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Abstract: Vulnerability mapping reveals areas that are likely to be at greater risk of
climaterelated disasters in the future. Through integration of climate, biophysical, and
socioeconomic data in an overall vulnerability framework;csa!| | e d Ahot spot
vulnerability can be identified. These maps can be used as an aid to targetinagadapd

disaster risk management interventions. This paper reviews vulnerability mapping efforts in
West Africa conducted under the USAfDnded African and Latin American Resilience to
Climate Change (ARCC) projecthe focusis on the integration of neotely sensed and
socioeconomic data. Data inputs included a range of sensor data (e.g., MODIS NDVI,
Landsat, SRTM elevation, DMSBLS nighttime lights) as well as higtesolution poverty,

conflict, and infrastructure data. Two basic methods were usednaevhich each layer was
transformed into standardized indicators in an additive approach, and another in which
remote sensing data were used to contextualize the results of composite indicators. We assess
the benefits and challenges of data integratimmd the lessons learned from these
mapping exercises.
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1. Introduction

A large body of evidence going back more than two decades shows that exposure alone is @ot suffici
for understanding trends in disaster losses, and that social and economic vulnerability are critical
ingredientd1,2]. West Africa has been identified as one of the regions that is most vulnerable to climate
change both in terms of exposure to climate haz&:d$ and social vulnerability [5,6]. Tools such as
spatial vulnerability assessment aseful for understandingagterns of vulnerability and risk to climate
change at multiple scalesnd have been applied in Africa perhaps more than any other [BgfdnThe
demand for vulnerability maps among development agencies and governments is increasing as greate
emphasiss placed on scientifically sound methods for targeting adaptation assighnce

Mapping is useful because climate variability and extremes, the sensitivity of populations and systems
to climatic stressors, and adaptive capacities are all spatiallyedifi#ed. The interplay of these factors
produces different patterns of vulnerability. Typicakypatial vulnerability assessment involves data
integration in which geoeferenced socieconomic and biophysical data, including those derived from
remote snsing, are combined with climate data to understand patterns of vulnerability and, in turn, inform
where adaptation may be required. Maps have proven to be useful boundary objectssitaketitiider
discussions, providing a common basis for discussiod &r deliberations over adaptation
planning[9,10]. Maps can help to ground discussions on a solid evidence base, especially in developing
country contexts where geographic information may not be easily accessible for all stakeholders.

Spatial data ingration and spatial analysis have become standard tools in the toolkit of climate
change vulnerability assessments. The United Nations Environment Programme (UNEP) Pragramme
Research on Climate Change Vulnerability, Impacts and Adaptation (PROVIA)r&esgeorities on
Vulnerability, Impacts and Adaptatighll]lhi ghl i ght s fAmeasuri ng drstd ma
priority for supporting adaptation decisiomaking. In many cases vulnerability assessment (VA) is
synonymous with spatial vulnerabyliassessment, owing in part to an understanding that vulnerability and
its constituent components exhibit high degrees of spatial and temporal heterdd@heltye purposes
vary according to the specific study, Ispiatial VAs are generally intendeddentify areas at potentially
high risk of climate impactssocalledc | i mat e ¢ h a flgjdeandith loettes yndetstara the
determinants of vulnerability in order to identify planning and capacity building needs.

Because of their watb-wall coverage, remote sensing data have the potential to fill important data
gaps indatapoordeveloping country contexts. The goal of this paper is to illustrate the utility of remote
sensing data in combination with other datarses, both climatic and socioeconomicilluminating
regions that are vulnerable to climate change. This sty describesheframeworls, data methods
and resultsfor two mapping efforts, one for Mali and the other for Coastal West Affieiled
presentation of methods, results and uncertainties are provided elseyli:bel] (see
http://community.eldis.org/.5bf8c6aa and http://community.eldis.org/.5c1gdB8focus here is aife
remote sensing data produasd the approaches used fiata integration We conclude with a
discussion on the potential and shortcomings of using remote sensing data as surrogates for othe
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data sourcesthe benefits and challenges of data integration, and the lessons learned from these
mapping exercises

Vulnerability mapping and the quantification of vulnerability is not without shortcomings, and more
critical perspectives are provided in a number of other publicd8¢t3,12,15] Readers desiring a more
in depth look at the challenges of vulnerabititgpping, including issuesound uncertainty, agdvised
to read these publicationd/e address the limitations of the methods described in this paper in Section 4.
Despite these caveatlgspatial vulnerability index constructionethods described hemee widely used
in the literatureand have beerfound to be usefuio policy audiences seeking to better understand the
factors contributing teulnerability [5,7,9,10,16]

2. Methods and Data
2.1 Mali Vulnerability Mapping

As a framework for the Malwvulnerability map, the authsrof the report[12] utilized the
Intergovernmental Panel on Climate Change (IPEG)rth Assessment Report (ARddnceptual
framework, which separates vulnerability climate stressorsnto three components: exposure,
sensitvity, and adaptive capacifyt7]. This is a precursor to the more recent IPCC framework, more
familiar to the natural hazards community, which conceptualizes risk as a function of hazard, exposure
and (social) vulnerability18] (see Section 2.3)The appioach for Mali was to map the general
vulnerability of the population rather than to develop separate vulnerability layers for individual systems
(e.g., ecosystems); sectors (e.g., water or agriculture); or poputategroups (e.g., pastoralists).
Howeve, given the high dependence of the majority of the population on subsisiesee agriculture,
many of the indicators selected had this population in mind.

We used a spatial index approach, in which raw data values are represented as percentiles. In othe
words, each data layer was transformed to an indicator with a ra@jé&Gif (with 100 representing
most vulnerable). In a few cases we trimmed the tails of the distribution before convertinQittOthe
score Continuous indicators were assessed femsiess. A number of the indicators (especially climate
variables) exhibited a long righdil in the distribution, and hence we chose to winsorize (trim the tails)
at inflection points in the data. We also removed from consideration the thinly setthedtFaregions,
which tended to have more extreme values for climate and socioeconomic indicators. The goal was tc
seek a relatively good distribution of scores in th&dD range while grounding decisions in substantive
considerations of what representgthiand low levels of vulnerability.For example, for market
accessibility, we decided that any travel times over 36 hours represented an absolutely high level of
vulnerability (.e., a score of 100) such that travel times over that level were not indadiyevorse.

We inverted indicators where high values in the raw data were assogititddw vulnerability (e.g.,
precipitation). Finally, we had to convert some ordinal indicators (e.g., Anthropogenic Biomes) to scores
based on characteristics of therbies After normalization, the indicatoksere then averaged to produce
subindices for exposure, sensitivity, and adaptive capacity, which were then averaged to produce the
overall vulnerability index.We also used principal components analysis (PCA) rasliernative
aggregation method, which produced broadly similar results.
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The eighteenspatial indicators we utilized are found in TableSglection of indicators was guided
by the literature on factors known to contribute to each component of vulnerabilitg]lass by data
availability and quality (see Annex IV of the Mali report for justifications related to each indidabor)
climate exposure indicatorae relied heavily on FEWSNET historical climate d4i®] (4 of 6
indictors), and for sensitivity and adaptive capacity indicators we relied extensivelgpatially
interpolated Demographic and Health Survey (DHS) dataf 12 indiators) Each data layer was
justified based on itsonceptuaproximity to the three vulnerability componefi$], and choices were
consistent with the variables that have been found to be associated with harm from climate variability
and change, includgeducation levelR20], climate variability[21], and margina{semtarid and arid)
environments and geographically remote areas in poor developing redfddt#y Theguiding approach
was to identify a limited number of higfuality spatial data setsahbest represent the component of
interest while avoiding the temptation to add {quality data (data of high uncertainty or coarse spatial
resolution), thereby Acont ami ncanfidencaimthetvdlidity anc s u |
reliability of each of the data sets inclugddtalimitationsareexplored inAnnex IV of theMali report

Our processing involved the following steps. We converted all the original spatial datafiayers
their original formats (Table 1, Column Bto grids ata common 30 arsecond (approximately Km?)
resolution.We chose this cell size because it was the resolution of our higisedttion data sets, and
we felt that the interpolated surfaces for a number of our {baised data sets (e.g., the Demographic
and Health Survey clustégvel data, conflict data, arfuealth facilities data) could achieve a better
representation of spatial variability atkin?>. However, it is worth bearing in mind that the nominal
1 kn?* resolution of the outputs is based on inputs of varying resolutions, from 10 sq. km grids to
subnatonalunits (in Mali these are termeegionsandcercleg, depending on the parameter. This is an
issue we return to in the discussion.

Prior tonormalization grids were converted to tabular comegparated values (CS¥)rmat files
using a common grid ferencing system. All data transformations and aggregations were performed in
the R statistical package. All indicators were given equal weights except for the three indicators derived
from Demographic and Health Survey (DHS) clusésel data: householealth, child stunting, and
education level of the mother. The justification for this weighting was that these indicators were deemed
to be closer to our interest in food and livelihood security, and because the data are at a higher spatic
resolution thammost of the other sensitivity and adaptive capacity indicagdter transformation and
aggregationthe data were rexported to ArcGlSo produce the final maps. A processing flow chart is
shown in Figure 1; methods are further described in CIES3N

Since the ranges of scores in the resulwoghponent suindices (exposure, sensitivity, adaptive
capacity)significantly variedbased on the underlying distributions of indicator sgosesrescaled the
resulting component saes so that they rangdécbm G 100, and then averaged the three components
together to create an overall vulnerabilitgex Climate projections were incorporated in an annex.
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Table 1.Indicators used for the Mali climate vulnerability mapping exercise

Component Data Layer Original Data Format
Average annual precipitation (195D09) Raster(with point inputs)
Inter-annual coefficient of variation (CV) in precipitation (192009) Raster(with point inputs)
e Percent of precipitation variance explained by deceal@mponent (195®009) Raster
CV of the Normalized Difference Vegetation Index (NDVI) (193206) * Raster
Long-term trend in temperature in JuBugusi September (195@009) Raster (with point inputs)
Flood frequency (1992007) * Raster
Household wealth (2006) Point
Child stunting (2006) Point
Infant mortality rate (IMR) (2006) Polygon
Sensitivity Poverty index by commune (2008) Polygon
Conflict events/political violence (1992012) Point
Soil organic carbon/soil quali§1950 2005) * Raster (with point inputs)
Malaria stability index Raster
Education level of mother (2006) Point
o . - Raster (with polyline
. Market accessibility (travel time to major cities) :
Adaptive inputs)
Capacity Health infrastructure index (2012) Point
Anthropogenic biomes (2000) * Raster
Irrigated areas (area equipped for irrigation) (129D0) Raster

* Remotesensing derived

1. Identify vuln. mapping
goals, targeted system (what
is vulnerable?), framework,
resolution, and audience

2. Choose data layers
(criteria: resolution,
timeliness, robustness &
accuracy of the data)

3. Process datalayers
(e.g., points to surfaces,
point density functions,

growing grids)

4. Convert all data layers
to grid (raster) format

with consistent 30 arc-
second resolution

8. In R, identify the statistical

distribution of each indicator |

7. Export the points
database to CSVformat

for processingin theR
statistical package

6. Use Extract Values to
Points tool to transfer
rastervalues to the point
attribute table

9. In R, winsorize or take
natural log of the raw data
(as necessary); then calculate
the indicators on 0-100 scale

10. In R, calculate the sub-
indices for exposure,
sensitivity, adaptive

capacity

5. Create a “fishnet”
points layer, each with a
unique ID, coincident with
the centroid of each raster

11. In R, calculate the

= overall vulnerability index,

and run principal
components analysis

12. Join the tabular
outputs to the centroid
layer and then use Point

to Raster tool

In parallel: Create
metadata sheets for each
indicator layer (include
step 8 processing steps)

13. Use the grids in ArcGIS
to map the indices and
PCA results

Figure 1. Vulnerability mapping processing flow chart

2.2 Mali Vulnerability Mapping Data Integration

Remote sensing data were used for each of the indicators in Table 1 that have an asterisk (*).
Figures2i 5 show the raw and transformed versions of these indic&tots.that the right panels of each
figure show no data above 1MPiatitude We excluded from consideration all areas nafthhat
latitude, a region that is very sparsely populated, because USAID was primarily interested in
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programming in more densely populated regions to the south, and because climate variability and chang
may have less of an impact due to already harsh condifi¢resinformation included and the rationale
for incorporating these indicators is described in this section.

The climate exposure indicators sought to measure average conditions and trends fatuegret
precipitation, as well as variation in precipitation and, at the extreme, flood events. As mentioned, the
FEWSNET climate data were of reasonably high spatial resolution, but are basesitomonitoring
networks that are relatively sparggent he si ze of soMey argas filled with sateliite r y ,
data The satellite data used to fill spatial gaps in the in situ monitoring networks include MODIS Land
Surface Temperature (LST) and Multisatellite rainfall estimates (RFE2) from NOR®B [24]. The
Coefficient of Variation of Normalized Difference Vegetation Index (NDI98Li 2006) (Figure 2)
indicator supplements the Interannual Coefficient of Variation in Precipitation Aligysi September)
indicator by providing higher spatial resolution déi@sed on satellite observations of greenness for the
month of August for a 2§ear periodAugust was selected since this is typically a month of peak rainfall
for the growing season. This indicat@ncbe interpretedsthe reliability of rainfall in a given year for
crop production or livestock grazing.

The flood frequency layer was generated as part of the Global Assessment Report on Risk [R&juction
(Figure 3) It is based on three sourc€$) A GIS modeling using a statistical estimation of péakv
magnitude and a hydrological model using HydroSHEDS dataset and the Manning effiétton
estimate river stage for the calculated dischagedee;(2) observed flood from 1999 to 2007, obtained
from the Datmouth Flood Observatory (DFO); a(®) frequency from UNEP/GRHEurope PREVIEW
flood datasef27]. The unit of measuremend the expected average number of events per 100 years.
The observed flood data are produced by the Dartmouth Floodv@tisg from MODIS 250n data.
Because the observed flood data does not have comprehensive global coverage, they are used to valide
and calibrate the modebince there are few river gauge networks in Africa, these data are among the few
available to agss floodisk. The flood risk equates to higher exposure to climate extremes in low lying
and riparian areas.

Soil carbon (Figurd) was mapped by thiaternational Soil Resources Information Centre (ISRIC)
using MODIS data. The data represenapproximation of the soil organic carbon in top soil, which is
0i 20 cm. The authors make clear that the true accuracy of the resulting maps depends on the quality of
the input data and the interpolation method used. The correlation with MODIS imagergsedson
12,000 profiles for the whole of Africa, which means that each soil profile represents on average 1500
pixels. Interpolations over large distances occur because the data locations are clustered with large gay
for some parts of Africa. These datam included because soil carbon is an important predictor of crop
yields. Higher soil organic carbon would also indicate lower sensitivity to climate variability, since soil
water retention is associated with organic cafl2&j

Anthropogenic Biomes (Fige 5) isitself a composite data set generated with thee data layers:
population density, land use (specifically crop, pasture, and irrigated lands), and lanf28pvEne
latter is defined by percent trees and bare earth based on the Vegetationd@srfirelds MOD44B,

2001 percent tree cover, collection[30]. We included anthropogenic biomes in preference to
FEWSNET livelihood zones because it is a higher spatial resolution data set, and it does a better job o
pulling out the livelihood diversifation of the inland delta of Mali. The inland delta represents a
relatively unique area of flat topography through which the Niger River flows, which results in seasonal
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flooding that enhances crop and pastureland production and irrigation potentiakstiis in higher
adaptive capacitythan the climate zone would suggest based on precipitation alone. Since the
Anthropogenic Biomes are categorical data, we needed to use expert judgment to recode each biom
into a 0 100 score, based on the number oflihad options available in each region.

These data were combined with data for exposure, sensitivity and adaptive capacity fsateltitn
sources, including among other things distance to market derived from road infrastructure data, health
infrastrudure locations, conflict events, and DHS interpolated surfaces based on cluster points for
household wealth, child stunting, and maternal education levels. The integration method, as describec
above, was to average the transformed scores across indfoatdsg component, and then to average
the stretched component scores to come up with an overall vulnerability index.
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2.3 Coastal West Afric&Exposure Mapping

The Coastal West Africa mapping built on experience gained in the Mali mapping but took a slightly
different approach. Because oactis was on climate stressors in the coastal zone (storm surge, flooding,
and sea level rise) and the exposure of economic and social systems, we use the term exposure mappi
as opposed to vulnerability mapping. Instead of the IPCC AR4 vulnerability irarkewe usedhe
IPCC Special Report on Climate Extremes (SRIEXK framework later adopted by the IPCC fifth
assessment report (AR%yhich construes risk as emanating from the spatial intersection of exposure to
extreme events and vulnerable syst¢h®. This was because the focus was on exposure to seaward
hazards rather than describing the complex huemironment systenA full description of methods
and the rationale for the indicatarsed in the studis found in de Sherbiniat al.[14].
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Forthis studywe constructed two main indices, a Social Vulnerability Index (SVI) and an Economic
Systems Index (ESI). The SVI measures a combination of population density and growth together with
poverty, seeking to approximate the population size andilsitiey to coastal extremgJ able 2) The
ESI soughto measureelative levels of economic activity that could be exposed to seaward hazards
including crop production, GDP, and urban service and industrial sector activities (usingnméght
lights asa proxy). These aggregate indices were constructed from raw data in a manner identical to the
Mali vulnerability mapping; the main difference was that we faced greater constraints in the availability
of consistent data covering all 10 coastal countried,reence had to rely more on globald regional
data sets. All indices were calculated for the coastal zone, defined as a 200 kilometer strip from the
coastline inland. This covers somewhat | arger
but we chose thisarger area in recognition of the fact that the economic impacts of climate change in
the coastal zone will not be confined to the coastline itself, buaft@tt activities furthemmland.

Table 2.Indicators useth thesocial vulneraility index of thecoastalstudy.

Indicator Date or Date Range Original Data Format
Population density 2010 Raster (derived from polygor
Population growth 2000 2010 Raster (derived from polygor
Subnational poverty and extreme povert 2005 Polygon
Maternal education levels circa 2008 Point
Market accessibility (travel time to market circa 2000 Polyline
Conflict data for political violence 1997 2013 Point

24. Coastal West Africata Integration

The low elevation coatal zond.ECZ) was mapped using th&ltimeter Corrected Elevations 2
(ACEZ2) data set to identify areas at potential risk of inundation froreseérise, surge, or rivdrank
flooding. In the absence of more detailed modeling studies of surge risk and likely flattive hanges
in sea level for coastal West Africa, we term the areas at risk ¢é\sgaise and storm surge as being
in LECZ bands of 05, 510, and 1020 m above mean sea levAlthough global measealevel rise
by the end of this century is pretid to range from 0i3.2 meters depending on the rate of warming
and the response of ice sheets [31], storm surge can greatly expand the area affeetedrdympacts.
Basic data on coastal topography are available through publicly accessible glabsg¢tdassuch as the
National Aeronautics and Space Administration (NASA) Shuttle Radar Topoghigisjon (SRTM)
global digital elevation model (DEM90 m resolution) the EuroganSpace AgencACE2 data set
(which merges SRTM with Satellite RadAitimetry) (90 m resolution)[32]; and theAdvanced
Spaceborne Thermal Emission and Refleci@diometer (ASTER) Global Digital Elevation Model
(GDEM) (15 m resolution). It should be emphasiteat dl global DEMscontaininaccuracie$33]. In
our assesaent, ACR hadthe advantage over SRTamd ASTER GDEMf accurately returning ground
values in areas of denf@est cover such as mangroves; for this reason and based on evaluations against
SRTM that showed that ACE2 consistently returned slightly lowsragions (Figures), we chose to
use this data seNote that v did explore the use of the Dynamic Interactive Vulnerability Assessment
(DIVA) model, but were unable to obtain the data. We examined data from Dasgjapt@4], which
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incorporate the DIA results, but because they rely heavily on SRTM data we found that they under
estimate the areas at low elevations

We used nightime light imagery from thelefense meteorological satellite program/operational
linescarsystem (DMSP/OLS) nighttime stable light (NTL) to map the urban areas in 2010. When proper
thresholds are applied, this data set has the advantage of providing a consistent metric of urban exter
when compared to the semuitomated classification of opsilimagery. Figure 7 shows different classes
of urban densit§y high, medium, and lo@& based on different luminosity thresholds from the nighttime
lights, superimposed on thé®and $10 m LECZ. Lagos, Nigeria, and Cotonou, Benin, wetmd to
be highly expsed to sea level rise and storm surge. Indeed, Cotonou is already experiencing alarming
degrees of coastal erosion.

ACE2 ‘ \
meters

[ 0-2 '
[— | e
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] 10-20 ‘ ]
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[ 1410 "xl |
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Figure 6. Comparison oSRTM with ACE2 in Coastal Benin.
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Figure 9. Landsatscale deforestation data aggregated to one square kilometer pixels

Because of USAI D6s i nt eysemstnthe coastalzond foerr potestinlt y a
buffering capacityand concerns over their lossg wlso mapped mangrove systemd forest lossThese
two layers were also derived from remote sensing imageryetati [35] mapped mangroves globally
using 30 m Landsat imagery. The coastal zone of West Africa has masdgiooughout, but the
mangroves are especially concentrated in Guinea Bissau and the Niger Delta&f-igae level rise
will certainly have impacts on the viability of these ecosystems, but by the same token they represent ar
important form of natulacoastal defense.

The deforestation data for West Africa were derived from Haesah[36] which was the first ever
global assessment of forest loss and gain using Landsat 30 m imagery. We aggregatedrtreg@dym
to 30 aresecond (~1 km) pixels thandicated the percent of the pixel that had experienced deforestation
from 2000 to 2012 (Figur®). This was intended to provide a quick picture of the hotspots of
deforestation, especially those near the coastal zone.

A key difference from the Mali vubrability mapping is that none of the remote sensing derived
indicators were actually integrated into the synthetic indices we created. For the coastal mapping, we



