*, neighborhood*, metropol*, borough*), OR(human*, 

person*, people*, man, men?, wom?n, child*, infan*, toddler*, newborn*, neonat*, baby, 

babies, adolecen*, teenage*, preteen*, preadolescen*, premenarch*, pre menarch*, adult*, 

elderly, seniors), OR(health, epidemiology, quality of life), limit to English language) 

 Additional Search Terms 

Embase 

OR(urban area, urban population, city planning), OR(general aspects of diseases, mental 

disease, physical disease, mortality risk, epidemiological monitoring, epidemiological data, 

genotoxicity, genetic damage, mutagenic activity, mutagenicity, postnatal development, 

toxicity, biological functions, environmental health, environmental stress,  

hospital admission) 

Ovid 

Medline 

OR(urban population, city planning, environmental design, urban renewal), OR(mental 

disorders, epidemiological monitoring, growth and development, hospitalization) 

PsycINFO 

OR(urban planning, urban environments), OR(community health, health attitudes, health 

behavior, health complaints, health disparities, public health services, well being, 

international classification of diseases, mental disorders, psychodiagnosis, environmental 

psychology, ecological psychology, death and dying, life satisfaction, facility admission, 

hospitalization, psychiatric hospital admission, health care seeking behavior) 

PubMed 
OR(urban population, city planning, environment design, urban renewal), OR(mental 

disorders, epidemiological monitoring, growth and development, hospitalization) 

Legend: * indicates truncated term to access word derivatives; ? indicates wildcard to  

access spelling variations for term. 

 

 

Figure 1. Search and inclusion process for a scoping review of urban trees and human health. 
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associations between urban trees and human health; (c) with “human health” referring broadly to 

illness, disease, symptoms, and wellness pathways such as improved physical and mental health 

conditions, healthy behaviors, and known environmental health risks (e.g., air quality, heat, 

ultraviolet radiation (UVR) exposure, and noise); (d) tree exposure measures (i.e., subjective and 

objective) or an explicit reference to trees in the findings; (e) with “trees” expressed as streetscapes, 

single trees, canopy cover, trees in a park, forested natural areas, and photos or videos of trees and 

landscapes. Note that studies using measures of vegetation cover (such as normalized difference 

vegetation index (NDVI)) were only included if results specified tree-associated outcomes; (f) with 

“urban” expressed as a study conducted in urban settings and/or comprised of urban populations; 

and g) all potential human beneficiary populations (i.e., age, gender, cultural background, and socio-

economic status).  

Studies that implied health outcomes but did not specifically include evaluation of health 

consequences were excluded. For example, studies on the relationship between urban trees and air 

quality that measured or modeled air pollution levels but did not include measures of human 

response or explicitly call out the health implications of the pollution levels, were excluded. After all 

articles were independently screened, the lists were compared and disagreements about inclusion or 

exclusion were resolved through discussion and consensus by three authors. The qualitative 

screening reduced the article count to 243. As expected for scoping reviews, we conducted multiple 

structured searches for relevant literature [35]. The screening revealed notable omission of articles 

from the environmental sciences. The database that supports the Green Cities: Good Health web site 

at the University of Washington was subsequently searched, adding another 91 articles. After again 

screening for duplicates and content relevance, the collection totaled 215 articles, all published prior 

to 1 March, 2018. 

2.2. Quality Assessment 

We then conducted a science quality assessment using a modified version of the Effective Public 

Health Practice Project Quality Assessment Tool [38], a public health research assessment tool for 

quantitative studies. Collected articles originated from multiple disciplines, including public health, 

social sciences, neuroscience, and environmental sciences, and encompassed many types of study 

designs, ranging from experimental to cross-sectional studies. We therefore modified the tool with 

the aim of broadening its applicability and focused on five components: (a) study design, (b) sample 

selection, (c) confounds, (d) data collection method, and (e) analyses. Each paper received a score of 

either: 1 (strong), 2 (moderate), or 3 (weak) for each component, and a global rating: strong (no weak 

ratings), moderate (one weak rating), or weak (two or more weak ratings). 

The quality assessment was conducted independently by two authors and disagreements about 

scores were resolved through discussion and consensus. Inter-rater reliability for the global ratings 

was assessed using Cohen’s Kappa and was found to be satisfactory (κ = 0.929, p < 0.0001). Only 

studies that received a strong global rating (i.e., no weak component ratings) were retained. Sixteen 

articles were excluded, leaving 199 articles—for a total of 201 studies (as two papers reported multiple 

studies)—for subsequent analysis. 

2.3. Thematic Analysis 

To synthesize the resulting diverse literature into a coherent narrative, we adopted the 

conceptual framework published by Markevych et al. [39], after considering multiple existing nature 

and health frameworks. The intentionally comprehensive framework by Markevych et al. was 

developed during a transdisciplinary expert workshop, with a particular focus on potential 

underlying biopsychosocial pathways linking green space to health. The domains reflect, but also 

expand on, prior empirical foundations. Each of the three domains imply ways to modify 

environments to support adaptation and promote health. The first, Reducing Harm, considers the 

role of vegetation in mitigating the conditions that can compromise health, and includes concerns of 

exposure to air pollution, noise, and heat. The second, Restoring Capacities, describes how nature 

experiences are a resource that promotes improved psychological and physiological functioning, 
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including cognitive attention restoration, and stress recovery. The last domain, Building Capacities, 

describes nature experience pathways that facilitate multiple conditions of wellness for both 

individuals and communities, such as encouraging physical activity and providing settings for social 

cohesion. Sorting of articles into these domains was conducted by one author and confirmed by two 

others. 

3. Results—Study Attributes 

3.1. Study Locations 

Of the 201 studies, 39% were based in North America, with 67 studies undertaken in the United 

States, 9 in Canada, and 1 in Mexico. About one third were conducted in Asia, including Japan (17% 

of the entire collection), South Korea (7%), China (4%), and Taiwan (3%). Another 25 %of studies were 

based in Europe including Spain, the United Kingdom, Sweden, Germany, Portugal, and France. The 

remaining studies were based in Australia (3%), and South America (1%). No study was based in 

Africa, and one study did not specify a location. 

3.2. Study Participants 

The full range of the human life span was represented, as 13% of studies focused on young adults 

and 13% on children. Adults were the primary age group studied (71% of studies), with 3% focusing 

on older adults. Studies of all-male participants (8%) were more frequent than all-female (3%). Forest 

bathing experiments were prominent among studies based in Asia, and commonly included young 

adult-male samples. Forty percent of studies involved participants with pre-existing medical 

conditions. Controlling for socio-economic factors was common among cross-sectional studies. 

However, few studies included a detailed analysis of how urban trees impact specific sub-

populations (e.g., race/ethnicity, socio-economic status, or other factors of health risk). 

3.3. Outcomes Measures 

Various human response measures were used in the studies (with some designs using more than 

one): (a) psychological tests, including questionnaires and cognitive assessments of stress, job 

satisfaction, and mental acuity (29%); (b) physiological measures such as heart rate, cortisol, 

adrenalin, and glucose levels (27%); (c) self-reported symptoms of illness and allergies (14%); (d) 

modelling of human health impacts related to heat and air quality (each 5%) using primary and 

secondary data; (e) actual air quality using primary and secondary data (45%); (f) hospitalization and 

medical records (7%); (g) medication usage based on drug prescription/sales data (3%); and (h) 

neurological measures such as functional Magnetic Resonance Imaging (fMRI) scans (3%). Additional 

measures, each representing less than 2% of the collection were: (i) syndromic surveillance records 

such as ambulance calls and emergency room visits; (j) therapy effectiveness, such as Cognitive 

Behavioral Therapy; and (k) measures of participant-experienced ultraviolet radiation. 

3.4. Tree Exposures 

The 201 studies characterized exposure to urban trees and forests in various ways, with some 

studies using multiple independent variables. Tree exposure was measured both objectively (e.g., 

using satellite imagery, other remote sensing, and geographic information systems), and subjectively 

(e.g., surveys). Tree presence was also characterized based on quantity (e.g., density, proximity), as 

well as quality (e.g., well/not maintained). Specific tree measures included: (a) experience or a visit 

within a forest or woodland (e.g., walking, climbing, social activity, therapy) (27%); (b) canopy cover 

(16%); (c) individual/clusters of trees (e.g., street trees, schoolyard trees) (14%); (d) associated 

measures such as pollen, moss, and tree loss to emerald ash borer (EAB) (18%); (e) viewing 

images/simulations of trees/landscapes (8%); (f) forest/woodland/land cover using satellite sensors 

(such as NDVI), LiDAR and other remote sensing technologies (7%); (g) experiencing trees in a park, 

open space or natural area (4%); and (h) view of trees/forest through a window (1%). 
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3.5. Study Designs 

A variety of study designs were observed (Table 2). Experimental studies (28% of the study 

collection) used both objective and self-report measures, and involved forest visits, tree views, or 

viewing simulations (e.g., videos or images of trees) as response stimulus or interventions. Sample 

sizes ranged from 8 to 625 participants. Within subjects, crossover studies of forest versus built 

environments were the most commonly used design among experimental studies. Natural 

experiments (13%) used situational exposures and changes, such as loss of tree canopy from the EAB, 

to analyze changes in health outcomes. We classified observational studies into two groups: (a) 

longitudinal cohort or case-control (6%), and (b) cross-sectional studies (34%). Potential confounders 

addressed in such studies included data about prior conditions (such as asthma hospitalizations or 

chronic disease morbidity), demographic data derived from local or national census programs (such 

as income or poverty level, ethnicity, and population density) and physical environment attributes 

(such as renter occupied housing or land use type). The remaining studies utilized modelling (12%), 

or time series designs (7%). Modelling studies were limited to those that explicitly present 

environmental data or monitoring in association with health outcomes, often using regulatory or 

public health benchmarks, such as air particle concentrations or thermal comfort guidelines. 

4. Results—Health Outcomes 

Scoping reviews are as comprehensive, but much broader, than systematic reviews. Their utility 

is in the synthesis and categorization of the extent of existing research evidence in a given field in 

terms of focus, features, and volume [40]. Following the quality assessment, remaining studies were 

sorted across the three domains of the Markevych et al. framework [39]. Findings were further sorted 

into thematic subdomains, as introduced in Table 2. 

4.1. Reducing Harm 

4.1.1. Air Pollutants and Respiratory Condition 

Of the 14 total studies in this theme, 12 explored the role of urban trees and forests in reducing 

the harmful health effects of air pollution, including PM2.5, PM10, NO2, O3, SO2, cadmium, and 

benzopyrene. Studies in this subdomain were classified as either cross-sectional or modelling studies; 

no experimental, natural or quasi-experimental, longitudinal, cohort, and time series studies related 

to air pollutants or respiratory response were found. For the eight modelling studies, the health 

outcomes were all positive, such as reduced mortality (e.g., [41,42]), lower incidence of respiratory 

problems (e.g., [43–45]), and associated cost savings [46].  

Two modelling studies assessed the amount of air pollutants removed/intercepted by trees and 

compared them to established air quality and health standards [47,48]. In the cross-sectional studies, 

several positive outcomes and a few neutral findings were reported. Positive outcomes included: 

lower prevalence of lung cancer associated with green space covered with trees within residential 

areas [49]; lower prevalence of asthma among children associated with greater street tree density [50]; 

and reduced asthma hospitalization associated with tree density during periods with high ambient 

pollutant concentrations [51]. Neutral findings included: no significant association between street 

tree density and asthma hospitalization among children [50]; and no significant association between 

tree density and asthma hospitalization during periods with lower ambient pollutant concentrations 

[51]. Of note, however, is a study by Lovasi et al. [52], which found that the prevalence of asthma 

among children did not appear to be related to tree canopy coverage, yet in some cases increased tree 

canopy coverage was positively associated with increased risks of asthma.  
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Table 2. Summary of studies in urban trees and human health scoping review, sorted by health outcomes domains and study design. (narrative provides details of 

thematic analysis; citations and references are in Supplementary Material, Table S1). 

Domain/Subdomain Study Count Experiment 
Natural/Quasi-

Experiment 

Longitudinal/ 

Cohort 

Cross  

Sectional 
Modelling Time Series 

4.1. Reducing Harm 82       

4.1.1 Air Pollutants and Respiratory 

Condition 
14    ◐◐◐ 

  
  
  

4.1.2 Tree Pollen and VOCs 40 ◐ ◐  

◐◐◐◐◐ 

◐◐◐◐◐ 

◐◐◐◐ 
 

 
◐◐◐◐ 
 
 

4.1.3 Ultraviolet Radiation  5     ◐◐  

4.1.4 Excess Heat and Thermal Comfort 17     
 

◐ 
 

4.1.5 Crime 6   ◐  ◐   

4.2. Restoring Capacities 63       

4.2.1 Cognition and Attention Restoration 13 
 

◐◐ 
◐     

4.2.2 Mental Health, Anxiety and Mood 15 
 

 ◐◐ 
  ◐◐   

4.2.3 Psychophysiological Stress 25 

 
 
  

◐◐◐◐ 

 ◐    

4.2.4 Clinical Outcomes 10  ◐ ◐     

4.3. Building Capacities 56       

4.3.1 Birth Outcomes 4   ◐◐◐    

4.3.2 Immune System 6 
 

      

4.3.3 Active Living 19     

 
  

◐◐◐◐◐  
  

4.3.4 Weight Status 8    
 
   

4.3.5 Cardiovascular Function 16 
 

◐◐ 
◐  ◐◐   

4.3.6 Social Cohesion 3       

Total Studies 201 57 26 12 69 24 13 

Legend: Each circle represents one study -  = positive outcome, ◐ = mixed and/or insignificant outcome,  = negative outcome. 



Int. J. Environ. Res. Public Health 2020, 17, 4371 8 of 30 

 

Some studies indicated distinctive effects across vegetation types such as green space, gardens, 

trees, lawns, and bushes [49,51]. For example, Alcock et al. found that when ambient pollutant 

concentrations were lower, green space and gardens (but not trees) were associated with reductions 

in asthma hospitalization [51]. Whereas when ambient pollutant concentrations were higher, trees 

(but not green space and gardens) were associated with reductions in asthma hospitalization. Overall, 

urban trees and forests appear to remove a variety of air pollutants, which may in turn reduce some 

of the negative health outcomes associated with air pollution, although the magnitude of this benefit 

varies under different circumstances. 

4.1.2. Tree Pollen and Volatile Organic Compounds (VOCs) 

We found 40 studies that evaluated tree pollen and VOCs emitted by trees, and their potential 

adverse effects on health such as the exacerbation of allergy, asthma, and rhinitis symptoms, and 

related behavior such as suicidal self-directed violence [53]. A range of study designs were employed 

with cross-sectional approaches being the most prevalent, followed by time series, 

longitudinal/cohort, modelling, and experimental studies (Table 2). Most studies found that higher 

pollen concentrations are associated with allergy exacerbation, which may lead to increased anti-

allergy drug consumption [54–57] or hospital visits/admissions [58–62]. However, several studies 

noted that adverse health outcomes are not predicted solely by pollen concentrations as biophysical 

factors such as temperature, humidity, and ambient concentrations of air pollutants can produce 

synergies (e.g., [57,62–66]), and there is variable response associated with a person’s age [67]. 

Several time series studies found that pollen allergy prevalence is rising over time (e.g., [57,64]). 

Furthermore, while the pollen season typically occurs two to three months a year, climate change 

may lead to higher pollen concentrations and a longer pollen season (e.g., [68]). However, not all tree 

pollen has the same allergy-inducing potential; across various geographies some tree species were 

found to induce greater levels of pollen sensitization than others (e.g., [63,69–76]). For instance, olive 

and silver birch trees in Spain, and alder and Japanese cedar in China were found to have high 

allergenicity properties. Nonetheless, tree pollen has been found to cause fewer symptoms for some 

allergy sufferers than other types of aeroallergens such as indoor house dust mites, and other types 

of plant pollen such as grass and weed pollen (e.g., [71,77–80]). Allergy symptoms can also be 

exacerbated by co-sensitivity to tree pollen and other types of allergens (such as grass pollen; e.g., 

[81,82]).  

Two studies focused on the health impacts of VOCs [83,84], which are emitted naturally by trees. 

VOCs are an air quality concern because they are precursors to the formation of ozone [13,32]. Yet 

the effects of VOCs are not always negative, as one study found that smelling VOCs derived from 

Cedrus deodara can lead to increased relaxation and blood oxygenation with improvements to the 

respiratory or circulatory system, and decreased blood pressure [83]. Overall, tree pollen and VOCs 

have been associated with negative health outcomes, but these effects are not consistent across all 

tree species or urban living conditions, which suggests that these harmful effects can be reduced 

through tree selection and management practices. 

4.1.3. Ultraviolet Radiation (UVR) 

Five studies investigated aspects of UVR exposure, a major risk factor for most skin cancers. 

Studies included the levels of sun exposure on children in schoolyards [85,86], solar radiation 

variability within different tree canopy structures [87], and personal solar erythemal UV exposure in 

tree shade [88,89]. Studies in this subdomain were classified as either natural/quasi-experimental or 

modelling studies (Table 2). Sun exposure was quantified using either dosimeters for measuring 

accumulated doses of UVR [90], or sensors for measuring irradiance.  

In general, the studies found that trees can reduce exposure to UVR, particularly bigger trees 

with a lower fraction of free sky (or sky view). However, studies also noted that visible shade is not 

the best indicator of UVR protection, as trees revealing a significant fraction of free sky may not 

provide adequate shade protection against UVB rays [87,89]. Other factors affecting the degree of 
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protection provided by shade include individual behaviors (e.g., outdoor physical activity levels, 

clothing type) and the reflectivity of surrounding surfaces. 

4.1.4. Excess Heat and Thermal Comfort 

There is strong evidence that trees reduce air and surface temperatures [91], but relatively few 

studies have explored the associated consequences for people’s health. We found a total of 17 studies 

investigating the association between urban trees and excess heat and thermal comfort. Within this 

subset, three studies focused on the relationship between trees and heat-related morbidity and 

mortality using longitudinal/cohort or modelling study designs. These studies found that: trees 

represent a risk-mitigating factor for heatstroke [92]; tree canopy cover was negatively correlated 

with heat-related ambulance calls during extreme heat events [93]; and increased vegetative cover 

was found to help offset projected increases in heat-related mortality for heat wave conditions in 2050 

by 40 to 99% across three U.S. metropolitan regions [94]. Across this small group of studies, increased 

tree and vegetative cover were found to be beneficial in reducing the negative health effects of 

extreme heat. 

The remaining 14 studies focused on thermal comfort using natural/quasi-experimental or 

modelling study designs (Table 2). Thermal comfort is typically quantified using various thermal 

indices such as changes in skin temperature (e.g., [95,96]), Physiologically Equivalent Temperature 

(PET) (e.g., [97–100]), the Universal Thermal Climate Index (UTCI) (e.g., [101,102]), and perceived 

thermal comfort (e.g., [95,98,103]). Among these 14 studies, PET, which expresses level of heat stress, 

was found to be the most commonly used index. Across these studies, actual and perceived thermal 

comfort were correlated. Many of these studies included field measurements of air temperature, 

humidity, wind speed, and other parameters, but rarely involved human subjects. Instead, they relied 

on established benchmarks of thermal conditions and human response. Overall, trees were found to 

help reduce the risks of heat-related morbidity and mortality and improve thermal comfort in 

outdoor spaces. 

4.1.5. Crime 

We found six studies that focused on the relationship between trees and crime—a social, rather 

than environmental, source of harm. Studies within this subdomain were classified as either 

natural/quasi-experimental or cross-sectional (Table 2). These included studies of crime rates for both 

violent (e.g., murder, rape, robbery, and assault) and property crimes (e.g., burglary, theft, and arson) 

[104,105]. Generally, positive outcomes were associated with the presence of trees. Extensive tree 

mortality within neighborhoods, due to the EAB, was associated with increases in some types of 

crime in Cincinnati, U.S. [106]. In Philadelphia, U.S., the presence of tree cover was associated with 

reduced gun assaults [107], especially for young individuals in low-income urban areas. Troy et al. 

found that trees located on public property had a 40% greater crime reduction impact compared to 

trees on private property in Baltimore, U.S. [108]. There were some mixed findings; Donovan and 

Prestemon found that smaller, view-obstructing trees are associated with increased crime, while 

larger trees were associated with reduced crime in Portland, U.S. [109]. Overall, findings indicate that 

trees may reduce the incidence of various types of crime and possible influencing factors include the 

size, location, and health status of the trees. 

4.2. Restoring Capacities 

4.2.1. Cognition and Attention Restoration 

Research about the role of nature as a setting that supports cognition and attention restoration 

dates to the early 1990s [110]. Twelve studies considered the contribution of urban trees to mentally 

restorative experiences, either explicitly or as a substantial landscape element. All study designs were 

experiments or natural experiments. An additional study using fMRI scans (rather than the prevailing 

use of self-reported data) showed that forest settings prompted brain area activations related to 

involuntary attention [111], a theoretical precursor of cognitive restoration. 
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In the early 2000s, multiple studies optimized a natural experiment condition of randomized 

resident assignments within a Chicago public housing complex. Adult residents having nearby trees 

and lawns versus paved outdoor surfaces showed better attentional functioning and life management 

effectiveness [112] and reported less household aggression and violence [113]. Girls exhibited higher 

self-discipline scores (including concentration, impulse inhibition, and delay of gratification), but 

there were no effects for boys [114]. 

Randomized experiments of adults have explored the combined effect of physical activity in 

nature, finding that: cognitive function and mood state improved [115]; 55-minute walks enhanced 

cognitive performance [116]; and short sessions (15 minutes) of ‘forest bathing’ produced enhanced 

subjective feelings of vigor, recovery, and vitality [117]. However, not all findings were consistent. 

Perkins et al. compared the effects of 20-minute winter walks on a wooded trail, in a residential area, 

or in a parking lot, finding no difference in participants’ cognitive functioning; yet physical activity 

in all settings generated better short-term memory, as well as reduced fatigue, tension, anger, and 

depression [118]. 

Five studies examined specific features of restorative environments. Regarding evolutionary 

theory of how people engage with environments [119], Gatersleben et al. found that restorative 

natural environments had high levels of prospect and low levels of refuge traits [120]. For children, 

seasonal changes in tree foliage enhanced the perceived restorative quality of schoolyards [121]. 

Performance on attentional tests were improved when adults experienced streetscapes with trees, 

particularly when subjects were made more aware of the trees [122]. Similarly, Gathright et al. found 

that awareness of trees enhanced health benefits [123]. 

4.2.2. Mental Health, Anxiety, and Mood 

Out of the 15 studies that examined the effects of trees on mental health, anxiety, and mood, 12 

studies used experiments or quasi-experiments, and three used cross-sectional designs. Several 

studies explored active and passive experiences of trees and nature on mental health, combining 

physiological and validated self-report measures. Within the shinrin-yoku (forest bathing) research 

(see Section 4.2.3), Morita et al. found that depression decreased and liveliness increased with forest 

immersion, with greater effects for subjects having higher initial stress levels [124]; exposure to forest 

settings produced lower measures of anxiety, depression, anger, confusion, and fatigue [125]; and for 

women, forest walking increased happiness more than walking in a gymnasium, with meditative 

walking in the forest being the most effective [126]. 

Two studies used neurophysiological measures to assess brain state. Near-infrared spectroscopy 

(NIRS) of adults revealed a more relaxed brain state, and lower self-reported “anger and hostility” 

and “total mood disturbance” for forest views [127]. MRI scans of adult city dwellers living close to 

a forest displayed an amygdala structure associated with better capacity to cope with stress [128]. 

These results align with findings from other studies that have used self-report data, which is the more 

common approach within this subdomain. 

Five studies explored more specific contexts (e.g., workplaces and schools) and/or populations 

(e.g., children, adolescents, and tree climbers), primarily using self-report measures. A cross-sectional 

study found that having more forests and larger forest size in U.S. urban areas was associated with 

fewer days of mental health complaints [129]. Knowledge workers reported greater mental well-

being improvements when having workplace views of trees and woodlands compared to time spent 

in open outdoor spaces [130]. Kim et al. found that larger and more treed areas within a neighborhood 

were positively correlated with Hispanic 4th and 5th graders’ reported health-related quality of life 

[131]. Studying adolescents from across a behavioral spectrum, Roe et al. found greater positive 

changes in energy, stress, hedonic tone, and anger at a forest school as compared to a conventional 

school, with a poor behavior group benefiting the most [132]. Participants in the TreeHab climbing 

therapy program showed decreased anger, fatigue and confusion, and increased vitality compared 

to recreational tree climbing, though results differed by tree species climbed and climber gender 

[133]. 
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Many of the studies in this subdomain compared nature versus built environment stimulus to 

assess impact on mental health. However, three studies explored finer distinctions and considered 

exposure dosage. Electroencephalogram (EEG) response to simulations of forest tree stand density 

(30 to 100%) indicated more frontal brain activity when exposed to greater stand density, while lower 

stand density (from 30 to 50%) produced less brain activity, a more relaxed state, as well as reduced 

tension and fatigue [134]. Greater species richness may support mental well-being more than natural 

environments low in biodiversity, and even natural environments with low biodiversity may induce 

more positive affect than built environments [135]. Nonetheless, results are inconsistent. In a study 

comparing well-being effects of walks in wild and tended urban forests, changes in affect did not 

differ between treatment conditions, so physical activity may have been a stronger influence [136]. 

4.2.3. Psychophysiological Stress 

Twenty-five studies focused on the impacts of urban trees on psychophysiological stress. 

Twenty were experimental or natural/quasi-experimental, and five were observational designs. A 

central topic was shinrin-yoku (forest bathing), which emerged in the early 2000s, primarily in Japan 

and South Korea. Small sample experiments have compared health outcomes from experiences of 

forest versus urban settings, finding reduced prefrontal cerebral activity [137], lower salivary cortisol 

levels (an indicator of stress) [138], and suppressed sympathetic nervous activity (i.e., fight or flight 

response) accompanied by enhanced parasympathetic nervous activity (i.e., rest and digest state) 

[139]. A three-day field experiment reported positive results on a similar regime of measures [140] 

and was confirmed by a replicate study [141]. 

Following promising results for small-scale studies, forest bathing investigators expanded 

sampling and methods, utilizing combined physiological testing and self-reported mood states. Most 

studies compared subjects’ experiences in forest versus city areas, finding that nature influenced 

stress recovery and provided physiological benefits [142–144].  

Some forest bathing studies delved deeper by focusing on specific subject traits such as age (e.g., 

[145,146]), personality types [147], and baseline health condition [148]. For age, findings include 

significant indications of stress reduction in young adults [145], middle-aged adults and the elderly 

[146], as well as elderly people with hypertension [149]. Toda et al. found that, for older men, walking 

in a woodland was a physical stressor compared to sitting in one’s office, but self-reported mental 

stress and mood improved following a forest walk [150]. Yet forest effects are not consistent; relaxed 

sitting with and without forest views generated similar positive cardiovascular outcomes in one 

study [151]. 

Four correlational studies within this subdomain have assessed larger study populations. Using 

state health survey data, Beyer et al. found that a 25% increase in neighborhood tree canopy was 

associated with a 1-point decrease on the 5-point Depression Anxiety and Stress Scales (DASS) 

instrument [152]. In another study, Egorov et al. found that reduced allostatic load, indicated by 

multiple biomarkers, was related to trees and other vegetation land cover in proximity to homes 

[153]. Survey studies have also found an inverse relationship between the total number of trees on a 

block and reported stress [154], and positive stress responses among visitors to broad leaved forests 

[155]. 

Nature dose-response is an important, practical concern [156], but results concerning urban trees 

are not yet conclusive. Using images with a specified range of street tree cover, one experimental 

study found that women displayed no stress recovery, but an inverted U-shaped dose response curve 

was observed for men, with slower rates of recovery for tree cover densities above 34% [157]. A 

similar study which used videos of variable street tree density (2 to 62%) found a linear association 

between density and self-reported stress recovery—irrespective of gender and age [158].  

Studies have also examined varied tree and forest conditions in relation to stress recovery. 

Comparing visits to built-up versus green spaces, urban park and woodland settings had similar 

positive influences on cortisol measures, but perceived restorative effects were higher in a woodland 

[159]. Hauru et al. studied views of urban settings from inside a forest, finding higher perceived 

restorativeness when urban settings were less visible [160]. Applying prospect/refuge theory, more 
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positive affects (e.g., attentiveness) and reduced negative affects (e.g., anger, aggression, and fear) 

were found in high prospect-low refuge environments [120]. This suggests that the spatial 

arrangements and configurations of trees, in addition to general nature content, can influence health 

response [161]. When comparing outcomes between urban streetscape and various urban forest 

settings—parkland, tended woodland, and wild woods—the urban forest settings promoted stronger 

stress recovery but no differences were found across the natural settings [162]. 

Workplaces are another study focus within this subdomain. Shin et al. found that self-reported 

job satisfaction and stress were improved with window views of forests [163]. A forest therapy 

program to address worker stress and burnout in healthcare and counseling service industries 

showed positive stress outcomes, particularly for clients who made more frequent visits [164]. 

However, questions remain about the distinct salutogenic effects of nature experience. A study of 

outdoor forest activity versus indoor handicraft interventions for workplace participants with high 

stress levels found that the well-being of all study participants improved, indicating that positive 

effects can also be found in non-natural environments that promote creative engagement [165]. 

4.2.4. Clinical Outcomes 

A total of 10 studies investigated the impact of exposure to trees or forests on the health of 

populations with clinical diagnoses. The majority used experimental study designs (Table 2) with a 

few case-control, longitudinal, and cross-sectional designs. 

Studies of clinical populations with diagnosed mental health conditions found mainly positive 

results. For example, patients with major depression disorder [166,167] and exhaustion disorder [168] 

who participated in forest-based therapy showed improved outcomes including lower symptoms of 

depression, remission rates, mood and higher perceived restorativeness. In other studies, anti-

depressant prescription rates were significantly lower with greater street tree density within London, 

England boroughs [169], and higher measures of tree canopy were associated with a lower prevalence 

of autism in California public school districts [170]. Mixed results were found following forest-based 

therapy for children with attention deficit hyperactivity disorder (ADHD) [171] and patients with 

exhaustion syndrome [172]. 

Three studies investigated physiological conditions in relation to exposure to urban trees and all 

found positive results. Significantly lower blood glucose, HbA1c, and blood pressure were noted in 

a longitudinal study of non-insulin dependent diabetic patients who participated in forest walks on 

nine occasions over a six-year time span [173]. An influential case-control study observed that 

patients with views of a tree through their window (versus view of a brick wall) had significantly 

shorter recovery times following gallbladder surgery [174]. Lastly, in all prefectures of Japan, the 

percentage of forest coverage was significantly inversely associated with the standardized mortality 

ratios for lung, breast, and uterine cancers in females, and prostate, kidney, and colon cancers in 

males after adjusting for smoking and socio-economic status [175]. This small group of studies found 

that exposure to trees among clinical populations produced mainly positive responses. 

4.3. Building Capacities 

4.3.1. Birth Outcomes 

Four studies investigated the association between trees and birth outcomes, of which three were 

longitudinal/cohort studies, and one cross-sectional study (Table 2). Various types of tree settings 

were investigated including street trees, tree cover, road-adjacent trees, or a combination thereof. 

Two studies reported positive findings including lower odds of preterm births in areas with more 

street trees [176], and a reduced number of small for gestational age (SGA) births with an increase in 

tree canopy cover (but not for preterm birth) [177]. One study found mixed results, with significant 

findings between tree cover and term birth weight in Austin, Texas, but not Portland, Oregon [178]. 

Positive effects have been found across varying buffers around the home, including 50 m [177], 100 

m, 200 m, and 500 m [176]; and 1000 m [178]. Yet one study of major roads found no clear relationship 

between road-adjacent trees and the odds of low term birth weight and SGA births [179]. 
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Potential pathways linking trees and birth outcomes include improvements to expectant 

mothers’ psychological health, increased rates of physical and social activity, and reduced exposure 

to air pollution (e.g., [176]). However, given the small number of studies, the relationship between 

trees and birth outcomes in urban areas remains unclear. The varied birth outcomes and types of tree 

settings examined also make it challenging to compare outcomes across studies. Questions remain 

about the importance of trees compared to other factors of influence such as maternal race/ethnicity 

[178]. Given the potential implications of adverse birth outcomes on health in later life stages, the 

relationship between trees and neonatal health warrants further exploration. 

4.3.2. Immune System 

Six studies investigated the relationship between urban trees and immune function, using 

experimental study designs that involve visits to forests. Almost all of these studies were conducted 

by the same investigators across different areas of Japan. The number of subjects in each study ranged 

from 10 to 27. While almost all studies involved males only, one study involved all-females [180], and 

another involved children with gender unspecified [181].  

Findings are consistently positive, indicating increased numbers of Natural Killer (NK) cells and 

NK activity, and reduced pro-inflammatory levels. It was found that increased NK activity can last 

more than seven days after a forest trip [180,182,183]. Among children with asthma or atopic 

dermatitis, Seo et al. found that a short visit to a forest resulted in significant improvements in various 

measures of disease severity and immunological effects [181]. It has been suggested that higher 

concentrations of phytoncides (aromatic VOCs released by trees), which are typically found in forest 

settings may contribute to increased NK activity [184]. Spending time in forest settings, even short 

visits, may promote healthier human immune systems, though underlying pathways are not 

completely understood [185]. 

4.3.3. Active Living 

Of the 19 studies that focused on physical activity, 18 found positive associations with exposure 

to urban trees. Within cross-sectional studies, objectively measured neighborhood tree cover was 

associated with higher levels of: commuting-related walking and cycling among adolescents [186]; 

self-reported recreational walking in adults [187]; levels of play among children [188]; and total free-

time physical activity among students in grades 6 to 8 [189]. Perceptions of neighborhood tree cover 

were positively associated with: total physical activity for adults [190]; active transportation among 

adults with children living at home [191]; rates of recreational walking [192]; and predictive value for 

the longevity of urban senior residents across a five-year study [193]. One study, a natural 

experiment, found a negative association between EAB-induced tree loss and outdoor physical 

activity among adults in affected U.S. states [194]. 

Overall, urban trees appear to be related to increased physical activity across a range of 

populations, study designs, and geographic locations. Yet there were some mixed and negative 

findings, perhaps due to other factors such as culture, walkability, and concerns for safety. For 

instance, no significant association was found between physical activity and percent of neighborhood 

tree cover in adolescents in two German cities [195]. Urban U.S. census tracts with greater tree canopy 

density were associated with lower levels of commuting by walking or cycling [196]. Meanwhile, 

neighborhoods with the least tree coverage were associated with the highest amount of self-reported 

walking per week among middle-aged residents in Brisbane, Australia [197]. 

4.3.4. Weight Status 

All eight studies that considered urban trees and weight status were cross-sectional, and all 

found positive results. Weight status was most frequently characterized using Body Mass Index 

(BMI) thresholds for adults and percentiles for children [198]. Several studies found positive 

associations at the individual level between certain measures of tree exposure and reduced BMI, 

including: more tree patches and well-connected urban forests and trees [199]; greater proximity to 
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forests [200]; and greater density of street trees [201,202]. At the population level, greater 

neighborhood tree canopy cover was associated with a lower prevalence of overweight and obese 

populations [203] and a 12% lower prevalence of obesity in preschool children [204]. BMI was found 

to be significantly lower in U.S. counties with higher per capita of forestland compared to rangeland, 

pastureland, or cropland [205]; and a higher percentage of normal BMI was found in U.S. 

Metropolitan Statistical Areas (MSAs) with greater forest edge density [206]. The reviewed articles 

provide evidence supporting a negative association between exposure to urban trees and unhealthy 

weight. 

4.3.5. Cardiovascular Function 

Of the 16 articles exploring the impact of urban trees on cardiovascular health, most were 

experimental, with some cross-sectional or natural experiments (Table 2). Seven articles found that 

forest bathing improved cardiovascular function and related health outcomes among healthy 

participants, including: increased parasympathetic activity and reduced heart rate [207]; lower blood 

pressure [208,209]; and lower heart rate, diastolic blood pressure, and sympathetic activity [210]. 

Among participants with cardiovascular disease (CVD), exposure to forest settings was found to 

improve symptoms of hypertension more than urban settings, including: lower blood pressure and 

homocysteine (a CVD-related pathological factor) in elderly adults [211], and improved 

parasympathetic activity and reduced heart rate among middle-aged men [148,209]. However, 

another study of adults with hypertension found no significant differences in blood pressure between 

an experimental group receiving forest-based therapy and a control group [212]. 

Studies also investigated the association between urban trees and cardiovascular system-related 

outcomes. Mortality from CVD was found to be higher in EAB-infested U.S. states [213]. Sudden 

unexpected cardiac death was less likely in counties with a higher percentage of forest in North 

Carolina, U.S. [214]. Incidence of CVD was also found to be lower in neighborhoods with higher 

street tree density [215], and higher among women in EAB-infected U.S. counties [216]. However, no 

significant association was found between stress-related illnesses (i.e., heart attack and high blood 

pressure) and percent of tree canopy cover in MSAs in Texas, U.S. [217]. The majority of articles in 

this subdomain provide evidence for the positive influences of urban trees on cardiovascular health. 

4.3.6. Social Cohesion 

Three articles investigated the relationship between urban trees and social cohesion, a measure 

of the degree to which residents feel a sense of connectedness, belonging, and trust [218]. In a study 

by Sullivan et al., more adults were observed performing social versus non-social activities in green 

versus barren neighborhood spaces in an inner-city public housing complex in Chicago, U.S. [219]. 

Another study in Baltimore, U.S., found that self-reported ratings of neighborhood social capital, 

connection, and association among individuals were positively associated with tree canopy cover, 

but not with two other measures of green space (i.e., access to recreational lands such as yards, and 

parks) [220]. Finally, Piff et al. found that participants staring up at large trees for one minute were 

significantly more likely to perform prosocial helping behaviors than a control group who stared up 

at large buildings [221]. While our collection of articles on trees and social cohesion is small, they 

show positive impacts of urban trees on the social well-being of individuals and communities. 

5. Discussion 

This scoping review reveals a large and rapidly growing body of research on urban trees and 

human health that is characterized by diverse study designs, pathways to health, and health 

outcomes. Organized under three overarching domains and subsequent research themes (or 

subdomains), our review provides readers with the opportunity to rapidly access research that is 

most relevant to their purposes (e.g., active living, weight status, or mental health). It also provides a 

transdisciplinary foundation for future research to help build more consistent and defensible 
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knowledge that can inform approaches to improving community health, urban greening 

interventions, nature-based therapy, and clinical treatment.  

As a high-level synthesis of the extent and diversity of this body of literature, Figure 2 presents 

an illustrative summary of the multiple relationships between urban trees and health, as well as the 

growth in range and volume of urban tree and health research over the past few decades 

(Supplementary Material Table S1: Citations and References for Table 2). The flows passing through 

each column illustrates the connections between tree settings (first column: Tree Setting), the 

biopsychosocial pathways identified by Markevych et al. (second column: Domain) [39], the 

subdomains that we interpreted based on the study results (third column: Research Theme), and the 

publication period by decade (fourth column: Year). 

 

Figure 2. Scoping review of city trees and human health—synthesis of 201 studies. 

The studies examined exposure to multiple types of tree settings or influences (first column), 

including: individual trees, trees as pollen sources, trees in a park, canopy or land cover, forest 

immersion, and images or simulations of trees. ‘Other’ refers to VOCs, moss on trees, and tree loss 

due to EAB infestation. Across all three domains (second column), studies have incorporated the full 

range of tree settings. That being said, some types of tree settings appear more frequently in certain 

subdomains than in others. For example, forest immersion is associated predominantly with the 

Restoring Capacities domain, where a majority of the experimental studies involved visits to forested 

areas. Meanwhile, canopy/land cover—an approach to tree measurement that is often employed in 

epidemiological studies at larger geographical scales—was used more often in studies that fall under 

the Reducing Harm and Building Capacities domains. 

Most of the 201 studies are classified within the Reducing Harm domain (82 studies), followed 

by Restoring Capacities (63), and Building Capacities (56), each containing multiple subdomains 

(third column). It should be noted that the volume of studies that represent any particular domain or 

subdomain does not equate to current strength of evidence. As shown in Table 2, study findings can 

vary in terms of positive, negative, or mixed and/or statistically insignificant outcomes. For themes 

with a greater number of studies (e.g., Active Living), there might be a greater mix of positive, 

negative, and mixed findings, which may be partly due to the diversity of research questions and 

methods used by researchers. We have observed studies focusing on different aspects of active living 

(e.g., walking, cycling, and levels of play among children), for example, or using different measures 

of physical activity (e.g., self-reported or measured data) and tree exposure (e.g., perceived or 

measured). This diversity has contributed to many unique insights, but also makes it challenging to 

aggregate overall findings into conclusive statements about strength of evidence. 
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Finally, Figure 2 also depicts the growth in research from the 1980s to the present time (fourth 

column). Three studies were published between 1980 and 1989, and five studies were published 

between 1990 and 1999. Almost all studies, or 96%, were published since 2000, with many published 

in 2010 or later (71% of 201 studies). Interest in some research topics has expanded faster than others 

over the same period. For example, research on stress reduction expanded from 7 studies published 

between 2000 and 2009 to 19 studies in 2010 to 2018, while clinical outcomes studies only increased 

from 3 to 5 during the same period. 

5.1. Review Limitations 

The purpose of this scoping review is to convey the full range of relationships between urban 

trees and human health based on existing quantitative research. It may not capture all current 

research as we limited the review to quantitative studies and English language publications. Future 

reviews that include qualitative studies and those in other languages could potentially expand 

understanding of health outcomes and generate further insights about causal relationships. 

As in every review, it is possible that additional articles could have been retrieved by extension 

of search terms. Nevertheless, our search terms had a broad scope and it is unlikely the outcome of 

our search would have changed substantially by adding any additional terms. 

We conducted a quality assessment on each article and included studies that have diverse yet 

robust methodological approaches in this scoping review. However, we did not assess the strength 

of evidence for each research theme as this is beyond the purpose of a typical scoping review, and  

more appropriate for systematic reviews with a smaller body of literature focused on more directly 

aligned research questions [33]. 

5.2. Research Needs 

We found that the research on urban trees and health has evolved considerably from the 1980s 

to the present day, building on the momentum generated by promising findings from earlier studies 

(e.g., [112,139,174]), improvements in technology and data quality, and growing public interest and 

funding opportunities. This body of research covers multiple disciplines including public health, 

environmental health, urban planning, and urban forestry. Within this diversity, researchers have 

employed a diverse range of research questions, hypotheses, and methods that make it challenging 

to compare results. The population and geographic scales of studies were also diverse and not readily 

categorized. 

More consistent research design and methods across studies, and replication, would be 

beneficial to enable cross-comparisons, including meta-analyses to generate more robust and 

conclusive evidence about phenomena and causality [222]. The development of shared research 

protocols or frameworks could also help build consistency across different types of research studies. 

For example, standardizing definitions in three key areas: (a) urban trees and forests, (b) health 

pathways and outcomes, and (c) site-specific characteristics, would facilitate better comparison 

across studies.  

While studies were conducted in cities around the world, they were largely focused in more 

industrialized, temperate climate regions, with a majority located in North America. The 

generalizability of research findings could be enhanced by repeating investigations across multiple 

climate zones, seasons, and settings, all of which can have variable influences on the impact of trees 

on people’s health—a recommendation that echoes Zeng and Dong who called for “complementary 

studies with longer periods, larger-scale surveys and during other seasons” [223] (p. 107).  

Additionally, the experimental and quasi-experimental studies collected for this review had 

small sample sizes. Out of the 57 experimental studies, over two-thirds of them had sample sizes of 

less than 50 participants, and most recruited only all-male subjects and young adults. Future urban 

tree and health research can be strengthened through larger sample sizes as well as better 

representation of residents in a particular location, with greater diversity across different ages, 

gender, and socio-economic conditions. Additional studies concerning other cultural or ethnographic 
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settings or groups would confirm the salience of findings for more varied community or national 

populations.  

We observed that studies typically investigated short-term benefits such as improved blood 

pressure, stress reduction, and cognitive restoration. However, the durability and time-to-reverse of 

these benefits are less clear and would require longitudinal, time series, and other methods to assess 

sustained health outcomes. Future urban tree and health studies could also investigate how the 

duration and intermittence of people’s exposure patterns to trees can impact health outcomes. Other 

studies could explore what the consequences of short-term alleviation of symptoms following tree 

exposure might mean for patients with chronic diseases (such as improved blood pressure and 

cardiovascular function), and whether these short-term benefits could lead to reduced risk of 

developing chronic diseases later in life.  

Given the multiple potential mediating influences on people’s health, future research could 

investigate how aspects of peoples’ nature experiences, such as the health of trees, can influence other 

social determinants of health. For example, Jones found a negative, persistent relationship between 

EAB-infected trees and how people allocate leisure time in nature, which has consequences for 

physical activity [194]. Improving the understanding of the long-term effects of trees on people’s 

health would help strengthen the calls for investment in planting and nurturing trees. 

Finally, future research could help improve understanding about the importance of site-specific 

characteristics on influencing health benefits. For example, Gilchrist et al. found that a different 

vegetation structure (e.g., the smooth ground layer, shrub layer, and canopy layer) can variably 

influence outcomes and suggested that the relationship of buildings to the landscape be considered 

at the outset of planning and design [130]. More detailed measures and reporting of study settings or 

exposure conditions, in addition to beneficiaries’ traits and temporal-spatial conditions, would help 

to better understand nature ‘dosage’ and response [156]. Standardized collection and reporting of 

functional form—such as the tree species, age, height, canopy density, physical location in 

relationship to nearby buildings, upkeep of the neighborhood, and density and size of tree stands—

would also help inform urban forest planning and management to promote positive human health 

effects.  

While extensive discussions are underway about the implications of climate change on 

ecological systems and human health (e.g., [224–227]), we rarely encountered references to climate 

change in the 201 studies. Additional cross-disciplinary research is needed to better understand the 

risks of climate change on both human health and urban forests, including an exploration of how 

rapid environmental changes will affect tree health, and the consequent cascading impacts on human 

health, such as psychophysiological stress and heat-related illnesses and deaths. Such risks also 

highlight the importance of proactive urban forest management practices to secure and expand the 

ecological and health benefits of trees in the context of climate change mitigation and adaptation 

[228]. 

6. Conclusions 

Our findings support the growing public recognition of urban trees as an essential component 

of health-supportive environments (e.g., [229,230]). It is important, however, not to overstate the 

current evidence. For instance, the effects of trees vary by person and may not always be beneficial, 

such as the potential for tree pollen to exacerbate allergy conditions. Additionally, the benefits of 

trees are affected by the health status of trees and forests. For instance, Donovan et al. found that 

EAB-infested trees have been associated with adverse health outcomes [213,216]. Salmond et al. 

found that VOCs are emitted when trees are under stress (e.g., due to drought, heat, and pests) [32]. 

There is variable response to tree shading within streetscape conditions [231] and across winter and 

summer seasons [232]. These site-specific considerations suggest that integrated and proactive design 

and management of urban trees could double as an experimental approach to human health research 

and minimize potential adverse impacts.  

One observation of note is the prevalence of articles emerging from the PubMed search. 

Reactions to pollen, such as allergenicity and asthma, were prominent. Fewer articles highlighting 
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salutogenic benefits of urban trees appeared from the PubMed search, perhaps leading to less 

awareness among public health and medical professionals about the diversity of tree-based health 

determinants.  

Implementing trees as a health intervention in a community is a long-term, even multi-decade, 

investment. Urban forestry and health professionals could work together to better integrate human 

health outcomes into urban forestry best practices more directly by actively translating the full scope 

of science into practice [233]. This could involve increased collaboration between health and 

environmental professionals in developing evidence-based resources such as tree planting guidelines 

that support positive human health outcomes, while considering site-specific characteristics and a 

range of population needs (e.g., to support active living across all ages). Greater collaboration 

between health and environmental professionals in the design process could also achieve the goals 

of co-designing for co-benefits. For example, trees that are planted with the primary goal of 

improving stormwater management could also be configured to optimize a range of additional 

positive health outcomes such as stress reduction and social cohesion [234].  

Overall, we have found that exposure to trees is associated with multiple health benefits. 

Underlying this relationship is the importance of access. Studies have found that there are often 

disparities in distribution of trees in urban areas with greater tree density being found in 

neighborhoods having higher household incomes (e.g., [235,236]), which may in turn exacerbate 

existing socio-demographic health inequities. For example, people who may not have sufficient 

resources to operate air conditioning in their homes may also live in neighborhoods that lack the 

cooling benefits of urban trees, thereby compounding their vulnerability to extreme heat events [236]. 

Adopting a health equity lens in the planning and management of urban forests can ensure a more 

equitable distribution of trees across towns and cities and provide residents with access to the health 

benefits of trees.  

Identifying who is vulnerable to different health outcomes and where they live and work can 

also inform the development of more targeted strategies or interventions (e.g., urban greening and 

nature-based therapy) to maximize health benefits. When community members are involved in the 

development of these urban greening programs, additional benefits can be gained, such as increased 

civic engagement and social interaction [237]. Most towns and cities face many competing funding 

priorities. Our review suggests that urban trees may be a low-cost policy intervention that addresses 

multiple environmental and human health co-benefits. Investing in the proactive planning and 

management of urban trees can pay human well-being and economic dividends. 
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