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Abstract: Studying the temporal and spatial evolution trends in earthquakes in an area is beneficial for
determining the earthquake risk of the area so that local governments can make the correct decisions
for disaster prevention and reduction. In this paper, we propose a new method for analyzing the
temporal and spatial evolution trends in earthquakes based on earthquakes of magnitude 3.0 or
above from 1980 to 2019 in California and Nevada. The experiment’s results show that (1) the
frequency of earthquake events of magnitude 4.5 or above present a relatively regular change trend
of decreasing–rising in this area; (2) by using the weighted average center method to analyze the
spatial concentration of earthquake events of magnitude 3.0 or above in this region, we find that
the weighted average center of the earthquake events in this area shows a conch-type movement
law, where it moves closer to the center from all sides; (3) the direction of the spatial distribution of
earthquake events in this area shows a NW–SE pattern when the standard deviational ellipse (SDE)
method is used, which is basically consistent with the direction of the San Andreas Fault Zone across
the north and south of California; and (4) the spatial distribution pattern of the earthquake events in
this region is found to be clustered using the global spatial autocorrelation analysis method. This
study provides a new perspective for the exploration of the temporal and spatial evolution trends in
earthquakes and understanding the earthquake risk in an area.

Keywords: spatial statistics; temporal and spatial evolution; weighted average center; standard
deviational ellipse; global spatial autocorrelation analysis; earthquake risk

1. Introduction

Earthquakes are one of the main natural disasters on Earth [1,2]. An earthquake of
magnitude 7.8 occurred in San Francisco, California, USA, on 18 April 1906, affecting
most areas of California, from Oregon City to Los Angeles, causing more than USD
4 million in economic damage [3,4]. The prediction of earthquakes is an important task
worldwide [5]. If the location, time, and magnitude of future large earthquakes can be
accurately predicted, millions of lives may be saved. Although it is difficult to predict the
occurrence of earthquakes, recent studies have shown that we can analyze the trends in
the change in earthquake risk in a certain region by studying the temporal and spatial
evolution processes of earthquake events [6,7], which is beneficial to disaster prevention
and reduction.

Earthquake events can be regarded as data with geospatial attributes. Due to the spa-
tial constraints of different directions and distances between the spatial data, the traditional
statistical analysis methods cannot be used to describe constraint relationships between
these spatial data. Spatial statistics are a more recent application of spatial data [8,9]; the
discipline combines statistics with modern graphical computing technology and shows the
implied spatial distribution, spatial pattern and spatial interactions in spatial data using
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intuitive methods [10]. After continuous development, the spatial statistics method has
been widely applied in fields such as sociology, biology, demography, criminology and
geology [11].

From the perspective of spatial statistics, the temporal and spatial evolution processes
of things in geospatial data have certain rules. It is helpful for us to study and master these
rules in all aspects of our lives. In the response to disasters, for example, Gan et al. [12]
studied the temporal and spatial evolution of the vegetation in the Mianyuan River Basin
using remote sensing images of vegetation from 1994 to 2017. The results showed that
slopes of 30 to 40 degrees in this area are more susceptible to earthquake disturbances
but are easier to repair, and the recovery period of vegetation in this area is eight to nine
years after being damaged. Wang et al. [13] studied the temporal and spatial evolution
trends in droughts in Northern Shanxi using the multi-model ensemble mean value; the
results showed that the precipitation and temperature in this region will increase from
south to north in the future, with the largest increase in the west. This study provided
information that can be used to alleviate the threat of drought in this area. Based on the
measured data of 56 rainfall stations and 11 hydrological stations in Central Guizhou,
China, He et al. [14] developed the lagging index (LI) to analyze the temporal and spatial
evolution characteristics of rainfall runoff in this area. The results showed that the lagged
effect of runoff to rainfall in the area mainly demonstrated three lagged periods, and
the order of temporal and spatial distribution differences of the lagged intensities was
two lagged periods (Cv = 0.62). Zhang et al. [15] used the method of spatial statistics to
conduct a systematic statistical analysis of the Iburi landslides, and determined several
of its specific characteristics, such as high concentration and high mobility in the severe-
disaster area. Qi et al. [16] studied the remote sensing data of landslides caused by the
Wenchuan earthquake, and found that landslides’ incidence varies in different slopes with
different structures.

Many researchers have explored the temporal and spatial evolution characteristics
of earthquake events. For example, Dias et al. [17] proposed a method for studying the
temporal and spatial probability distributions of earthquakes, where the influence of the
earthquakes’ data set on the temporal and spatial probability distribution of earthquakes
was discussed based on different depths of hypocenters and thresholds. The experimental
results showed that the increase in the jump forming the sequence between earthquakes
affects the non-extensive characteristics in the temporary probability distribution. This
analysis demonstrated the role of the robustness of the non-extensive statistical mechanics
treatments in earthquake research, showing that it is an effective method with which to test
memory and interactions. Yang et al. [18] used the temporal and spatial scan method to
identify earthquake clusters based on the data of earthquakes with a moment magnitude
(Mw) of not less than 5.6 from 1960 to 2014. The results indicated that earthquake clusters
can be classified into two types based on duration: persistent clusters and burst clusters.
Huang et al. [19] used the matched-filter detection method to obtain a relatively complete
(magnitude of completeness ≈ 0.9) and precisely relocated earthquake catalog during
the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquake sequence, and discussed
the influence of the spatial-temporal evolution process of the foreshock sequence on the
preparation and nucleation process of the mainshock, which is important to improve
our understanding of fault interactions, earthquake triggering, and evolving earthquake
hazards during an ongoing earthquake sequence.

In recent years, with the rapid development of artificial intelligence, researchers have
begun to use artificial intelligence to study earthquake risk. Jena et al. [20] proposed a new
earthquake risk assessment method that combines artificial neural network cross-validation
(four-fold ANN-CV) and the hybrid Analytic Hierarchy Process-Technique for Order of
Preference by Similarity to Ideal Solution (AHP–TOPSIS), and applied it to Aceh, Indonesia.
The experimental results showed that the accuracy of the model was 85.4% and the consis-
tency ratio was 0.06. The model provides the advantages of a simple structure, convenient
parameter adjustment, easy extension to other areas, and conduciveness to earthquake risk
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prevention and mitigation. Jia et al. [21] propose a machine learning method for seismic
data interpolation. DeVries et al. [22] proposed a method of deep learning to predict the
spatial distribution of aftershocks. Karimzadeh et al. [23] used different machine learning
algorithms to predict the aftershock patterns. Mignan et al. [24] compared the performance
of DNN and logistic regression in forecasting the spatial distribution of aftershocks in the
aftermath of large seismic events.

If the temporal and spatial evolution rules of earthquake events in a certain region
with frequent earthquakes are mastered, local governments can make correct decisions
regarding disaster prevention and reduction. There are many fault belts in California and
Nevada, which typically experience frequent earthquake events [25]. Unlike the above
research, we used the weighted average center, standard deviational ellipse (SDE), and
global spatial autocorrelation in spatial statistics to study the temporal and spatial evolution
characteristics in the earthquake events in California and Nevada in the past 40 years, and
analyzed the change in the trend of earthquake risk in this area based on experimental
results from the above methods.

2. Study Area

California and Nevada are in the West United States and have many fault belts that
are amongst the most active in the world. We attempted to analyze the trend in the
change in the earthquake risk in this region by studying the temporal and spatial evolution
characteristics of earthquake events in California and Nevada. Limited by the accuracy of
seismic instruments and the technology of seismic location, earthquakes below a magnitude
of 3.0 in different earthquake catalogs may be different, and there are few seismic data-from
before 1980, so the earthquake events of magnitude 3.0 or above in California and Nevada
from 1980 to 2019 were selected as the study objects. The research area (115.24◦~122.54◦ W,
32.97◦~38.37◦ N) was selected, as shown in Figure 1. A total of 15,762 earthquake events of
magnitude 3.0 or above occurred in this region from 1980 to 2019, including 22 earthquake
events of magnitude 6.0 or above, and they were obtained from the USGS earthquake
catalog (https://earthquake.usgs.gov/).

Figure 1. Research area.

As the purpose of this study was to analyze the change in the trend of earthquake
risk in a certain region by studying the temporal and spatial evolution characteristics

https://earthquake.usgs.gov/
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of earthquake events in this region, the earthquake events were divided into multiple
segments in the time dimension.

3. Method

The epicenter of an earthquake can be regarded as a point on the map, and its latitude
and longitude as its coordinates of point (x, y). In this study, we used four main methods to
examine the temporal and spatial evolution characteristics of earthquake events in different
time slices and to analyze the risk of earthquake events in California and Nevada. First,
the frequency rule of seismicity in the research region was analyzed using the number of
earthquakes in different time slices. Secondly, we used the weighted average center method
to calculate the center of the earthquake events in the different time slices and analyzed the
temporal and spatial evolution of the spatial concentration trends in earthquake events in the
research area. Then, the SDE model of spatial statistics was used to study the temporal and
spatial evolution of the directional distribution of earthquake events in different time slices.
Finally, global spatial autocorrelation was used to study the temporal and spatial evolution
process of the spatial distribution patterns of earthquake events in different time slices.

The standard deviational ellipse and weighted average center methods used in this
study need to be supported by enough earthquake events; otherwise, large calculation
errors occur. The longer the single time segment, the more reliable the result. To study
whether the earthquake events in this area have regularity in the time dimension, we
needed more time slices. The larger the number of time segments, the more obvious
the result. This created a contradiction. To meet the above research needs, after compre-
hensive consideration, we divided the 40 years (1980–2019) of earthquake events in the
California–Nevada region into 10 time segments, each of which had 4 years’ of earthquake
events. Earthquake events were classified according to the international standard of Richter
magnitude. The statistics of the earthquakes of each time slice are shown in Table 1.

Table 1. Statistics of earthquake event frequency in different time slices.

No. Time
Slices

Number of
Earthquakes

Magnitude
3.0–4.4

Magnitude
4.5–5.9

Magnitude
6.0–6.9

Magnitude
7.0+

1 1980–1983 2840 2744 91 5 0
2 1984–1987 1988 1916 66 6 0
3 1988–1991 1294 1246 47 1 0
4 1992–1995 2934 2828 101 4 1
5 1996–1999 1860 1806 53 0 1
6 2000–2003 1034 1015 18 1 0
7 2004–2007 837 814 23 0 0
8 2008–2011 727 713 14 0 0
9 2012–2015 615 601 13 1 0

10 2016–2019 1633 1589 42 1 1

3.1. Weighted Average Center

The weighted average center algorithm reflects the influence of the importance of each
datum in a group of data on the overall concentration trend. The algorithm assumes that
we have a finite data set fi; different data in the data set are assigned different weights,
and the weight represents the importance of the datum in the data set. Then, the weighted
average value of the data set is the sum of the product of each number and its weight
divided by the sum of all weights [26]. The size of the weighted average depends not
only on the size of each value, but also on the number of times each value appears. The
epicenter coordinates of earthquake events in different time slices were regarded as a data
set; considering that many aftershocks often occurred near the major earthquake, we used
earthquake magnitude as the weight of the earthquake events in the research region to
calculate the weighted average center coordinate of earthquake events in the different
time slices, which was useful for analyzing the temporal and spatial evolution process of
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spatial concentration trends of earthquake distribution. The weighted average center was
calculated as follows:

X =
∑n

i=1 wixi

∑n
i=1 wi

(1)

Y =
∑n

i=1 wiyi

∑n
i=1 wi

(2)

where xi and yi are the latitude and longitude coordinates of the earthquake event i,
respectively; n is the total number of earthquake events in different time slices; and wi is
the magnitude of earthquake event i.

The weighted average center analysis tool in the ArcGIS 10.5 toolbox was used to
analyze the earthquake events of the different time slices. The earthquake event subsets of
different time slices were selected as the input elements, and the earthquake magnitude
was used as the weight field to obtain the weighted average centers of the earthquake
events of magnitude 3.0 or above in the different time slices.

3.2. Standard Deviational Ellipse

The SDE in spatial statistics was used to describe the spatial distribution characteristics
of geographical elements in a certain region. It was first proposed by Lefever [27–29] in
1926 and has been widely applied in fields such as sociology, demography, criminology,
geology and ecology. The spatial distribution characteristics of the studied object can be
described quantitatively using the spatial distribution ellipse of the studied object with
the major axis, minor axis and azimuth as basic parameters. The spatial distribution
ellipse takes the average center of the spatial distribution of geographical elements as
the center, the azimuth reflects the main trend direction of the distribution of the study
object, the major axis direction of the ellipse represents the direction with more spatial
distribution of geographical elements, and the minor axis direction represents the direction
with less spatial distribution of the geographical elements [30,31]. The larger the difference
between the major axis and the minor axis, the more significant the directionality of the
geographical elements. If the length of the major axis is equal to the length of the minor
axis, the distribution of geographical elements has no directional feature. These main
parameters are calculated as follows:

X =
∑n

i=1 xi

n
(3)

Y =
∑n

i=1 yi

n
(4)

where xi and yi are the latitude and longitude coordinates of the earthquake event i,
respectively; n represents total number of earthquake events in different time slices; and X
and Y are the SDE centers in different time slices.

tan θ =

(
∑n

i=1 x̃i
2 −∑n

i=1 ỹi
2
)
+

√(
∑n

i=1 x̃i
2 −∑n

i=1 ỹi
2
)2

+ 4(∑n
i=1 x̃i ỹi)

2

2 ∑n
i=1 x̃i ỹi

(5)

σx =
√

2

√
∑n

i=1(x̃i cos θ − ỹi sin θ )2

n
(6)

σy =
√

2

√
∑n

i=1(x̃i sin θ − ỹi cos θ )2

n
(7)

where θ is the azimuth of the ellipse, indicating the angle formed by the clockwise rotation
of the north direction to the major axis of the ellipse; x̃i and ỹi denote the coordinate
deviation from the coordinate of earthquake event i and j to the average center; σx is the
length of the ellipse major axis; and σy is the length of the ellipse minor axis.
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To create the SDE model for earthquake events of different time slices in the research
region, the directional distribution tool in the ArcGIS 10.5 toolbox was used first. Then, the
earthquake events of different time slices were selected as the input elements, the Ellipse
Size was set to 1_STANDARD_DEVIATION, and the earthquake magnitude was used as
the weight field to represent the importance of the earthquake in the event set. Finally, the
standard deviation ellipses of different time slices were generated.

3.3. Global Spatial Autocorrelation Analysis

Global spatial autocorrelation is an evaluation criterion of the correlation between vari-
ables and their spatial positions, which measures the relationship between the attributes
and positions of spatial features [32–34]. According to Tobler’s first law of geography,
everything is related to everything else, and near things are more related than distant
things [35–37], which coincides with definition of global spatial autocorrelation of a point
element. The global Moran’s index is a popular statistical index of global spatial autocorre-
lation, which is used to analyze the spatial distribution pattern of research objects in the
whole research area, whether it shows a cluster pattern, and the overall similarity.

We used the spatial analysis tools in ArcGIS 10.5 to evaluate the global spatial autocor-
relation of earthquake events of the different time slices in the research area.

Generally speaking, the spatial distribution of point patterns is divided into three
basic types: dispersed, random and clustered. The quadrat analysis method is the most
commonly used intuitive method for studying the distribution types of spatial point
patterns. The spatial distribution types of earthquake events in California and Nevada
were analyzed by using the quadrat analysis method.

Firstly, we divided the research area into small grids by creating fishing nets, and then
counted the number of earthquake events in the different grids. According to the Smith’s
experiment [38–40], the optimal calculation formula for creating fishing nets is:

S =
2A
r

(8)

a =
√

S, (9)

where S is the area of the grid, A represents the area of the research area, and r represents the
total number of earthquake events in the different time slices in the study area. Although
any closed figure can theoretically be used as the shape of the grid, the square is the best
choice as it is easy to construct and merge into a large figure. Thus, we chose squares to
construct the grid. We used Equation (9) to deduce a, which is the side length of the grid.
Figure 2 shows one fishing net example of earthquake events (time slice: 1980–1983).
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Figure 2. Fishing net (time slice: 1980–1983).

Secondly, we executed the Spatial Join Processing command, which is used to create
statistics of the number of earthquakes of each grid in the fishing net, and the numbers of
earthquakes of each grid were selected as the analysis field in the global spatial autocorre-
lation analysis method.

Finally, ArcGIS produced the analysis report, including the global Moran’s index,
p-value and z-score. The global Moran’s index is expressed as follows [41]:

I =
n
s0

∑n
i=1 ∑n

j=1 wi,jzizj

∑n
i=1 zi

2 (10)

zizj = (xi − x)
(
xj − x

)
(11)

s0 =
n

∑
i=1

n

∑
j=1

wi,j (12)

where xi and xj represent the number of earthquake events in grids i and j, respectively; x
represents the average number of earthquake events in each grid Zi and Zj represent the
number of deviations between the number of earthquake events in grids i and j and the
average number of earthquake points in each grid, respectively; wi,j represents the spatial
weight between grid i and grid j; n represents the total number of earthquake points in the
different time slices; and s0 is the cluster of spatial weights for all grids.

The value of the global Moran’s index varies between 1 and −1. When the global
Moran’s index is greater than 0, the spatial distribution of earthquake events tends toward
clustering; the larger the global Moran’s index, the more obvious the clustering. When
Moran’s index equals 0, there is no obvious spatial relationship, which means that the
spatial distribution of the earthquake events is random; otherwise, it is dispersed. [42].

In Equation (10), it is necessary to know the value of the spatial weight w when
calculating the global Moran’s index. ArcGIS 10.5 provides six methods to generate spatial
weight. Among the six methods, the INVERSE_DISTANCE method supposes that the
spatial relationship between the element and other elements is a relationship that represents
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attenuation with an increase in distance, which is coincident with the first law of geography
and so is also applicable to geographical phenomena with obvious spatial relationships such
as earthquakes. Thus, we chose the INVERSE_DISTANCE method to generate the spatial
weight. In the CONTIGUITY_EDGES_ONLY method, the relationship between elements is
only affected by the elements in a common boundary or overlapping, but the research goal
of this paper was to analyze the spatial autocorrelation of earthquake events in the whole
study area. Thus, this method was not suitable for our study, and none of the other methods
were more suitable for the study than the INVERSE_DISTANCE method. In addition to the
spatial weight, the Distance Method and Standardization should be set when the global
spatial autocorrelation analysis is conducted. In this study, the Distance Method parameter
was set to EUCLIDEAN_DISTANCE, and the Standardization parameter was set to ROW.
After setting the above parameters, the global spatial autocorrelation of earthquake events
in this area was analyzed, and the analysis report was generated.

4. Results
4.1. Frequency Statistical Results

An earthquake is a phenomenon of the slow accumulation and then quick release
of energy in the crust. When the energy in the Earth’s crust in a certain area is in the
accumulation period, the seismicity in the region is weak, the frequency of earthquake
events is low, and the earthquake risk is low; by contrast, when the energy is in the release
period, the seismicity in this area is strong, the frequency of earthquake events is relatively
high, and the earthquake risk is high. According to the international standard of Richter
magnitude, earthquake events of magnitude 4.5 or above are middle–strong earthquakes,
which may cause harm to buildings and people’s lives in the surrounding areas. Therefore,
it is meaningful to study the frequency change of earthquake events with magnitude
4.5 or above. According to the statistical results (Table 1), we find that the frequency of
earthquake events of magnitude 4.5 or above in California and Nevada presents a regular
decreasing–rising trend as seen in Figure 3. Using four time slices as a group, the frequency
of earthquake events of the first three time slices decreases gradually and increases in the
last time slice; the next group presents the same change rule. As shown in Figure 3, the
different line colors represent the frequency changes of different groups of earthquake
events, and the points of 1992–1995 and 2004–2007 are change points of different groups.

Figure 3. Frequency of earthquakes of magnitude 4.5 or above in different time slices.
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4.2. Temporal and Spatial Evolution Process of the Weighted Average Center of Earthquake Events

We used the weighted average center analysis tool of ArcGIS 10.5 to obtain the
weighted average centers of the earthquake events of magnitude 3.0 or above in different
time slices in the research region and then connect them in chronological order. Figure 4
shows the temporal and spatial evolution trace of the weighted average center in earth-
quake events in different time slices and the epicenters of the earthquakes of magnitude
6.0 or above in the research region

Figure 4. Temporal and spatial evolution processes of the weighted average center of the earthquake events of magnitude
3.0 or above.

As shown in Figure 4, the weighted average center of the earthquake events in this
area shows a conch-type movement law, where it moves close to the center from all sides.
The initial weighted average center of earthquake events in Fresno is close to the Owens
Fault Zone (time slice: 1980–1983). Then, the moving path of the weighted average center
of the earthquake is like a conch, moving closer to the center from all sides. Figure 4 also
shows that the epicenters of most historical great earthquakes move with the direction
of the weighted average center of earthquake events in that time slice. For example, two
earthquakes of magnitude 6.0 or above occurred near the Owens Fault Zone and one
earthquake of magnitude 6.0 or above near the San Andreas fault zone in the 1980–1983
time slice, and two earthquakes with magnitudes of 7.1 and 6.4 occurred near the Garlock
Fault Zone in 2016–2019 time slice.

4.3. Temporal and Spatial Evolution Process of the SDE

The SDEs of the earthquakes of magnitude 3.0 or above in the different time slices
in the research area were generated using the directional distribution tool in the ArcGIS
10.5 toolbox. Figure 5 illustrates the temporal and spatial evolution processes of the SDE
of the earthquake events in different time slices. The statistical parameter analysis results
of the SDE in different time slices are listed Table 2. In the active periods of frequent
earthquakes (e.g., 1980–1983, 1992–1995, and 2016–2019 time slices), the SDE areas were
relatively small because of the concentrated distribution of earthquakes, and the directions
of earthquake distribution were obvious because of the large differences between the
long axis and the short axis. The azimuth of the SDE reflects the main trend direction in
earthquake distribution; from Table 2, the standard deviation ellipse rotation angles of the
different time slices were all between 115◦ and 137◦, indicating that the NW–SE spatial
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distribution of earthquakes was dominant in the research area, which is basically consistent
with the direction of the San Andreas Fault Zone across the north and south of California.

Figure 5. Temporal and spatial evolution process of the SDEs of earthquake events: SDE map in (a) 1980–1983; (b) 1984–1987;
(c) 1988–1991; (d) 1992–1995; (e) 1996–1999; (f) 2000–2003; (g) 2004–2007; (h) 2008–2011; (i) 2012–2015; (j) 2016–2019.

Table 2. Statistical parameter analysis results of the SDE of the earthquake events in the different
time slices.

Num. Time Slice Area (km2) XSD (km) YSD (km) Rotation (◦)

1 1980–1983 154,520.46 153.05 232.25 132.90
2 1984–1987 240,296.75 157.30 355.43 136.98
3 1988–1991 230,772.07 134.74 398.51 125.17
4 1992–1995 120,823.85 109.25 260.61 124.50
5 1996–1999 183,305.77 134.92 316.37 130.54
6 2000–2003 227,698.35 155.06 342.19 115.25
7 2004–2007 244,423.49 162.67 350.15 122.03
8 2008–2011 240,818.34 158.71 354.40 125.78
9 2012–2015 239,941.87 148.40 379.23 128.09

10 2016–2019 107,422.86 104.84 239.14 124.69

4.4. Temporal and Spatial Evolution Process of Global Spatial Autocorrelation Analysis

The global spatial autocorrelation analysis report of the earthquake events of magni-
tude 3.0 or above in the different time slices in the research area were obtained using the
spatial autocorrelation analysis tool in the ArcGIS 10.5 toolbox. In addition to the global
Moran’s index, the analysis results in the report also include z-scores and p-values. In
general, the z-score and p-values in the report were analyzed first. The z-score being greater
than 1.96 and the p-value being less than 0.05 indicate that the analysis result of the data set
is statistically reliable [43]. Secondly, we analyzed the global Moran’s index in the report,
which represented the spatial distribution pattern of earthquake events in this area.

The analysis results of the time slice from 1980 to 1983, as an example (Figure 6), show
that the p-value is less than 0.05, the z-score is greater than 1.96, and the global Moran’s
index is greater than 0, which shows that the spatial distribution pattern of earthquake
events in this period of the research region was clustered. All the spatial autocorrelation
analysis reports of the earthquake events in the different time slices are shown in Table 3.
The p-values in the global spatial autocorrelation analysis results of the earthquake events in
different time slices are less than 0.05, and z-scores are all greater than 1.96, and the global
Moran’s Indexes are greater than 0, which indicate that the spatial distribution pattern of
the earthquake events of magnitude 3.0 or above in California and Nevada is clustered and
the results are statistically reliable.
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Figure 6. Global spatial autocorrelation report of earthquake events (time slice: 1980–1983).

Table 3. Global spatial autocorrelation analysis parameter of earthquake events in different time slices.

Num. Time Slice Moran’s Index p-Value z-Score

1 1980–1983 0.32 0.000001 32.88
2 1984–1987 0.28 0.000001 16.73
3 1988–1991 0.29 0.000001 12.96
4 1992–1995 0.41 0.000001 27.51
5 1996–1999 0.35 0.000001 20.46
6 2000–2003 0.19 0.000001 8.13
7 2004–2007 0.24 0.000001 8.75
8 2008–2011 0.28 0.000001 9.64
9 2012–2015 0.11 0.000023 4.23
10 2016–2019 0.11 0.000001 7.45

5. Discussion and Conclusions

In this study, we used statistical spatial analysis methods to study the temporal and
spatial evolution trends in earthquake events of magnitude 3.0 or above in California and
Nevada, and to explore the earthquake risk in this region based on the experimental results.

According to the statistical results of earthquake events, we found that the frequency of
earthquakes of magnitude 4.5 or above in California and Nevada presents a regular change
trend of decreasing–rising every 16 years, where the number of earthquakes gradually
increases in the first 12 years, and then gradually decreases in the next four years. If this
rule is true, the frequency of earthquakes of magnitude 4.5 or above in the next time slice
(2020–2023) will be less than that of 2016–2019 as this time slice is expected to be in the
decline phase of this cycle. However, it does not mean that no large earthquake will occur
in the next four years in the research area.

The spatial and temporal evolution results of the weighted average centers method
showed that the spatial concentration trend in earthquake events in California and Nevada
shows a conch movement pattern, which means the epicenter of a large earthquake is
approaching the center of the study area. If the law is true, the weighted average center of
earthquake events in the next time slice is likely to move toward the south-west.
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The result of the temporal and spatial evolution of SDE showed that the dominant
direction of spatial distribution of earthquakes in California–Nevada is NW–SE, which
is consistent with the direction of the San Andreas Fault Zone. This result agrees with
the trend in the foreshock sequence during the 2019 M 6.4 and M 7.1 Ridgecrest earth-
quakes [19].

In summary, this study provides a new perspective for the exploration of the temporal and
spatial evolution trends of earthquakes and for understanding the earthquake risk in an area.
The experimental results of the temporal and spatial evolution trends in this paper are consistent
with other research, which indicates the validity of using the spatial statistical method to study
the spatial and temporal evolution characteristics of earthquake events. The approach could
be extended to other regions in the future. The earthquake catalog is important for identifying
the temporal and spatial evolution characteristics of earthquake events; the more complete the
earthquake catalog, the more accurate the research results. However, considering the error
of earthquake data recorded in the USGS catalog and the uneven distribution of stations, the
experimental results obtained in this paper may show deviation.
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