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Abstract: Human-gait-phase-recognition is an important technology in the field of exoskeleton
robot control and medical rehabilitation. Inertial sensors with accelerometers and gyroscopes are
easy to wear, inexpensive and have great potential for analyzing gait dynamics. However, current
deep-learning methods extract spatial and temporal features in isolation—while ignoring the inherent
correlation in high-dimensional spaces—which limits the accuracy of a single model. This paper
proposes an effective hybrid deep-learning framework based on the fusion of multiple spatiotemporal
networks (FMS-Net), which is used to detect asynchronous phases from IMU signals. More specifically,
it first uses a gait-information acquisition system to collect IMU sensor data fixed on the lower leg.
Through data preprocessing, the framework constructs a spatial feature extractor with CNN module
and a temporal feature extractor, combined with LSTM module. Finally, a skip-connection structure
and the two-layer fully connected layer fusion module are used to achieve the final gait recognition.
Experimental results show that this method has better identification accuracy than other comparative
methods with the macro-F1 reaching 96.7%.

Keywords: gait-phase-recognition; FMS-Net; spatiotemporal networks; IMU signals;
skip-connection structure

1. Introduction

In recent years, robotic exoskeleton has become an emerging technology in medical, living,
industrial and military applications. Among them, lower extremity exoskeleton has important
research value in the medical field, its main potential is to enhance the patient’s ability to move in
rehabilitation therapy, and enhance physical function after receiving treatment, and hope to improve
their quality of life as much as possible. Among them, gait recognition technology is an important
technical guarantee for the robot to process a large amount of instantaneous time series data, which is
one of the most important features to display the posture and phase of each specific patient [1].
Therefore, there is an urgent need to accurately judge the gait phase of the human lower extremity
state change in order to enhance the consistency and coordination of human-computer interaction [2].
In medical disease-diagnosis and rehabilitation research, effective analysis of gait phases has also
achieved remarkable results, which has been used in clinical treatment plans for stroke, Parkinson’s
disease, brain trauma and other diseases [3,4]. Note that traditional walking analysis is expressed by
detecting different gait phases based on motion information (e.g., angle, speed or acceleration) of knees,
ankles and hips while walking or running. For example, Fino et al. [5] used abnormal gait phases to
detect concussion or mild head injury. Mathieu et al. [6] proposed a novel adaptive dynamic time
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warping based on Hidden Markov to analyze gait for identifying persons with physical disabilities
and provide them with appropriate alerts by monitoring walking. In order to overcome the problem of
poor adaptive ability caused by pure mechanical structure, some researchers have begun to recognize
the phase of the lower limbs of the human body through programming and algorithms to achieve
the purpose of controlling wearable auxiliary devices [7]. For instance, Ruiming [8] mentioned gait
subphase recognition of high-quality is significant to the control of lower-limb powered exoskeletons.

According to previous studies, gait-phase-recognition methods can generally be divided into
two categories. The first type is the threshold method, which determines the corresponding phase
information by setting the corresponding threshold [1]. However, this type of algorithm is too rough
and difficult to deal with complicated situations. In recent years, with the development of artificial
intelligence technology, many researchers began to input different types of sensor data into deep
learning models to achieve the purpose of detecting gait phase. For example, Mukherjee, etc. [9]
proposed a deep-learning method using machine vision to detect pedestrian gait phase in real time.
However, the camera is susceptible to interference from the external environment when capturing
images. Moreover, this method is susceptible to the limitation of the use space. Ryu et al. [10]
proposed an SVM method to process the electromyography (EMG) data collected during gait to identify
the four sub-gait phases of pedestrians, thereby improving the above-mentioned problem of being
easily interfered by the environment. However, commercial sEMG acquisition equipment is bulky,
expensive and extremely inconvenient to wear, and it is easily affected by sweat stains during the
collection of EMG data. In order to overcome the shortcomings of the above-mentioned technology,
Ding et al. [11] proposed using the proportion-based fuzzy algorithm to process foot pressure signals
to realize gait-phase-recognition, but the plantar pressure is also more susceptible to the wearer’s
weight, shoe size and load. What is worse, the failure rate of pressure sensors is also relatively high,
making it difficult to be widely applied in reality.

In recent years, many researchers have begun to study the use of inertial sensors (IMU) to
achieve gait-phase-recognition methods. This is mainly because more abundant information of human
movement can be obtained by using a small number of IMUs. Moreover, the IMUs are non-invasively
installed on relevant parts of the body, which will not cause harm and too much inconvenience to the
wearer [12]. Simultaneously—in the process of collecting IMU information—the signal is difficult to
be interfered by the wearer’s own weight, load, and sweat on the wearing part. Compared with the
detection method of plantar pressure or muscle electrical signal, the IMU detection method has obvious
advantages. In addition, the cost of inertial sensors is relatively low [13], and the inertial information
of certain parts of the body during the movement of the human body also has periodic characteristics.
Many researchers place the IMU on the instep, calf and thigh. For example, Yan et al. [1] designed
a voting-weighted integrated deep learning algorithm, and by inputting acceleration signals on the
instep, calf and thigh into the model, successfully detected four subphases of pedestrians, and achieved
very good results. Identify the effect. Zhen et al. [14] combined LSTM and DNN models to design an
LSTM–DNN deep learning algorithm, and also detected four sub-phases of pedestrians by accelerating
the acceleration signals on the instep, calf and thigh. Of course, using more IMUs can collect more
phase information, but the requirements on the equipment will be very high, and more input signals
will also cause a greater calculation burden on the recognition algorithm model. In addition, too
many sensors will have a greater impact on the wearer. If there are multiple external sensor signal
inputs, the model should first process the signals simultaneously before processing to ensure that the
input signals are sent at the same time, which is undoubtedly very difficult for researchers. Therefore,
the researchers gradually shifted their attention to the scheme of using a single IMU to detect the gait
phase. For example, Manchola et al. [15] positioned the inertial sensor on the instep, used hidden
Markov model as the phase recognition model, and obtained better results than the threshold-based
algorithm. In view of the previous research, this article considers placing the IMU in the position of
the lower leg, through continuous optimization algorithm model to obtain excellent recognition effect.
Gohar et al. [16] Using the inertial information of the chest to realize the identification of personnel.
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It is important that this sensor application has little impact on personal activities and daily life, and is
easy to wear, which is helpful for clinicians to judge early intervention, treatment effects and patient
rehabilitation progress.

Although we have always been interested in IMU technology, there is still a lack of reality for actual
research. This study uses multiple wearable sensors for verification to monitor walking status and gait
stability in actual clinical practice. In a multi-IMU-based method, a sufficiently intelligent and diverse
gait phase pattern recognition model with multi-sensor data preprocessing analysis and information
fusion technology is the most critical problem to be solved for gait of the lower limbs to detect various
wearable motion systems or rehabilitation Exoskeleton. To achieve this goal, some statistical learning
or machine learning methods are used to calculate the spatiotemporal and biomechanical parameters
of walking gait. The mainstream solution is to build a variety of shallow structural models, including
hidden Markov models [15], Boosting [17] and support vector machines (SVM) [18]. These models
are carefully analyzed based on physical and statistical analysis by selecting the threshold parameter.
The raw data or processed data are used to divide the gait stage. These methods construct feature
engineering to adaptively learn model parameters and obtain hidden relationships and information
between historical data. However, gait phase detection is still a challenging problem because the high
sampling frequency data collected from sensors always contains the complex nonlinear relationship
with multiple components makes it impossible to apply traditional models to analyze sensory data
and distinguish walking information in real time.

The emerging deep learning technology has excellent ability to detect complex time relationships.
Thanks to breakthroughs in the design and training of model architectures with complex
structures composed of multiple processing layers or nonlinear transformations, unprecedented
improvements have penetrated many aspects of intelligence, including large-scale visual classification,
natural language processing and time series forecasting. Such rapid research progress has also attracted
the attention of relevant researchers and companies to build software and hardware to identify the
gait stage of snapshots in real life. In particular, convolutional neural networks (CNN) and recurrent
neural networks (RNN) have been used to extract the motion characteristics of time-series time data
obtained from IMU’s accelerometers and gyroscopes. For example, Omid [19] and others designed a
deep convolutional neural network (DCNN) to extract discriminative features from the 2D extended
gait cycle and jointly optimize the recognition model in a discriminant manner to complete accurate
recognition of the gait phase. Due to their ability to process two-dimensional signals (such as images),
most CNNs must convert time-series inertial data into energy images or visually segmented data.
This does help to utilize the characteristics of spatial relationships in the gait-phase-recognition,
but when processing sequential time series data captured by the IMU sensor, it will obviously ignore
the time law and periodic changes, which is often difficult to measure the continuous motion trajectory
and extract The quality characteristics of the lower extremities are unrestricted. Therefore, RNN and
its improved models including long short-term memory (LSTM) network and gated recurrent unit
(GRU) network believe that the current output layer captures a high degree of nonlinearity and time
through the time recording sequence and the parameters of the previous hidden layer. Sequential
relationship-IMU serial data have attracted wide attention of researchers. Gao et al. [20] used RNN
to accurately collect acceleration data to complete the control of the prosthesis. Khokhlova et al. [21]
used the LSTM model to classify Normal and Pathologic gait. In addition, CNN can also be combined
with traditional machine learning methods, such as SVM [22]. In [22], CNN is used as a feature
extractor, and then the extracted features are classified by SVM. At the same time, researchers have
found that CNNs tend to ignore temporal continuity when processing only a single time stamp of
data [23]. Therefore, it is more common to introduce RNN. The time information of the recording
order is passed to the current hidden layer by passing the previous hidden layer state. The LSTM
network [24] and GRU network [25] are all RNN. [26] recommended to combine LSTM and CNN
for high-dimensional feature representation and character detection. In this way, CNN is usually
used as a feature extractor, and then LSTM is used to further process the gesture features extracted
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by CNN [27]. Gait-phase-recognition was introduced in the comparison of DNN, CNN and RNN in
many application scenarios [28].

CNN can use convolutional feature maps to process inertial data, while RNN can also process
them as time series. However, research on how to combine these two types of neural networks
to achieve better gait-phase-recognition is still lacking. LSTM can mine the timing information in
the information better, while CNN can mine the spatial information in the signal better. Therefore,
this article combines LSTM and CNN to identify the gait phase. However, if the two are simply
combined together, the gradient disappears because the network is too deep, so this paper designed
the skip-connection structure and batch normalization layer to alleviate this phenomenon.

Existing research and results show that the FMS-Net model proposed in this paper is effective
in gait-phase-recognition. However, most of the data for these works were collected under road
conditions under specific walking conditions. Identifying gait phases under complex conditions is still
challenging and requires further research.

The rest of the study is organized as follows: The second section introduces data sources and
preprocessing techniques and then introduces the gait-phase-recognition model constructed in this
paper in detail. Third, evaluate the experimental results of the model through related comparison
methods and conduct related discussions. Finally, Section 4 presents our conclusions.

2. Materials and Methods

2.1. Data Collection

In terms of experimental data, 16 volunteers with body weight ranging from 46 kg to 70 kg and
height ranging from 158 cm to 177 cm were selected to collect IMU data. The height and weight
distribution of the subjects is shown in Figure 1. The subject’s legs or feet did not have any diseases
that could affect normal walking.
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Figure 1. Information about volunteers participating in this experiment.

With the advancement of sensor processing technology and algorithms, this study selected one
IMU modules to collect the corresponding inertial information. Input data in this work only include
Lower leg calf acceleration signals. The hardware characteristics required for signal acquisition will
be introduced next. To collect lower limb calf acceleration signals, the JY901 nine-axis angle sensor
(the type is Uxin Electronics Co., Ltd., Gansu, China) with Kalman filtering algorithm is used in this
paper, as shown in Figure 2. There are two communication modes that can be selected: serial port
communication and I2C communication. In order to cooperate with the microcontroller, serial port
communication is selected for this topic. The TX, RX, VCC and GND pins corresponding to the serial
communication are used to connect to the microcontroller. The microcontroller selected is STM32C8T6,
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which is a 32-bit microcontroller based on the ARM Cortex-M core STM32 series, the program memory
capacity is 64 KB, the required voltage is 2 V–3.6 V, and the operating temperature is −40 ◦C–85 ◦C;
the operating frequency is 72 MHz.
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Figure 2. Schematic diagram of inertial sensors (IMU) connected to single chip microcomputer.

The inertial sensor module is placed outside the lower leg. The arrangement of acceleration
sensors for calf monitoring lower limb movement is shown in Figure 3. The system flow of the entire
experimental process contains the data collection, processing and application parts. The acceleration
resolution of the nine-axis inertial sensor module (MPU9250) used in the experiment is 0.0005 g,
the stability of the attitude measurement is 0.05◦, and the transmission baud rate is set to 115,200 bps.
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Figure 3. Human gait-information acquisition system.

During the experiment, all participants were required to walk normally on the same treadmill at a
speed of 0.78 m/s, 1.0 m/s and 1.25 m/s for at least 120 s. All participants were asked to normally walk
3 times at each speed. All participants have the same sports environment in the same state. In order to
prevent participants from affecting the later movement gait due to continuous exercise, the experiment
requires all participants to rest for 2 min after completing the designated walking test each time to
alleviate the possible impact of exercise fatigue on walking gait. In addition, when collecting data,
it should be noted that we only start saving data after the running speed of the treadmill reaches the
set speed. When the treadmill starts to slow down, we stop collecting data and complete the data
collection process.
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2.2. Data Preprocessing

Each input vector contains three acceleration data along the x, y and z directions. Let two
sequences of gait data

→
a be the input of the network, which is expressed as:

ax = (ax,1, ax,2, . . . , ax,T) (1)

ay = (ay,1, ay,2, . . . , ay,T) (2)

ax = (az,1, az,2, . . . , az,T) (3)
→
a = (ax, ay, az) (4)

where ax, ay and az respectively represent the inertial acceleration in the X, Y and Z directions, and T is
the length of the input sequence.

According to the above experimental settings, we can obtain the acceleration data curves in the X,
Y and Z directions collected by the inertial sensor, as shown in Figure 4.
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Figure 4. Acceleration data collected under the calf. a_x, a_y and a_z represent the acceleration data in
the X-axis, Y-axis and Z-axis directions collected by the experimental equipment, respectively.

The human walking process is a cyclical movement, the complete gait cycle is from one-sided
heel landing-to-landing again [29]. Although, two phase model recognition systems are sufficient to
control active knee orthosis [30]. However, the most widespread method currently relies on four-phase
identification technology [31], which are represented as Flat Foot (FF), Heel-Off (HO), Heel Strike
(HS) and Swing phase (SW). This gait four-phase detection model has been successfully used to drive
ankle-foot orthosis robots [32].

According to previous studies and the scientific nature of the gait phase division, this article also
divides the walking cycle into HS, FF, HO and SW phases. During normal walking, the acceleration
signal on the calf has a strong periodicity. Studies have shown that the swing phase segment accounts
for about 40% of the entire gait cycle and the standing phase accounts for about 60% of the entire
gait cycle. According to the previous analysis [1], the schematic diagram of gait cycle division is
shown in Figure 5.
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2.3. FMS-Net Neural Network

The next step is to design an algorithm model to identify the relevant human gait phase through
the input acceleration time series vector signal. Since the input acceleration signal is a time series
signal, its current signal will have a strong correlation with the previously generated signal, so we need
a network model that can mine the internal time series information. Among them, thanks to the design
of the hidden layer, the LSTM network can handle timing signals very well. However, LSTM can
only mine the timing information in the signal, and it is easy to ignore the spatial information of
the signal. Therefore, this paper proposes the fusion of spatiotemporal neural networks. In order to
alleviate the gradient disappearing phenomenon in the transmission process, this paper introduces
batch normalization (batch norm) layer and skip connection structure. This design can reduce the use
of the dropout layer, which can further improve the performance of the network. The entire structure
is showed in Figure 6.

As shown in Figure 6, the FMS-Net model for gait-phase-recognition is composed of CNN,
LSTM and multiple fully connected layers. CNN can extract important spatial features in the data
and reduce the number of network parameters through parameter sharing. In addition, LSTM, as a
feature extractor, can obtain the corresponding timing features well. Then, they are followed by two
complete fully connected layers, which are used as classifiers. What we need to emphasize is that the
“skip-connection structure” proposed in this paper is that the input vector of the first fully connected
layer is the superposition of the output vector of the LSTM and the input vector of the entire network,
not the addition. The expression is shown in Equation (5).

In addition, in order to prevent the problem of gradient disappearance, batch normalization is
used in this paper. Its expression is shown in Figure 6. Learning a deep network is a complicated
process. As long as the input layer of the network changes slightly, the network parameters of the
subsequent layers will be accumulated and amplified. Once the distribution of input data in a layer
of the deep network changes, then this layer of network needs to adapt to learning this new data
distribution. During the training process, in order to improve the situation where the data distribution
of the middle layer of the network changes, Ioffe et al. [33] introduced batch normalization. The process
of batch normalization is shown in Equations (6)–(9). In order for our network to learn to recover the
feature distribution that the original network would learn, this learnable reconstruction parameter γ, β
is introduced.
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[
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∧
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BNγ,β(xi)← γ
∧
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where xFC1, olstm, x, m, µBN and σBN represent the input vector of the first Fully connected layer in
the FMS-Net network, the output vector of the LSTM network, the input vector of the FMS-Net
network, batch size, batch mean and batch variance, respectively and γ, β are learnable reconstruction
parameters.

In this paper, LSTM and CNN is selected as the combined classifier, and some of the network
parameters are shown in Table 1. In addition, num_units in the LSTM network is 36, forget_bias is 0.7
and Activation is Relu. The focus of research is the design of the neural network structure. CNN can
share weight information through convolution kernel and reduce network parameters. The latter’s
LSTM network structure can enhance the learning effect of the network. Finally, specify the final
learning rate and set it to 0.05. Finally, the neural network outputs the classification results through the
Softmax regression layer.

The FMS-Net algorithm is a model for multiple classification tasks. However, the output of the
neural network does not conform to the probability distribution, so it is necessary to convert the output
of the neural network into a probability distribution through the Softmax function. The expression of
the Softmax function is shown in Equation (10). Then calculate the classification result by Equation (11).
Finally, the cross-entropy loss of the model is calculated by Equation (12) and the model parameters
are optimized by the gradient descent method.
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softmax(qi) =
eq′i

n∑
i=1

eq′i
(10)

O = max(q) (11)

l = −
4∑

i=1

yi log(qi) (12)

where, yi denotes the indicative variable (0 or 1), if the category is the same as the sample category,
it is 1, otherwise it is 0; qi denotes the predicted probability that the observation sample belongs to
category i.

Table 1. Parameter setting of FMS-Net structure.

CNN FC_Layer

Kernel_Size Activation Filters Stride Feature_Map Num_Units Activation

4 × 4 relu 20 1 2 × 2 × 20 160 leaky_relu
1 × 1 relu 5 1 1 × 1 × 5 60 leaky_relu
1 × 1 relu 1 1 1 × 1 × 1 4 leaky_relu

For each input vector x, the predicted output of the network is q = (q0, q1, q2, q3).
After Equation (10), the value of qi is between 0 and 1, and the larger the value, the greater the
probability that x belongs to the real label. Based on the output qi, we can get the class label as O.

As can be seen from Equation (12) that, the cross entropy is a positive number. When the
probability value of the true label qi in the vector q is smaller, larger difference between qi and yi
will result in a larger cross-entropy value. This property will help the convergence of the network in
the training.

In order to avoid overfitting, we chose 70% of the sample set for training and 30% of the samples
for testing. After using the same training set to train different models 10,000 times, use the same test
set to test the trained model, and record the classification accuracy, macro-F value and macro- of each
classifier after testing the classification model with the test machine accuracy (AUC). Then evaluate the
performance of all models based on these three indicators.

3. Results and Discussion

3.1. Evaluation Methods

In order to prove the classification performance of the proposed FMS-Net network, we need to
draw the corresponding conclusion through corresponding indicators. As we all know, Accuracy
is a good comprehensive indicator, which is widely used in evaluation indicators. However, in the
classification, it is difficult to characterize the performance of a certain model simply by relying on
Accuracy and we must choose other indicators to comprehensively characterize the classification
performance of a certain model. In classification problems, commonly used classification performance
indicators also include precision, recall and F1. Among them, precision and recall are widely used
in the field of information retrieval and statistical classification. These two indicators are used to
evaluate the quality of the model results. precision is used to measure the accuracy of the retrieval
system. recall is used to measure the recall of the retrieval system. Of course, we hope precision and
recall results are as high as possible. Generally speaking, if both precision and recall are high, we can
conclude that this model performs well in this classification task. We hope that there is an indicator
that can represent the performance of the model in both precision and recall. F1 comprehensively
considers the influence of P and R and can comprehensively measure P and R. However, this study
studies a multiclassification task and cannot directly use F1. The most direct method is to calculate
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macro-F1 [34]. Accuracy reflects the ratio of correctly classified samples to total samples. The above
evaluation factors are shown in Equations (13)–(18), where TP, TN, FP and FN represent true positive,
true negative, false positive and false negative, respectively.

In multi-classification tasks, we also have an indicator that is often used to measure classification
performance. The more famous is the area under the ROC. The ROC chart was first publicly proposed
by Spackman (1989) when performing machine learning and he proved the important role of ROC curve
in model evaluation. [35]. In recent years, it was widely used in the fields of machine learning and deep
learning. People also realize that simple classification accuracy cannot measure the comprehensive
performance and performance of the designed model [29]. We can make the conclusions more reliable
by comparing AUC.

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

Pi =
TP

TP + FP
(14)

Ri =
TP

TP + FN
(15)

macro− P =
1
n

n∑
i=1

Pi (16)

macro−R =
1
n

n∑
i=1

Ri (17)

macro− F1 =
2×macro− P×macro−R

macro− P + macro−R
(18)

3.2. Results

As shown in Figures 7–9, the confusion matrix provides the performance of visual gait sub-phase
recognition. The vertical axis of the matrix represents the actual classification category of the test
and the horizontal axis represents the corresponding predicted classification category. In addition,
in the confusion matrix diagram, “0.0” represents the “HS” phase, “1.0” represents the “FF” phase,
“2.0” represents the “HO” phase and “3.0” represents the “SW” phase. These nine matrices are the
average recognition results of all subjects under different walking pace conditions. The value in
the main diagonal is the proportion of samples correctly classified. As shown in Figure 7, all the
confusion matrices, except for the HS phase, perform quite well. The HS phase is mostly incorrectly
classified as the FF and SW phases. In order to verify the effectiveness of the proposed recognition
model, we implemented two other gait-phase-recognition methods, namely LSTM and LSTM + CNN.
The corresponding confusion matrix is shown in Figures 8 and 9. It can be drawn from Figures 8 and 9
that the LSTM and LSTM + CNN models cannot identify the HS phase and directly categorize most of
the HS phases into adjacent FF phases by mistake. The LSTM and LSTM + CNN models have achieved
good recognition effects on other phases.

From the confusion matrix, we can get Table 2. As shown in Table 2, the macro-F1 of the four
groups (HS, FF, HO, SW) of the FSM-Net model differ greatly. When the pace is 0.78 m/s, F1 is,
respectively It is 63.7%, 96.4%, 97.6% and 98.8%; when the pace is 1.0 m/s, macro-F1 is 76.6%, 97.6%,
98.2% and 99.0%; when the pace is 1.25 m/s, macro-F1 is It is 54.9%, 97.1%, 97.4% and 98.1%. It can
be seen from the above data that FF, HO and SW perform best and obtain a better recognition effect,
exceeding 96%). The performance of HS phase recognition is the worst. As for the recognition accuracy
of each sub-stage, the SW phase performed best, with the maximum value being the group (99.0%)
at a pace of 1.0 m/s. The recognition effect of FF phase and HO phase is also quite good. Obviously,
the performance of the HS phase recognition effect is the worst, none of the macro-F1 values reaches 80%
and the macro-F1 with the lowest HS phase recognition is only 54.9%. For the LSTM and LSTM + CNN
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models, macro-F1 for HS phase is 0, showing the worst recognition effect for HS phase; for SW phase
recognition, the minimum value of macro-F1 is 97% and 98%.Int. J. Environ. Res. Public Health 2020, 17, x  12 of 19 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Confusion matrix obtained from LSTM classifier at three different paces: 0.78 m/s (a), 1.0 
m/s (b) and 1.25 m/s class (c). 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Confusion matrix obtained from LSTM+CNN classifier at three different paces: 0.78 m/s (a), 
1.0 m/s (b) and 1.25 m/s class (c). 

(a) 
 

(b) 
 

(c) 

Figure 9. Confusion matrix obtained from FMS-Net classifier at three different paces: 0.78 m/s (a), 1.0 
m/s (b) and 1.25 m/s class (c). 

From the confusion matrix, we can get Table 2. As shown in Table 2, the macro-F1 of the four 
groups (HS, FF, HO, SW) of the FSM-Net model differ greatly. When the pace is 0.78 m/s, F1 is, 
respectively It is 63.7%, 96.4%, 97.6% and 98.8%; when the pace is 1.0 m/s, macro-F1 is 76.6%, 97.6%, 
98.2% and 99.0%; when the pace is 1.25 m/s, macro-F1 is It is 54.9%, 97.1%, 97.4% and 98.1%. It can be 
seen from the above data that FF, HO and SW perform best and obtain a better recognition effect, 
exceeding 96%). The performance of HS phase recognition is the worst. As for the recognition 
accuracy of each sub-stage, the SW phase performed best, with the maximum value being the group 
(99.0%) at a pace of 1.0 m/s. The recognition effect of FF phase and HO phase is also quite good. 
Obviously, the performance of the HS phase recognition effect is the worst, none of the macro-F1 
values reaches 80% and the macro-F1 with the lowest HS phase recognition is only 54.9%. For the 
LSTM and LSTM + CNN models, macro-F1 for HS phase is 0, showing the worst recognition effect 
for HS phase; for SW phase recognition, the minimum value of macro-F1 is 97% and 98%. 

Table 2. Summary of classification performance of different models at unsynchronized speed. 

Figure 7. Confusion matrix obtained from LSTM classifier at three different paces: 0.78 m/s (a), 1.0 m/s
(b) and 1.25 m/s class (c).

Int. J. Environ. Res. Public Health 2020, 17, x  12 of 19 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Confusion matrix obtained from LSTM classifier at three different paces: 0.78 m/s (a), 1.0 
m/s (b) and 1.25 m/s class (c). 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Confusion matrix obtained from LSTM+CNN classifier at three different paces: 0.78 m/s (a), 
1.0 m/s (b) and 1.25 m/s class (c). 

(a) 
 

(b) 
 

(c) 

Figure 9. Confusion matrix obtained from FMS-Net classifier at three different paces: 0.78 m/s (a), 1.0 
m/s (b) and 1.25 m/s class (c). 

From the confusion matrix, we can get Table 2. As shown in Table 2, the macro-F1 of the four 
groups (HS, FF, HO, SW) of the FSM-Net model differ greatly. When the pace is 0.78 m/s, F1 is, 
respectively It is 63.7%, 96.4%, 97.6% and 98.8%; when the pace is 1.0 m/s, macro-F1 is 76.6%, 97.6%, 
98.2% and 99.0%; when the pace is 1.25 m/s, macro-F1 is It is 54.9%, 97.1%, 97.4% and 98.1%. It can be 
seen from the above data that FF, HO and SW perform best and obtain a better recognition effect, 
exceeding 96%). The performance of HS phase recognition is the worst. As for the recognition 
accuracy of each sub-stage, the SW phase performed best, with the maximum value being the group 
(99.0%) at a pace of 1.0 m/s. The recognition effect of FF phase and HO phase is also quite good. 
Obviously, the performance of the HS phase recognition effect is the worst, none of the macro-F1 
values reaches 80% and the macro-F1 with the lowest HS phase recognition is only 54.9%. For the 
LSTM and LSTM + CNN models, macro-F1 for HS phase is 0, showing the worst recognition effect 
for HS phase; for SW phase recognition, the minimum value of macro-F1 is 97% and 98%. 

Table 2. Summary of classification performance of different models at unsynchronized speed. 

Figure 8. Confusion matrix obtained from LSTM+CNN classifier at three different paces: 0.78 m/s (a),
1.0 m/s (b) and 1.25 m/s class (c).

Int. J. Environ. Res. Public Health 2020, 17, x  12 of 19 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Confusion matrix obtained from LSTM classifier at three different paces: 0.78 m/s (a), 1.0 
m/s (b) and 1.25 m/s class (c). 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Confusion matrix obtained from LSTM+CNN classifier at three different paces: 0.78 m/s (a), 
1.0 m/s (b) and 1.25 m/s class (c). 

(a) 
 

(b) 
 

(c) 

Figure 9. Confusion matrix obtained from FMS-Net classifier at three different paces: 0.78 m/s (a), 1.0 
m/s (b) and 1.25 m/s class (c). 

From the confusion matrix, we can get Table 2. As shown in Table 2, the macro-F1 of the four 
groups (HS, FF, HO, SW) of the FSM-Net model differ greatly. When the pace is 0.78 m/s, F1 is, 
respectively It is 63.7%, 96.4%, 97.6% and 98.8%; when the pace is 1.0 m/s, macro-F1 is 76.6%, 97.6%, 
98.2% and 99.0%; when the pace is 1.25 m/s, macro-F1 is It is 54.9%, 97.1%, 97.4% and 98.1%. It can be 
seen from the above data that FF, HO and SW perform best and obtain a better recognition effect, 
exceeding 96%). The performance of HS phase recognition is the worst. As for the recognition 
accuracy of each sub-stage, the SW phase performed best, with the maximum value being the group 
(99.0%) at a pace of 1.0 m/s. The recognition effect of FF phase and HO phase is also quite good. 
Obviously, the performance of the HS phase recognition effect is the worst, none of the macro-F1 
values reaches 80% and the macro-F1 with the lowest HS phase recognition is only 54.9%. For the 
LSTM and LSTM + CNN models, macro-F1 for HS phase is 0, showing the worst recognition effect 
for HS phase; for SW phase recognition, the minimum value of macro-F1 is 97% and 98%. 

Table 2. Summary of classification performance of different models at unsynchronized speed. 

Figure 9. Confusion matrix obtained from FMS-Net classifier at three different paces: 0.78 m/s (a),
1.0 m/s (b) and 1.25 m/s class (c).

Table 2. Summary of classification performance of different models at unsynchronized speed.

Model
Speed 0.78 m/s 1.0 m/s 1.25 m/s

Phase HS FF HO SW HS FF HO SW HS FF HO SW

LSTM
Precision (%) 0 89.0 94.6 98.3 0 90.5 95.6 97.8 0 91.8 95.2 96.4

Recall (%) 0 97.9 93.9 97.2 0 98.5 93.4 97.8 0 97.6 92.9 98.0
F1 (%) 0 93.3 94.3 97.8 0 94.3 94.5 97.8 0 94.6 94.0 97.2

LSTM+CNN
Precision (%) 0 91.3 93.8 98.5 0 92.8 97.6 97.9 0 91.9 97.2 98.1

Recall (%) 0 98.2 96.3 97.4 0 99.0 97.3 98.9 0 99.2 95.7 98.7
F1(%) 0 94.6 95.1 98.0 0 95.8 97.4 98.4 0 95.4 96.4 98.4
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Table 2. Cont.

Model
Speed 0.78 m/s 1.0 m/s 1.25 m/s

Phase HS FF HO SW HS FF HO SW HS FF HO SW

Precision (%) 73.8 94.5 98.2 99.2 82.3 96.8 98.5 99.1 82.9 95.6 97.4 97.8
FMS-Net Recall (%) 56.0 98.3 97.0 98.4 71.6 98.4 97.9 98.9 41.0 98.5 97.4 98.3

F1 (%) 63.7 96.4 97.6 98.8 76.6 97.6 98.2 99.0 54.9 97.1 97.4 98.1

We also evaluated the performance of the proposed algorithm model and the other two algorithm
models in terms of ROC curve. The results are shown in Figures 10–12. Through the ROC curve,
we can calculate the corresponding macro-AUC and the additional accuracy and macro-F1 statistics
to Table 3. It should be noted that “NO-skip” in Table 3 means that the “skip connection” structure
is not added to the FMS-Net network. By comparing the FMS-Net network before and after adding
the “skip connection” structure, it can be concluded that the skip connection structure has a certain
improvement effect on the recognition performance of the FMS-Net network. It is also worth noting
that our method obtained a higher macro-F1 value and accuracy, higher than all other groups method.
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Table 3. Summary of classification performance for different training functions.

Pace Training Function
Classification Rate

Accuracy (%) Macro-F1 (%) Macro-AUC

0.78 m/s

LSTM 94.2 71.3 0.89
LSTM+CNN 95.1 71.9 0.89

FMS-Net 96.7 88.9 0.99
NO-skip 96.5 88.0 0.99

1.0 m/s

LSTM 94.7 71.6 0.92
LSTM+CNN 96.0 72.9 0.91

FMS-Net 97.8 92.8 1.0
NO-skip 97.2 91.7 0.99

1.25 m/s

LSTM 94.4 71.4 0.93
LSTM+CNN 95.7 72.5 0.91

FMS-Net 96.8 86.9 0.99
NO-skip 96.6 85.9 0.99

3.3. Discussion

3.3.1. Acceleration System Analysis

Gait analysis provides an opportunity to assess walking behavior. Gait analysis can be used for
various applications, such as rehabilitation, clinical diagnosis and physical activity [36]. The acceleration
signal generated when the human calf is walking on a flat ground is a regular signal, and this information
can be extracted by using the IMU. Although the FMS-Net has shown certain effectiveness in the
detection of gait events, it still needs further optimization in the future. In this study, the IMU needs
to be placed on the designated position of each subject’s calf. However, due to each subject’s height,
weight, gender, walking habits, etc., the sensor cannot be accurately placed at the designated location,
and can only be installed at an approximate designated location, which requires further study.

The IMU used in this article is the JY901 sensor. The JY901 sensor uses Kalman filtering to filter
the collected data better, filter out redundant noise and ensure the quality of the transmitted signal.
In addition, the data output rate of the JY901 sensor is 200 HZ, which can ensure the real time nature of
the later signal transmission and avoid the occurrence of repetitive signals at the signal receiving end.
The measurement range of acceleration is between −16 g and 16 g, and this range can fully meet the
needs of this study. It can be seen by observing Figure 4 that the acceleration data collected by the
experiment is between −1 g and 2 g, which is completely within the measurable range of the JY901
sensor. 2.4-G wireless communication adopted between JY901 sensor and host computer. The signal
collecting terminal is separated from the signal receiving terminal to avoid the signal cable from having
an additional effect on the coordination of the body.

In order to increase the variability of the experiment, this study asked each subject to perform
three different pace experiments on a treadmill and let them walk three times at each different pace.
Although the collected data have certain differences, there is still a big gap from the complex walking
state in reality, and further research is needed.

In reviewing the literature, regarding gait events, the ANN algorithm model was used to achieve
an 82.2% recognition accuracy rate for the IMU under different walking conditions [37]. When using
the IMU to classify the five gait phases, an accuracy of 82% can be achieved [34]. In addition,
gait-phase-recognition is very important for the development of calf assist devices because they are
strongly related to gait events [35]. In order to propose an acceleration data acquisition system that
can be applied to the masses, we tested the recognition effect of the FMS-Net algorithm proposed in
this study on unlearned acceleration signal data. This study found that the proposed FMS-Net can
successfully predict gait events for test set, and the accuracy of phase recognition for HS, FF, HO and
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SW is up to 96%, and based on acceleration signals, detection of HS, FF, HO and SW phase seems to
be reliable.

3.3.2. Gait Phase Detection

The core technology of gait-phase-recognition system is the design of recognition algorithm model.
This paper proposes the FMS-Net and uses it to detect the HS, FF, HO and SW phases. According to the
results obtained in this study, the acceleration signal has relatively high stability when walking on the
ground, which satisfies the research in this study. In this study, the FMS-Net algorithm combines LSTM,
CNN, skip-connection and other structures. The algorithm model has certain complexity. Although
good results were achieved, it should continue to be optimized in the direction of lightweight networks
in the future.

When walking on flat ground, the acceleration signal on the human calf is a typical time-series
signal. LSTM is a classic algorithm model for processing time-series signals and CNN is a typical
algorithm for extracting spatial information from signals. LSTM + CNN directly combines the two,
but it is easy to cause the gradient to disappear as the depth becomes larger. This study takes full
advantage of the advantages of LSTM in processing timing signals and CNN’s convolution operation
in extracting spatial features and uses skip-connection structure and batch normalization to solve the
problem of deep gradient disappearance and design FMS-Net algorithm model. From the results of
Figures 7–9, the three models show good recognition effect on the FF, HO and SW phases, but LSTM
and LSTM + CNN cannot accurately identify HS. Although LSTM + CNN is still unable to identify the
HS phase, it is superior to LSTM in the recognition of the other three phases compared to the LSTM
algorithm. The FMS-Net algorithm by adding skip-connection structure has been further improved
compared with LSTM + CNN. Through Figure 9, we can see that the FMS-Net algorithm has further
improved the phase recognition of HS and can recognize most of the HS phase. Although the FMS-Net
algorithm can identify part of the HS phase, it is still lower than 80%, so further optimization and
improvement are still needed. By observing Figures 10–12, it can be seen that the AUC of the HS phase
of the FMS-Net algorithm is also superior to LSTM and LSTM + CNN. It can be seen from Table 1
that the LSTM and LSTM + CNN recognition of HS phase F1 is 0, while the average F1 of FMS-Net
algorithm for HS phase recognition at three paces is 65.1%, which may be better than HS During the
transmission of phase data, the gradient disappears. It can be seen from Table 2 that the performance
of the three is not much different in accuracy, FMS-Net is the best, LSTM + CNN is the second and
CNN is the worst. However, the performance of macro-F1 is quite different. The average macro-F1
of FMS-Net at three paces is 89.5%, while the average macro-F1 of LSTM + CNN and CNN at three
paces is 72.4% and 71.4%. In terms of AUC, FMS-Net also performs best. As can be seen from Table 3,
the recognition performance of FMS-Net when walking at a speed of 1.0 m/s is the best among the
three. The reason for the result may be that 1.0 m/s is relatively close to the normal walking speed, but
this conclusion still needs to be proved by adding more control groups. In the future, we need to set
more walking speed control experiments to obtain more reliable conclusions.

Even if FMS-Net shows its usefulness in classifying acceleration signals detected by gait events,
other deep-learning methods need to be used for further evaluation. Future work should improve
classification accuracy by improving feature extraction and gait-phase-recognition algorithms. In this
study, it is considered acceptable to install a wearable inertial sensor module only on the lower leg
compared to other wearable sensors. However, in fact, when the subject wears the sensor for a long
time, it may have a potential impact on the subject’s gait, which requires further exploration. In the
future, we will try to use new gait functions (for example, gait dynamic images [38,39]) instead of
neural network input original x, y, z to verify its effect on gait-phase-recognition, which may be one of
the future jobs.
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4. Conclusions

In order to meet the application of gait-phase-recognition technology in the control of lower
extremity dynamic exoskeleton, this study propose a low-cost, easy to implement and efficient
IMU-based gait sub-phase recognition system. First, we constructed a wireless calf acceleration signal
acquisition device. Then, we preprocess the collected data in order to train the classifier for the
subsequent use of the data set. Finally, a novel classifier FMS-Net applying seamlessly combining
LSTM and CNN models by applying the skip-connection structure is established to extract acceleration
signal features and predict gait sub-phase. Experiments and discussions prove that the FMS-Net
method has better classification accuracy with the macro-F1 up to 96%, which is superior to other
integrated algorithm models. The results show that the proposed method can effectively perform
gait-phase-recognition, which lays a solid foundation for the application of gait-phase-recognition
technology in the control of lower extremity dynamic exoskeleton.
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