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Abstract:  Vulnerability mapping reveals areas that are likely to be at greater risk of  

climate-related disasters in the future. Through integration of climate, biophysical, and 

socioeconomic data in an overall vulnerability framework, so-called ñhotspotsò of 

vulnerability can be identified. These maps can be used as an aid to targeting adaptation and 

disaster risk management interventions. This paper reviews vulnerability mapping efforts in 

West Africa conducted under the USAID-funded African and Latin American Resilience to 

Climate Change (ARCC) project. The focus is on the integration of remotely sensed and 

socioeconomic data. Data inputs included a range of sensor data (e.g., MODIS NDVI, 

Landsat, SRTM elevation, DMSP-OLS night-time lights) as well as high-resolution poverty, 

conflict, and infrastructure data. Two basic methods were used, one in which each layer was 

transformed into standardized indicators in an additive approach, and another in which 

remote sensing data were used to contextualize the results of composite indicators. We assess 

the benefits and challenges of data integration, and the lessons learned from these  

mapping exercises. 
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1. Introduction  

A large body of evidence going back more than two decades shows that exposure alone is not sufficient 

for understanding trends in disaster losses, and that social and economic vulnerability are critical 

ingredients [1,2]. West Africa has been identified as one of the regions that is most vulnerable to climate 

change both in terms of exposure to climate hazards [3,4] and social vulnerability [5,6]. Tools such as 

spatial vulnerability assessment are useful for understanding patterns of vulnerability and risk to climate 

change at multiple scales and have been applied in Africa perhaps more than any other region [5ï7]. The 

demand for vulnerability maps among development agencies and governments is increasing as greater 

emphasis is placed on scientifically sound methods for targeting adaptation assistance [8]. 

Mapping is useful because climate variability and extremes, the sensitivity of populations and systems 

to climatic stressors, and adaptive capacities are all spatially differentiated. The interplay of these factors 

produces different patterns of vulnerability. Typically, spatial vulnerability assessment involves data 

integration in which geo-referenced socio-economic and biophysical data, including those derived from 

remote sensing, are combined with climate data to understand patterns of vulnerability and, in turn, inform 

where adaptation may be required. Maps have proven to be useful boundary objects in multi-stakeholder 

discussions, providing a common basis for discussion and for deliberations over adaptation  

planning [9,10]. Maps can help to ground discussions on a solid evidence base, especially in developing 

country contexts where geographic information may not be easily accessible for all stakeholders. 

Spatial data integration and spatial analysis have become standard tools in the toolkit of climate 

change vulnerability assessments. The United Nations Environment Programme (UNEP) Programme of 

Research on Climate Change Vulnerability, Impacts and Adaptation (PROVIA) Research Priorities on 

Vulnerability, Impacts and Adaptation [11] highlights ñmeasuring and mapping vulnerabilityò as a first 

priority for supporting adaptation decision-making. In many cases vulnerability assessment (VA) is 

synonymous with spatial vulnerability assessment, owing in part to an understanding that vulnerability and 

its constituent components exhibit high degrees of spatial and temporal heterogeneity [10]. The purposes 

vary according to the specific study, but spatial VAs are generally intended to identify areas at potentially 

high risk of climate impactsðso-called climate change ñhotspotsò [12]ðand to better understand the 

determinants of vulnerability in order to identify planning and capacity building needs. 

Because of their wall-to-wall coverage, remote sensing data have the potential to fill important data 

gaps in data-poor developing country contexts. The goal of this paper is to illustrate the utility of remote 

sensing data in combination with other data sources, both climatic and socioeconomic, in illuminating 

regions that are vulnerable to climate change. This paper briefly describes the frameworks, data, methods, 

and results for two mapping efforts, one for Mali and the other for Coastal West Africa. Detailed 

presentation of methods, results and uncertainties are provided elsewhere [13,14] (see 

http://community.eldis.org/.5bf8c6aa and http://community.eldis.org/.5c1ec83b); the focus here is on the 

remote sensing data products and the approaches used for data integration. We conclude with a 

discussion on the potential and shortcomings of using remote sensing data as surrogates for other  
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data sources, the benefits and challenges of data integration, and the lessons learned from these  

mapping exercises. 

Vulnerability mapping and the quantification of vulnerability is not without shortcomings, and more 

critical perspectives are provided in a number of other publications [8,10,12,15]. Readers desiring a more 

in depth look at the challenges of vulnerability mapping, including issues around uncertainty, are advised 

to read these publications. We address the limitations of the methods described in this paper in Section 4. 

Despite these caveats, the spatial vulnerability index construction methods described here are widely used 

in the literature and have been found to be useful to policy audiences seeking to better understand the 

factors contributing to vulnerability [5,7,9,10,16]. 

2. Methods and Data 

2.1. Mali Vulnerability Mapping 

As a framework for the Mali vulnerability map, the authors of the report [12] utilized the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) conceptual 

framework, which separates vulnerability to climate stressors into three components: exposure, 

sensitivity, and adaptive capacity [17]. This is a precursor to the more recent IPCC framework, more 

familiar to the natural hazards community, which conceptualizes risk as a function of hazard, exposure 

and (social) vulnerability [18] (see Section 2.3). The approach for Mali was to map the general 

vulnerability of the population rather than to develop separate vulnerability layers for individual systems 

(e.g., ecosystems); sectors (e.g., water or agriculture); or population sub-groups (e.g., pastoralists). 

However, given the high dependence of the majority of the population on subsistence-based agriculture, 

many of the indicators selected had this population in mind. 

We used a spatial index approach, in which raw data values are represented as percentiles. In other 

words, each data layer was transformed to an indicator with a range of 0ï100 (with 100 representing 

most vulnerable). In a few cases we trimmed the tails of the distribution before converting to the 0ï100 

score. Continuous indicators were assessed for skewness. A number of the indicators (especially climate 

variables) exhibited a long right-tail in the distribution, and hence we chose to winsorize (trim the tails) 

at inflection points in the data. We also removed from consideration the thinly settled far north regions, 

which tended to have more extreme values for climate and socioeconomic indicators. The goal was to 

seek a relatively good distribution of scores in the 0ï100 range while grounding decisions in substantive 

considerations of what represents high and low levels of vulnerability.  For example, for market 

accessibility, we decided that any travel times over 36 hours represented an absolutely high level of 

vulnerability (i.e., a score of 100) such that travel times over that level were not incrementally worse. 

We inverted indicators where high values in the raw data were associated with low vulnerability (e.g., 

precipitation). Finally, we had to convert some ordinal indicators (e.g., Anthropogenic Biomes) to scores 

based on characteristics of the biomes. After normalization, the indicators were then averaged to produce 

sub-indices for exposure, sensitivity, and adaptive capacity, which were then averaged to produce the 

overall vulnerability index. We also used principal components analysis (PCA) as an alternative 

aggregation method, which produced broadly similar results. 
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The eighteen spatial indicators we utilized are found in Table 1. Selection of indicators was guided 

by the literature on factors known to contribute to each component of vulnerability, as well as by data 

availability and quality (see Annex IV of the Mali report for justifications related to each indicator). For 

climate exposure indicators we relied heavily on FEWSNET historical climate data [19] (4 of 6 

indictors), and for sensitivity and adaptive capacity indicators we relied extensively on spatially 

interpolated Demographic and Health Survey (DHS) data (3 of 12 indicators). Each data layer was 

justified based on its conceptual proximity to the three vulnerability components [15], and choices were 

consistent with the variables that have been found to be associated with harm from climate variability 

and change, including education levels [20], climate variability [21], and marginal (semi-arid and arid) 

environments and geographically remote areas in poor developing regions [12,22]. The guiding approach 

was to identify a limited number of high-quality spatial data sets that best represent the component of 

interest while avoiding the temptation to add low-quality data (data of high uncertainty or coarse spatial 

resolution), thereby ñcontaminatingò the results. We had reasonably high confidence in the validity and 

reliability of each of the data sets included; data limitations are explored in Annex IV of the Mali report. 

Our processing involved the following steps. We converted all the original spatial data layers from 

their original formats (Table 1, Column 3) into grids at a common 30 arc-second (approximately 1 km2) 

resolution. We chose this cell size because it was the resolution of our highest-resolution data sets, and 

we felt that the interpolated surfaces for a number of our point-based data sets (e.g., the Demographic 

and Health Survey cluster-level data, conflict data, and health facilities data) could achieve a better 

representation of spatial variability at 1 km2. However, it is worth bearing in mind that the nominal  

1 km2 resolution of the outputs is based on inputs of varying resolutions, from 10 sq. km grids to 

subnational units (in Mali these are termed regions and cercles), depending on the parameter. This is an 

issue we return to in the discussion. 

Prior to normalization, grids were converted to tabular comma-separated values (CSV)-format files 

using a common grid referencing system. All data transformations and aggregations were performed in 

the R statistical package. All indicators were given equal weights except for the three indicators derived 

from Demographic and Health Survey (DHS) cluster-level data: household wealth, child stunting, and 

education level of the mother. The justification for this weighting was that these indicators were deemed 

to be closer to our interest in food and livelihood security, and because the data are at a higher spatial 

resolution than most of the other sensitivity and adaptive capacity indicators. After transformation and 

aggregation, the data were re-exported to ArcGIS to produce the final maps. A processing flow chart is 

shown in Figure 1; methods are further described in CIESIN [23]. 

Since the ranges of scores in the resulting component sub-indices (exposure, sensitivity, adaptive 

capacity) significantly varied based on the underlying distributions of indicator scores, we rescaled the 

resulting component scores so that they ranged from 0ï100, and then averaged the three components 

together to create an overall vulnerability index. Climate projections were incorporated in an annex. 
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Table 1. Indicators used for the Mali climate vulnerability mapping exercise. 

Component Data Layer Original Data Format 

Exposure 

Average annual precipitation (1950ï2009) Raster (with point inputs) 

Inter-annual coefficient of variation (CV) in precipitation (1950ï2009) Raster (with point inputs) 

Percent of precipitation variance explained by decadal component (1950ï2009) Raster 

CV of the Normalized Difference Vegetation Index (NDVI) (1981ï2006) * Raster 

Long-term trend in temperature in JulyïAugustïSeptember (1950ï2009) Raster (with point inputs) 

Flood frequency (1999ï2007) * Raster 

Sensitivity 

Household wealth (2006) Point 

Child stunting (2006) Point 

Infant mortality rate (IMR) (2006) Polygon 

Poverty index by commune (2008) Polygon 

Conflict events/political violence (1997ï2012) Point 

Soil organic carbon/soil quality (1950ï2005) * Raster (with point inputs) 

Malaria stability index Raster 

Adaptive 

Capacity 

Education level of mother (2006) Point 

Market accessibility (travel time to major cities) 
Raster (with polyline 

inputs) 

Health infrastructure index (2012) Point 

Anthropogenic biomes (2000) * Raster 

Irrigated areas (area equipped for irrigation) (1990ï2000) Raster 

* Remote sensing derived. 

 

Figure 1. Vulnerability mapping processing flow chart. 

2.2. Mali Vulnerability Mapping Data Integration 

Remote sensing data were used for each of the indicators in Table 1 that have an asterisk (*).  

Figures 2ï5 show the raw and transformed versions of these indicators. Note that the right panels of each 

figure show no data above 17.2°N latitude. We excluded from consideration all areas north of that 

latitude, a region that is very sparsely populated, because USAID was primarily interested in 
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programming in more densely populated regions to the south, and because climate variability and change 

may have less of an impact due to already harsh conditions. The information included and the rationale 

for incorporating these indicators is described in this section. 

The climate exposure indicators sought to measure average conditions and trends for temperature and 

precipitation, as well as variation in precipitation and, at the extreme, flood events. As mentioned, the 

FEWSNET climate data were of reasonably high spatial resolution, but are based on in situ monitoring 

networks that are relatively sparse given the size of Maliôs territory, so they are gap filled with satellite 

data. The satellite data used to fill spatial gaps in the in situ monitoring networks include MODIS Land 

Surface Temperature (LST) and Multisatellite rainfall estimates (RFE2) from NOAA CPC [24]. The 

Coefficient of Variation of Normalized Difference Vegetation Index (NDVI) (1981ï2006) (Figure 2) 

indicator supplements the Interannual Coefficient of Variation in Precipitation (JulyïAugustïSeptember) 

indicator by providing higher spatial resolution data, based on satellite observations of greenness for the 

month of August for a 25-year period. August was selected since this is typically a month of peak rainfall 

for the growing season. This indicator can be interpreted as the reliability of rainfall in a given year for 

crop production or livestock grazing. 

The flood frequency layer was generated as part of the Global Assessment Report on Risk Reduction [25] 

(Figure 3). It is based on three sources: (1) A GIS modeling using a statistical estimation of peak-flow 

magnitude and a hydrological model using HydroSHEDS dataset and the Manning equation [26] to 

estimate river stage for the calculated discharge value; (2) observed flood from 1999 to 2007, obtained 

from the Dartmouth Flood Observatory (DFO); and (3) frequency from UNEP/GRID-Europe PREVIEW 

flood dataset [27]. The unit of measurement is the expected average number of events per 100 years. 

The observed flood data are produced by the Dartmouth Flood Observatory from MODIS 250 m data. 

Because the observed flood data does not have comprehensive global coverage, they are used to validate 

and calibrate the model. Since there are few river gauge networks in Africa, these data are among the few 

available to assess flood risk. The flood risk equates to higher exposure to climate extremes in low lying 

and riparian areas. 

Soil carbon (Figure 4) was mapped by the International Soil Resources Information Centre (ISRIC) 

using MODIS data. The data represent an approximation of the soil organic carbon in top soil, which is 

0ï20 cm. The authors make clear that the true accuracy of the resulting maps depends on the quality of 

the input data and the interpolation method used. The correlation with MODIS imagery was based on 

12,000 profiles for the whole of Africa, which means that each soil profile represents on average 1500 

pixels. Interpolations over large distances occur because the data locations are clustered with large gaps 

for some parts of Africa. These data were included because soil carbon is an important predictor of crop 

yields. Higher soil organic carbon would also indicate lower sensitivity to climate variability, since soil 

water retention is associated with organic carbon [28]. 

Anthropogenic Biomes (Figure 5) is itself a composite data set generated with thee data layers: 

population density, land use (specifically crop, pasture, and irrigated lands), and land cover [29]. The 

latter is defined by percent trees and bare earth based on the Vegetation Continuous Fields MOD44B, 

2001 percent tree cover, collection 3 [30]. We included anthropogenic biomes in preference to 

FEWSNET livelihood zones because it is a higher spatial resolution data set, and it does a better job of 

pulling out the livelihood diversification of the inland delta of Mali. The inland delta represents a 

relatively unique area of flat topography through which the Niger River flows, which results in seasonal 
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flooding that enhances crop and pastureland production and irrigation potential. This results in higher 

adaptive capacity than the climate zone would suggest based on precipitation alone. Since the 

Anthropogenic Biomes are categorical data, we needed to use expert judgment to recode each biome 

into a 0ï100 score, based on the number of livelihood options available in each region. 

These data were combined with data for exposure, sensitivity and adaptive capacity from non-satellite 

sources, including among other things distance to market derived from road infrastructure data, health 

infrastructure locations, conflict events, and DHS interpolated surfaces based on cluster points for 

household wealth, child stunting, and maternal education levels. The integration method, as described 

above, was to average the transformed scores across indicators first by component, and then to average 

the stretched component scores to come up with an overall vulnerability index. 

 

Figure 2. Interannual Coefficient of Variation in Greenness (NDVI)ðDerived from 

GIMMS, raw data (left) and transformed (right ). 

 

Figure 3. Flood Extent (events per 100 years)ðDerived in part from MODIS flood extent 

data at the Dartmouth Flood Observatory, raw data (left) and transformed (right ). 
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Figure 4. Soil Carbon Partly Derived from MODIS data raw data (left) and  

transformed (right ). 

 

Figure 5. Anthropogenic Biomes raw data (left) and transformed (right ). 

2.3. Coastal West Africa Exposure Mapping 

The Coastal West Africa mapping built on experience gained in the Mali mapping but took a slightly 

different approach. Because our focus was on climate stressors in the coastal zone (storm surge, flooding, 

and sea level rise) and the exposure of economic and social systems, we use the term exposure mapping 

as opposed to vulnerability mapping. Instead of the IPCC AR4 vulnerability framework, we used the 

IPCC Special Report on Climate Extremes (SREX) risk framework, later adopted by the IPCC fifth 

assessment report (AR5), which construes risk as emanating from the spatial intersection of exposure to 

extreme events and vulnerable systems [18]. This was because the focus was on exposure to seaward 

hazards rather than describing the complex human-environment system. A full description of methods 

and the rationale for the indicators used in the study is found in de Sherbinin et al. [14]. 
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For this study, we constructed two main indices, a Social Vulnerability Index (SVI) and an Economic 

Systems Index (ESI). The SVI measures a combination of population density and growth together with 

poverty, seeking to approximate the population size and susceptibility to coastal extremes (Table 2). The 

ESI sought to measure relative levels of economic activity that could be exposed to seaward hazards, 

including crop production, GDP, and urban service and industrial sector activities (using night-time 

lights as a proxy). These aggregate indices were constructed from raw data in a manner identical to the 

Mali vulnerability mapping; the main difference was that we faced greater constraints in the availability 

of consistent data covering all 10 coastal countries, and hence had to rely more on global and regional 

data sets. All indices were calculated for the coastal zone, defined as a 200 kilometer strip from the 

coastline inland. This covers somewhat larger areas than what might normally be construed as ñcoastalò, 

but we chose this larger area in recognition of the fact that the economic impacts of climate change in 

the coastal zone will not be confined to the coastline itself, but will affect activities further inland. 

Table 2. Indicators used in the social vulnerability index of the coastal study. 

Indicator  Date or Date Range Original Data Format  

Population density 2010 Raster (derived from polygon) 

Population growth 2000ï2010 Raster (derived from polygon) 

Subnational poverty and extreme poverty 2005 Polygon 

Maternal education levels circa 2008 Point 

Market accessibility (travel time to markets) circa 2000 Polyline 

Conflict data for political violence 1997ï2013 Point 

2.4. Coastal West Africa Data Integration 

The low elevation coatal zone (LECZ) was mapped using the Altimeter Corrected Elevations 2 

(ACE2) data set to identify areas at potential risk of inundation from sea-level rise, surge, or river-bank 

flooding. In the absence of more detailed modeling studies of surge risk and likely future relative changes 

in sea level for coastal West Africa, we term the areas at risk of sea level rise and storm surge as being 

in LECZ bands of 0ï5, 5ï10, and 10ï20 m above mean sea level. Although global mean sea-level rise 

by the end of this century is predicted to range from 0.3ï1.2 meters depending on the rate of warming 

and the response of ice sheets [31], storm surge can greatly expand the area affected by seaward impacts. 

Basic data on coastal topography are available through publicly accessible global data sets such as the 

National Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) 

global digital elevation model (DEM) (90 m resolution); the European Space Agency ACE2 data set 

(which merges SRTM with Satellite Radar Altimetry) (90 m resolution) [32]; and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 

(GDEM) (15 m resolution). It should be emphasized that all global DEMs contain inaccuracies [33]. In 

our assessment, ACE2 had the advantage over SRTM and ASTER GDEM of accurately returning ground 

values in areas of dense forest cover such as mangroves; for this reason and based on evaluations against 

SRTM that showed that ACE2 consistently returned slightly lower elevations (Figure 6), we chose to 

use this data set. Note that we did explore the use of the Dynamic Interactive Vulnerability Assessment 

(DIVA) model, but were unable to obtain the data. We examined data from Dasgupta et al. [34], which 
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incorporate the DIVA results, but because they rely heavily on SRTM data we found that they under 

estimate the areas at low elevations. 

We used night-time light imagery from the defense meteorological satellite program/operational 

linescan system (DMSP/OLS) nighttime stable light (NTL) to map the urban areas in 2010. When proper 

thresholds are applied, this data set has the advantage of providing a consistent metric of urban extent 

when compared to the semi-automated classification of optical imagery. Figure 7 shows different classes 

of urban densityðhigh, medium, and lowðbased on different luminosity thresholds from the nighttime 

lights, superimposed on the 0ï5 and 5ï10 m LECZ. Lagos, Nigeria, and Cotonou, Benin, were found to 

be highly exposed to sea level rise and storm surge. Indeed, Cotonou is already experiencing alarming 

degrees of coastal erosion. 

 

Figure 6. Comparison of SRTM with ACE2 in Coastal Benin. 



ISPRS Int. J. Geo-Inf. 2015, 4 2571 

 

 

 

Figure 7. Urban areas of Cotonou, Benin and Lagos, Nigeria in comparison to the LECZ. 

 

Figure 8. Mangroves and the LECZ. 
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Figure 9. Landsat-scale deforestation data aggregated to one square kilometer pixels. 

Because of USAIDôs interest in biodiversity and natural systems in the coastal zone for their potential 

buffering capacity and concerns over their loss, we also mapped mangrove systems and forest loss. These 

two layers were also derived from remote sensing imagery. Giri et al. [35] mapped mangroves globally 

using 30 m Landsat imagery. The coastal zone of West Africa has mangroves throughout, but the 

mangroves are especially concentrated in Guinea Bissau and the Niger Delta (Figure 8). Sea level rise 

will certainly have impacts on the viability of these ecosystems, but by the same token they represent an 

important form of natural coastal defense. 

The deforestation data for West Africa were derived from Hansen et al. [36] which was the first ever 

global assessment of forest loss and gain using Landsat 30 m imagery. We aggregated the 30 m imagery 

to 30 arc-second (~1 km) pixels that indicated the percent of the pixel that had experienced deforestation 

from 2000 to 2012 (Figure 9). This was intended to provide a quick picture of the hotspots of 

deforestation, especially those near the coastal zone. 

A key difference from the Mali vulnerability mapping is that none of the remote sensing derived 

indicators were actually integrated into the synthetic indices we created. For the coastal mapping, we 


