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Abstract: Viroids are small non-capsidated, single-stranded, covalently-closed circular noncoding
RNA replicons of 239–401 nucleotides that exploit host factors for their replication, and some cause
disease in several economically important crop plants, while others appear to be benign. The proposed
mechanisms of viroid pathogenesis include direct interaction of the genomic viroid RNA with host
factors and post-transcriptional or transcriptional gene silencing via viroid-derived small RNAs
(vd-sRNAs) generated by the host defensive machinery. Humulus lupulus (hop) plants are hosts to
several viroids among which Hop latent viroid (HLVd) and Citrus bark cracking viroid (CBCVd) are
attractive model systems for the study of viroid-host interactions due to the symptomless infection of
the former and severe symptoms induced by the latter in this indicator host. To better understand
their interactions with hop plant, a comparative transcriptomic analysis based on RNA sequencing
(RNA-seq) was performed to reveal the transcriptional alterations induced as a result of single
HLVd and CBCVd infection in hop. Additionally, the effect of HLVd on the aggressiveness of
CBCVd that underlies severe stunting in hop in a mixed infection was studied by transcriptomic
analysis. Our analysis revealed that CBCVd infection resulted in dynamic changes in the activity of
genes as compared to single HLVd infection and their mixed infection. The differentially expressed
genes that are involved in defense, phytohormone signaling, photosynthesis and chloroplasts, RNA
regulation, processing and binding; protein metabolism and modification; and other mechanisms
were more modulated in the CBCVd infection of hop. Nevertheless, Gene Ontology (GO) classification
and pathway enrichment analysis showed that the expression of genes involved in the proteolysis
mechanism is more active in a mixed infection as compared to a single one, suggesting co-infecting
viroids may result in interference with host factors more prominently. Collectively, our results provide
a deep transcriptome of hop and insight into complex single HLVd, CBCVd, and their coinfection in
hop-plant interactions
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1. Introduction

Viroids are the smallest known non-encapsidated infectious pathogens, consisting of covalently
closed single-stranded RNA molecules ranging in size from 239 to 401 nucleotides (nt), depending on
the particular viroid species [1]. Intriguingly, viroids lack a protein-encoding capacity but possess the
essential biological information for host specificity, autonomous replication by rolling-circle mechanism,
systematic spreading, subcellular localization, and interaction with host factors [2]. Nevertheless,
viroids (chloroplastic) possess high rates of in vivo mutation that are orders of magnitude higher than
any other nucleic acid-based replication entity, and even single nucleotide substitution can dramatically
alter its virulence and host range [3]. These attributes make them enticing models for the study of
RNA structure-function relationships. Viroids are cosmopolitan in distribution, and their hosts include
monocots and dicots, herbaceous and woody plants, crops, and ornamental plants, which reflects
their high potentiality of transmissibility [4]. Viroid-induced symptoms range from necrosis to less
severe developmental disorders, including chlorosis, epinasty, leaf deformation and necrosis, stunting,
fruit distortion, and plant death [5]. Currently known viroid species are classified into two families
depending on their molecular and biological properties: Pospiviroidae and Avsunviroidae. Members of
Pospiviroidae are replicated through an asymmetric rolling-circle mechanism in the nucleus, using host
DNA-dependent RNA polymerase II [6], resulting in the synthesis of oligomeric, greater-than-unit
length RNA replicative intermediates (plus and minus single strand and double-stranded RNA) that
are processed by host enzymes into mature viroid circles [7]. In contrast, members of the Avsunviroidae
family are replicated and accumulated through symmetric rolling circles in chloroplasts by using the
nuclear-encoded polymerase (NEP), and further, the oligomeric intermediates undergo via an internal
hammerhead encoded self-cleavage ability to unit length and are ligated by host enzyme into mature
circles [8,9]. However, in contrast to the explosive discovery of the viroid replication mechanism, the
molecular mechanism of viroid-induced pathogenesis and host responses are still enigmatic. Emerging
evidence shows that viroid-specific small RNAs (vsRNA) accumulate during viroid infection and
are involved in transcriptional gene silencing via gene methylation [10], direct interaction with plant
proteins or/and by viroid-induced RNA interference (RNAi) based post-transcriptional gene silencing
(PTGS) [11].

Studies of plant–viroid interactions have led to new insight into viroid mutual complex interactions
in the host plants. In viroid/viroid interactions, multiple viroid species can exhibit an antagonistic
(decrease of individual viroid species titers) or synergistic (increase of individual viroid species titers)
relationship, and the outcome of co-infection interactions and corresponding host responses determine
the health status or magnitude of disease [12]. In the Pospiviroidae family, coinfection and several types
of interactions were observed for Potato spindle tuber viroid (PSTVd), Citrus exocortis viroid (CEVd),
Chrysanthemum chlorotic mottle viroid (CChMVd), Chrysanthemum stunt viroid (CSVd), and Hop stunt
viroid (HSVd), etc. species based on the severity of disease symptoms in host plants [12]. For instance,
Tomato apical stunt viroid (TASVd) showed an antagonistic interference in CEVd/ PSTVd infected
Solanum jasminoide plants [13], whereas the titer of Citrus dwarfing viroid (CDVd) was enhanced by
Citrus tristeza virus (CTV) showing a synergistic relationship in Mexican lime [14].

Hop (Humulus lupulus L., Cannabaceae) is an economically important crop, mainly cultivated
in Europe, western Asia, and North America for specific secondary metabolites, which serve as an
essential component in the brewing and pharmaceutical industries [15]. Among other diseases, viroid
diseases pose a severe threat to hop cone production. Currently, hop plants are known to be the host
for four viroid species, namely Hop stunt viroid (HSVd) [16], Apple fruit crinkle viroid (AFCVd) [17], Hop
latent viroid (HLVd) [18], and Citrus bark cracking viroid (CBCVd) [19]. The infection caused by HLVd
has been reported worldwide in hop growing regions [18]. Although HLVd-infected hop plants are
symptomless, infection leads to a significant reduction in bitter acids content [20]. HSVd was first
discovered in Japanese hop fields with typical symptoms being reported after 3–7 years of infection,
which include stunting, leaf curling, small cone formation, and a substantial reduction of alpha-acid
content [21,22]. The disease caused by AFCVd is currently restricted to Japanese hop fields, and
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symptoms caused by this viroid resemble those of HSVd [21]. Among them, the disease caused by
CBCVd is the most aggressive, and symptoms appear after one year of infection. Symptoms include
severe bine stunting, leaf down curling, a reduction in cone size, dry root rotting in hops after the first
dormancy, and complete plant dieback in 3-5 years [19,23]. Viroids represent the rapidly evolving
system, and in this context, comprehensive analysis of gene expression in the viroid-infected host
is crucial to dissecting the molecular mechanism responsible for viroid pathogenesis and further
developing novel and effective strategies to control the disease.

As the research area of the impact of viroids on host transcriptome has rapidly expanded, and
previously published studies based on microarray analysis have revealed the altered gene expression
patterns in viroid-infected plants, including the induction or suppression of genes involved in defense
and stress responses, cell wall structure, chloroplast biogenesis, signaling pathway, symporter activities,
and hormone and protein metabolism, among others [24–27]. High-throughput sequencing (HTS)
technologies such as the Illumina or Ion Torrent RNA-Seq approach have provided a powerful platform
for the high-resolution characterization of transcriptome and eradicated several problems associated
with microarray technologies in terms of the wider dynamic range of detection, precision, reproducibility,
cost efficiency, higher specificity, and sensitivity [28]. In the last few decades, transcriptome profiling
has been extensively applied to investigate the global gene expression profile in plant-pathogen
compatible interactions. Nevertheless, limited transcriptome-based analyses have been conducted in
plant-viroid interactions for the system level understanding of host response to viroid infection, which
include the transcriptome profiling of PSTVd-infected potato [29] and tomato [30], PLMVd infected
peach [31], CBCVd-infected hop [32] and HSVd-infected hop [33]. These studies have illustrated
that viroid infection appears to cause an amendment of gene expression mainly involved in defense
response, cell wall structure, protein metabolism, phytohormone homeostasis, hormone signaling,
photosynthesis, and primary and secondary metabolism.

Incredibly, the presence of HLVd in new hop planting materials has been claimed in major
hop growing fields, suggesting that HLVd is widely distributed in virtually all other hop-growing
regions worldwide [34], but still, transcriptome changes in response to HLVd in hop have not been
reported. HLVd is considered a common denominator in CBCVd-infected hop plants [19], which raises
important questions about the interactions between these two viroids and the etiology of the disease,
especially because single CBCVd infections of hop are not present in nature or hop fields. In this
context, knowledge of the impact of potential interaction of HLVd and CBCVd with hop immune
responses is essential for the development of disease management strategies and the mechanisms that
underlie severe stunting in hop in the mixed infection of HLVd and CBCVd.

In this study, we employed comparative transcriptome profiling to investigate genome-wide
changes in gene expression associated with individual HLVd and CBCVd hop infections. Furthermore,
we have extended our study to investigate global changes in gene expression patterns in the association
of HLVd-CBCVd coinfection, which could help in understanding the mechanisms that underlie the
induction of more severe disease symptoms in mixed HLVd-CBCVd infection as compared to CBCVd
single infection in hop.

2. Results

2.1. Artificial Viroid Inoculations, Infectivity and Phenotypic Evaluation of Plants

In order to gain preliminary information about differences in the incidence and severity of
infections, virus- and viroid-free hop plants were biolistically inoculated with infectious cDNA
constructs of single viroid (HLVd, CBCVd) and HLVd-CBCVd combination. The RT-PCR testing in a
pre-dormancy period of 4 months post inoculation (mpi) showed viroid infections in 40% of plants
inoculated with HLVd, 60% in plants inoculated with CBCVd, whereas in HLVd-CBCVd treatment
30% of plants were infected with both viroids, and the rest of infected coinoculated plants have
single HLVd or CBCVd infection (Table S1). Further testing in first (14 mpi) and second (28 mpi)
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postdormancy periods, revealed increased infection up to 60% for HLVd, up to 80% for CBCVd and
40% for HLVd-CBCVd plants (Table S1), probably as a consequence of mechanical spreading during
plant manipulations.

In the predormancy period, hop plants coinfected with HLVd and CBCVd developed some typical
symptoms such as leaf down curling and mild yellowing, while plants infected with CBCVd or HLVd
were symptomless. After the first dormancy phase, plants infected with CBCVd developed typical
leaf deformations, including yellowing of the margins, which were more severe in the double viroid
infection. After second dormancy the plant coinfected with HLVd and CBCVd showed a similar trend
of disease development with bine cracking and stunted growth but more pronounced as compared to
CBCVd infected plants (Table 1; Figure 1). The strand-specific RT-qPCR (ssRT-qPCR) suggested the
higher accumulation of minus multimeric strand compared with plus polarity of CBCVd, whereas
HLVd exhibited an excess of plus over minus strands in individual infection in the postdormancy
period (28 mpi) (Figure S1). Compared to the mock-inoculated control, plants coinfected with HLVd
and CBCVd showed a significant biomass reduction (81%) as compared to plants harboring CBCVd
(53.7%). These observations confirmed the aggressiveness of CBCVd in causing disease with significant
synergistic interaction with HLVd, which in combination caused a more deleterious disease in hop.

Table 1. Infectivity assessment of hop plants (cv. Celeia) following biolistic inoculation of HLVd,
CBCVd and HLVd + CBCVd.

Treatments

Before Dormancy (4 mpi) After First Dormancy (14 mpi)
After Second Dormancy

28 mpi 31 mpi

Leaf
Symptom

Plant
Stunting

Bine
Cracking

Leaf
Symptom

Plant
Stunting

Bine
Cracking

Leaf
Symptom

Plant
Stunting

Bine
Cracking

Green Plant
Parts, Weight

(g) x

HLVd 0 0 0 0 0 0 0 0 0 135.9 a

CBCVd 0 0 0 0.4 1 0 1 1 0 66.9 b

HLVd + CBCVd 1 0 0 1.7 1 1 2 1 1 27.5 c

Viroid free plants 0 0 0 0 0 0 0 0 0 144.6 a

The data represents mean value of 10 replicates for individual treatment (mock-inoculated, CBCVd or HLVd and
CBCVd + HLVd viroid inoculation). Leaf symptoms (absent: 0; mild: 1; severe: 2); Stunting and bine cracking
(present: 1; absent: 0) are represented as score. x Means followed by the same letter were not significantly different
at the 5 % level (Duncan’s multiple range test).
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Figure 1. Symptoms induced in hop plants after 28 months of biolistic inoculation of HLVd, CBCVd,
and HLVd-CBCVd inoculum. The CBCVd infected and HLVd-CBCVd coinfected plant showing
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2.2. NGS Sequencing, De novo Assembly, and Annotation of Transcriptome

To determine the consequences of individual HLVd or CBCVd infection and their interactions
with hop at the transcriptional level, total RNA was isolated from mock-inoculated, the biolistically
inoculated CBCVd-, HLVd- and CBCVd + HLVd-positive young leaves of hop plants at 28 mpi and
samples with RIN > 8 were enriched for mRNA fraction. High throughput sequencing of three
biological replicates was performed on Ion Proton NGS platform, which utilizes the detection of
hydrogen ions during complementary nucleotide incorporation and offers strand-specific sequencing.
Sequencing yielded on average 25.1 M of raw reads, yielding on average 2.69 Gb of raw nucleotide data.
Adapter, quality, and length trimming showed that outputs of Ion Torrent contained the high-quality
clean reads and numbers were not substantially changed (24.0 M reads and 2.4 Gb). The infectivity
of viroids in samples was confirmed by the presence of viroid reads and completely correlated with
expected treatments. Quality control parameters indicated that the resulting gene transcript data were
reliable. Sequencing results for viroid treatments, controls, and biological replicates are summarized
in Table S2. De novo assembly of quality reads, removal of redundancy, and mapping reads back to
contigs generated 94,604 unigenes with lengths ranging from 105 to 11,649 bp, with a high percentage of
unigenes size of more than 1000 bp (Figure S2A). The cumulative length of the assembly was 53,959,732
bp with N50 and average length values of 681 bp and 570 bp, respectively. The average unigene
size was longer than those reported in previous studies, namely, Spartina alterniflora (386 bp) [35],
chickpea (428 bp) [36], sweet potato (321 bp) [37], tomato (380 bp) [38], etc. The average GC content
of hop unigenes was 40.68%, which was in the range of GC contents of coding sequences in dicots.
The completeness of the obtained transcriptome was assessed with a BUSCO tool [39] against 1375
single-copy genes from the embryophyta odb9 collection. The comparison showed that transcriptome
contains 738 (53.7%) complete single-copy BUSCOs, 411 fragmented BUSCOs (29.9%), while 226
BUSCOs (16.4%) were missing in the assembly.

Functional annotation of unigenes against the NCBI nr protein databases with a significance
cut-off E-value of 1.0 E−3 revealed that 57,874 (61.17%) assembled unigenes aligned to the nr protein
database, while the remaining 36,730 of unigenes (38.83%) did not show significant homology to
any available sequence in the database. These sequences might represent the fragmented transcripts,
misassemblies, or untranslated parts of the genes. The E-value distribution of the predicted unigenes
illustrated that 58.78% of aligned unigenes had an E-value of less than 1.0 E−50 and suggested their
significant homology with the available gene sequence in the database (Figure S2B). Analysis of the
similarity distribution revealed that 54.53% unigenes shared more than 80% sequence length with
genes of the nr database (Figure S2C). Species distribution of homology search of unigenes against the
nr protein database exhibited that approximately 68.61% of total unigenes were matched to sequences
of six top-hit species, namely, Trema orientalis (34.04%), Parasponia andersonii (18.78%), Morus notabilis
(8.65%), Quercus suber (2.65%), Vitis vinifera (2.54%), and Ziziphus jujube (1.95%), suggesting significant
sequence conservation of hop unigenes with other plant species (Figure S2D).

Sequence homology based on GO classification mapped and clustered a total of 40,339 unigenes
into three main GO categories, including 38 functional groups (Figure 2A). A total of 1,34,872 GO
functional assignments were obtained, among which, biological processes comprised the largest
category (61,871, 45.87%), followed by cellular component (38,065, 28.22%) and molecular functions
(34,936, 25.90%) (Figure 2A). The alignment of unigenes with the COGs database for orthologous
genes clustered 30,405 unigenes into 25 categories based on sequence homology with 31,553 functional
annotation due to the multiple COG function of some unigenes (Figure S3). Among the 25 functional
categories, the majority of unigenes were associated with “function unknown” (25.97%) followed
by “signal transduction mechanism” (12.37%), “post-translational modification, protein turnover,
chaperones” (7.72%) and “transcription” (6.21%) (Figure S3).
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Figure 2. Histogram representation of Gene Ontology (GO) classification annotated transcripts of hop
(A) and the differentially expressed genes in single CBCVd, HLVd infected, and HLVd-CBCVd coinfected
hop (B) in three categories: Cellular components, molecular function, and biological processes.

In order to understand the gene functions with an emphasis on the biochemical pathway,
16,341 KEGG annotated unigenes were categorized into five different functional groups (Table S3).
The largest number of unigenes were classified into the “metabolism”, with most of them involved in
“carbohydrate metabolism” (13.73%), “amino acid metabolism” (8.45%), “lipid metabolism” (7.70%),
“biosynthesis of other secondary metabolites” (5.89%) “energy metabolism” (5.34%), and other
sub-categories. Intriguingly, unigenes annotated in the secondary metabolism categories were
associated predominantly with terpenoid backbone biosynthesis, prenylflavonoids biosynthesis,
flavonoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, which was in agreement with
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our previous report that secondary metabolites are biosynthesized in hop leaves at the detectable
limit [40]. In addition to metabolism, unigenes were also classified into “genetic information
processing”, which accounted for 4043 KEGG annotated unigenes, most of them involved in “translation”
(9.16%), followed by “folding, sorting and degradation” (7.45%), whereas “cellular processes” were
represented by 289 KEGG annotated unigenes involved in “transport and catabolism”, “cell growth
and death”, “cell motility” and “cell communication”. Additionally, 4,720 unigenes were classified
into “environmental information processing (EIP)” and are only involved in “signal transduction” and
“membrane transport”.

2.3. Validation of High-Throughput Sequencing Data Using RT-qPCR

Total RNA samples isolated for RNA sequencing was used to perform RT-qPCR analysis (Figure 3).
PCR primers for the amplification of eight randomly chosen highly differentially expressed genes
and two selected (PR1 and CH4) were developed from annotated transcripts. DGE analyses showed
that genes encoding PR1 and CH4 were significantly downregulated in HLVd-CBCVd coinfection,
while upregulated in single CBCVd and HLVd infection in RNA seq profiling. The recent knowledge
gleaned from biochemical and molecular studies suggested that PR1 protein plays a major role in
plant defense and in compatible host-pathogen interactions over expressions of PR1 protein suppress
programmed cell death, thus suggesting their involvement in pathogenesis and symptom expression
and the reduction of growth [41]. Similarly, accumulated evidence suggested that chitinase regulate
the cell expansion of root and are crucial for normal plant growth and development [42,43]. We,
therefore, also employed two of these genes for RT-qPCR analysis, which also showed a similar trend
of the significant reduction in mixed HLVd-CBCVd infection compared to a single infection. RT-qPCR
analyses with a randomly selected set of eight primer pairs showed a consistent expression profile with
six primer pairs as obtained in RNA seq data in all samples. Inconsistencies of expression among the
remaining two genes between RT-qPCR and RNA-Seq could be attributed to a lack of specific primers
targeting regions with the high discriminatory or plausible difference in sensitivity and normalization
factors of the two methods [44]. Nevertheless, the RT-qPCR expression data was in agreement with
those obtained from the DGE data, indicating reliable results.
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Figure 3. Validation of differentially expressed genes from RNA sequencing by RT-qPCR. Graph showing
fold change of genes in a leaf of CBCVd infected HLVd infected, and HLVd-CBCVd coinfected hop. MYB:
MYB transcription factor, GSR: Golgi snap receptor complex, GPE: Glucose-6-phosphate 1-epimerase,
ST: Bidirectional sugar transport, SERK: Somatic embryogenesis receptor kinase 1, CHI4: Chitinase 4,
PR1: Pathogenesis-related protein 1, CEL: Cellulase, BC: Blue copper protein, TRX: Thioredoxin
h-type-like. qRT-PCR analyses were normalized using DRH1 (DEAD-box ATPase-RNA-helicase) as an
internal control gene. The fold change of each gene was calculated by the 2−∆∆CT method. The vertical
bars indicate standard deviation.
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2.4. Functional Classification and Comparison of Differentially Expressed Genes

To obtain comprehensive differential expression patterns among CBCVd, HLVd, and CBCVd-
HLVd infected libraries, transcript abundances were calculated and normalized to reads per kb per
million reads, which delivers an empirical approach and eliminates bias based on RNA composition [45].
Mapping of all the clean reads onto the non-redundant set of hop transcripts illustrated their range of
distribution patterns 0.0 to 2316.18, 0.0 to 7091.90, and 0.00 to 3996.73 (RPKM) in CBCVd (Table S4),
HLVd (Table S5), and CBCVd-HLVd (Table S6) libraries, respectively, suggesting the diverse range of
change of expression level in single and mixed infection. The comparative transcriptome abundance
analysis was carried out between mock-inoculated (viroid free) and viroid infected libraries, which
revealed significant differential expression level (P-value < 0.05 and logFC ≥ 2 or ≤ –2) of 2,263
[up-regulated (UR): 1090; down-regulated (DR): 1173) and 1,041 (UR: 578; DR: 473) unigenes in
individual CBCVd and HLVd-infected hop plants, whereas in CBCVd-HLVd coinfected hop plants
1,051(UR: 607; DR: 444) unigenes were found to be differentially regulated. Strikingly, a smaller number
of upregulated (25) and downregulated genes were similar in single CBCVd and HLVd infected hop
plants, suggesting the differential alteration pattern of transcriptome (Figure 4).
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Approximately, 98.01% of CBCVd responsive DEGs (UR: 1,063; DR: 1,155), 92.41% of HLVd
responsive DEGs (UR: 498; DR: 464), and 98.09% HLVd-CBCVd responsive DEGs (UR: 593; DR: 438)
were annotated using the BLASTx procedure against the nr-protein database of NCBI. Furthermore,
CBCVd, HLVd, and HLVd-CBCVd responsive DEGs were classified into GO functional categories
and further subjected to GO enrichment analysis to find out the correlation between phenotypic
differences and gene expression. The GO annotation categorized 1,837 CBCVd responsive DEGs
into three classes (16 terms, 41.56%), cellular function (7 terms, 21.96%), and molecular function
(5 terms, 31.07%) (Figure 2B). Similarly, the GO annotation categorized 783 HLVd responsive DEGs into
three classes (15 terms, 42.07%), cellular function (6 terms, 23.39%), and molecular function (4 terms,
33.89%), whereas GO annotation of HLVd-CBCVd responsive DEGS classified 844 unigenes into 24
subcategorized of three classes (Figure 2B). Moreover, GO functional enrichment analysis provided
the overview of statistically significant and relevant GO terms of DEGs, which were modulated in
single CBCVd, HLVd, and mixed CBCVd-HLVd infection in hop. To build a biological interpretation,
a total of 32 GO terms of CBCVd, HLVd, and CBCVD-HLVd responsive DEGs were screened on
account of adjusted P-value ≤ 0.05 (Table S7) and their statistically significant enriched GO terms
were plotted in two-dimensional scatterplot (Figures S4, S5, S6, S7, S8, and S9). Among the various
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biological process categories, the GO terms linked to primary metabolic process lipid biosynthesis and
cellular process were significantly enriched, whereas in molecular function category GO terms related
to catalytic and binding activity, which plays a crucial role in signal recognition and transduction
during host-pathogen interaction, were significantly enriched in single CBCVd, HLVd, and mixed
HLVd-CBCVd infections. To extend our understanding of specific biological pathways and functions
of DEGs, they were subjected to mapping against KEGG database categories according to sequence
homology, and the results were compared with the unigenes background. The KEGG pathway
analysis revealed that amino acid and lipid metabolism pathways were enhanced in single CBCVd,
HLVd, and mixed HLVd-CBCVd infections, whereas equitably large number of unigenes assigned to
oxidative phosphorylation and photosynthesis were diminished in CBCVd infection (Table S3), which
showed completely opposite expression patterns in HLVd infected plants correlating our phenotypic
observation of severe chlorosis in CBCVd infected plants. Intriguingly, we found that the KEGG terms
associated to upstream translation pathways such as the mRNA surveillance and ribosome biogenesis
pathways were relatively more enriched in HLVd-CBCVd infection compared to their single infection,
suggesting that proteolysis mechanism is more active in a mixed infection as compared to a single
one. Furthermore, we performed the MapMan based systematic analysis of DEGs to visualize an
unbiased and comprehensive overview of the biological process and their coordinated response to
CBCVd, HLVd, and mixed HLVd-CBCVd infections in hop (Figure 5). The appearance of chlorosis in
CBCVd infected leaf tissues could be attributed to the reduced expression of genes involved in sucrose
and starch biosynthesis, which further leads to an extensive reduction of photosynthesis activity
(Figure 5A). Inversely, such a correlation could not be established in a HLVd-CBCVd infected hop
plant, but diminished intrinsic chaperone activity was observed (Figure 5C). The chaperones are the
main component of the protein quality control mechanism of the cell. The extensive downregulation
of genes encoding chaperones suggested a reduction in protein quality control activities, which serve
as a protective cellular mechanism to ward off damaged proteins and thus prevent their interference
with essential cellular processes. Hierarchical clustering analysis using the expression profile (RPKM
value) of the 50 most differentially regulated genes associated with single CBCVd, HLVd, and mixed
HLVd-CBCVd infection was performed to validate the reproducibility of the biological replicates
(Figure 6). Intriguingly, candidate DEGs were clustered in four groups in all cases, illustrating their
relationship, degree of responses, and consistency of biological replicates. The heat map of the 242
common DEGs showed the relative transcripts level in single CBCVd, HLVd, and mixed HLVd-CBCVd
infection (Figure S10).
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Figure 5. Overview of the MapMan visualization of differences in transcript levels in CBCVd infected
(A), HLVd infected (B), and HLVd-CBCVd coinfected (C) hop. The log2 fold changes of significantly
differentially expressed genes were imported and visualized in MapMan. Red and green displayed
signals represent a decrease and an increase in transcript abundance, respectively in single CBCVd,
HLVd infected and single CBCVd, HLVd infected, and HLVd-CBCVd coinfected relative to the
mock-inoculated samples of hop. The scale used for coloration of the signals (log2 ratios) is presented.
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Figure 6. Heat map and complete linkage hierarchical clustering of differentially expressed genes
in CBCVd infected (A), HLVd infected (B) and HLVd-CBCVd coinfected (C) hop. Colors on vertical
represent the clustered genes based on gene expression, the horizontal line represents the single gene,
and color of the line indicates the average gene expression in single and mixed CBCVd, HLVd infection.
The signal ratios were shown in a blue-orange-red color scale, where red indicated high expression
level and blue indicated low expression level.

3. Discussion

In the present study, we investigated the dynamic changes in gene expression profile that occur
following single-infections of CBCVd or HLVd, and CBCVd-HLVd mixed infections in hop. The
different dynamic changes in hop transcriptome were observed for single and mixed-infections, and
their correlation with defense-related genes was also diverged. In plants, PTI (pathogen-triggered
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immunity) and ETI (effector-triggered immunity) constitute the frontline of defense against pathogens as
an innate immune system [46]. The PTI is triggered by plasma membrane-bound receptors-like-kinases
upon the recognition of the conserved pathogen features known as pathogen-associated molecular
patterns (PAMPs), whereas in ETI pathogen-derived effectors or avirulence (Avr) factors are recognized
by cytosolic NB-LRR receptors (R proteins) [47]. Eventually, the signal transduction pathway via MAP
Kinases cascades leads to the induction of PR proteins, and the generation of reactive oxygen species,
ultimately leading to transcriptional reprogramming. The significant inductions of the expression
levels of receptor kinases, signaling pathway (mitogen-activated protein kinase and calcium-dependent
protein kinases), PR proteins indicates that the innate immunity process was activated as a result of
CBCVd, HLVd single and mixed infections in hop. The calcium-dependent protein kinases (CDPKs) are
involved in the phosphorylation of the substrates of PTI and ETI pathways to control the transcriptional
reprogramming of defense-responsive genes and hypersensitive cell deaths [48]. The CDPKs genes
exhibited elevated expression trends and could be correlated to disease development in hop. The
Calmodulin (CaM) and calmodulin-like (CML) proteins act as a sensor relay of the Ca2 + signaling
pathway and serve as key regulators of pathogen-induced changes in gene expression in plant immune
responses [49]. Our analysis clearly showed the activation of CaM and CML genes, indicating the
significant role of this signaling molecule in response to CBCVd and HLVd infections in hop. There
is no evidence that viroids encode proteins or possess conserved PAMP; therefore, it is improbable
that they trigger the ETI-dependent host immune system. Nevertheless, our DEGs data illustrated
that the PTI-associated genes were significantly affected in single and mixed infections of CBCVd and
HLVd in hop. In the animal system, our current understanding suggests that the double-stranded
RNA (dsRNA)-activated protein kinase (PKR) is activated upon binding of dsRNA and involved in
viral pathogenesis [50]. This is not surprising considering that RNA-binding proteins (RBPs) serve
as key players during viroid infection in host plants. Previous reports have demonstrated that the
PKR homolog in plant P58IPK is required by tobacco mosaic virus (TMV) for binding and successful
virulence in Nicotiana benthamiana and Arabidopsis thaliana plants [51]. Similarly, PSTVd utilizes the
plant double-stranded-RNA-binding serine-threonine protein kinase (protein kinase- viroid induced;
pkv) for symptom development [52]. Despite the conceptual relevance of the role of P58IPK and PKV
genes in viruses or viroid infections, their elevated expression levels were not observed in either CBCVd
or HLVd infected hop plants, which is similar to those reported in the previous studies [26,30,32].
Intriguingly, the elevated expression patterns of several protein kinases were observed, which might be
candidate players functioning in the binding of viroid and interaction with PTI pathway in hop plant.
However, a better understanding of the mode of action of viroid single-stranded RNA in the activation
or suppression of ETI and/or PTI is crucial in the scenario of robust and coordinated manipulation of
the host immune system for the strategic control of viroid-infection in plants.

Our current understanding from several studies suggests that plant hormones contribute
redundantly to plant growth, development, and abiotic/biotic stress responses through transcriptional
reprogramming [53]. Previously published studies based on gene expression profiles have revealed
a complex array of changes in hormone signaling, their biosynthesis and catabolism upon viroid
infection, resulting in developmental disorders and the appearance of disease symptoms in the infected
plants [26,54]. Our RNA-seq data demonstrated that genes involved in hormone signal transduction
pathways such as indole-3-acetic acid (IAA), brassinosteroid (BR), abscisic acid (ABA), ethylene
(ET), and jasmonate (JA), were found to be differentially modulated after CBCVd, HLVd single and
mixed infections in hop, which is consistent with previous studies showing the alteration of the gene
expression of major plant hormone signal transduction pathways upon CBCVd and HSVd infection in
hop and cucumber, respectively [32,54]. The importance of another plant hormone such as salicylic
acid (SA) arises from its role in the mediation of resistance against biotrophic pathogens, tomato
mosaic virus, and citrus exocortis viroid (CEVd) in tomato [55,56]. Interestingly, the gene encoding
component of salicylic acid (SA) biogenesis and responses were not found to be induced in either
CBCVd, HSVd single, or mixed infection. The lack of induction of genes associated with the SA
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hormonal pathway observed in our experiment is consistent with previously observed PSTVd-infected
tomato, which exhibited the changes of expression of genes associated with the GA and BR signaling
pathways, without the alteration of expression of genes linked to SA and JA signaling pathways [25].
Remarkably, among other plant hormones, BR plays a critical role in orchestrating cell division,
elongation, growth, and development [57]. The stunting in hop caused by CBCVd could be correlated
to the down-regulation of genes involved in the biosynthetic and signaling pathways of BR hormones.
These findings corroborate previous studies that have shown the stunted growth in viroid-infected
tomato [29] and potato [58] and a similar drift of reduced levels of transcripts associated with BR
synthesis enzymes.

An essential feature of the plant defense response is an impairment of photosynthesis activity by
reducing the consistency of stomatal mesophyll conductance to CO2 and Rubisco activity, modification
in the structure of the chloroplast, and the reduction of photosynthetic reaction centers found in
photosystems I and II [59]. Early studies have also presented evidence for the down-regulation of
the expression of several genes involved in photosynthesis (photosynthesis-antenna and electron
transport genes), chloroplast, and its biogenesis-related genes in viroid-infected plant tissues, which
might serve as an active mechanism of the plant defense program [54]. The down-regulation of genes
involved in photosynthesis pathways such as the photosystem I and II reaction center, ferredoxin, light
harvesting chlorophyll a/b binding proteins and biogenesis of chloroplast such as pentatricopeptide
repeat-containing chloroplastic protein, DELLA transcription factors, etc. in CBCVd, HLVd single and
mixed infection in hop confirmed the previous reports. The restrictive photosynthesis and chloroplast
development repress growth and development in plants [60], which could be one of the causes of
the development of symptoms such as chlorosis, stunting, or mosaic in CBCVd and HLVd infected
hop plants.

An important part of plant response to pathogen interactions consists of a significant alteration
of genes involved in the primary and secondary metabolism [61,62]. Similarly, our transcriptome
data revealed that both single and mixed infection caused fluctuation in the expression levels of
genes involved in those two metabolic pathways. Our data indicated that viroid infection promoted
the expression of genes associated with transporter activity such as ABC transporters to meet the
fluctuating demand for transport activities of sugars, amino acids, and secondary metabolites.

Previous in-depth studies have illustrated that viruses and viroids arrogate or interfere plant
ubiquitin-proteasome system (UPS) and heat shock proteins (HSPs), which provides them with novel
avenues to promote replications [63], systemic spread, and accumulations [64]. In this context, several
presented models indicated that viruses could target endoplasmic-reticulum-associated ubiquitination
as well as cytosolic ubiquitin ligases to channelize UPS to new targets, such as argonaute to compromise
the host gene silencing machinery [65]. In the present study, genes related to the UPS system were
differentially regulated in single CBCVd (15 genes up-regulated and 5 genes down-regulated), HLVd
(1 gene up-regulated and 4 genes down-regulated), and mixed infection (5 genes up-regulated and four
genes down-regulated). The cellular heat shock proteins (HSPs), components of the protein quality
control UPS system, are highly conserved classes of proteins and are involved in preserving cellular
homeostasis under different stressful conditions by facilitating folding of nascent proteins, prevention
of denatured protein aggregation, translocation, and assembly reactions [66]. It has been shown that
the expression level of family homologs of HSPs is massively induced as a consequence of the defense
response that frequently accompanies viruses and viroids infection in plants [66–68]. Mechanistically,
it has been shown that viruses or viroids utilize HSP chaperones for their sheltering, expressions,
multiplications, cell-to-cell movement, and the regulation of host defense response directly or indirectly
through interactions with DnaJ [69]. Intriguingly, in our study, the expression level of genes encoding
different classes of HSPs (HSP33, HSP70, HSP90) were found to be altered as a consequence of single
CBCVd, HLVd, and mixed infection, emphasizing their modulatory and interaction roles in viroid
infection in hop.
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Several intracellular parasites have evolved remarkable strategies to manipulate the cellular
translation machinery via translational reprogramming for their replication and movement [70]. The
ribonucleoprotein has long been considered an integral component of translational reprogramming and
variation in their composition adds a layer of translational control of selective mRNA for mobilizing
host defenses and coordinating innate responses to infection [71]. It is worth noting that the expression
of genes that encode ribosomal proteins (the RP regulon) were found to be differentially regulated in
the single and mixed-infection of CBCVd and HLVd, suggesting that protein synthesis is significantly
disrupted which is likely to be associated with substantial morphological remodeling (stunted growth)
in hop.

Mounting shreds of evidence have elucidated that transcription factors (TFs) play important
and unique roles as regulators in diverse biological processes, involving developmental processes, in
response to biotic and abiotic stresses [72–74]. Several families of TFs, such as bZIP (basic-domain
leucine-zipper), WRKY, AP2 (APETALA2)/ERF (ethylene-responsive factor), NAM/ATAF/CUC (NAC),
MYBs, MYC, and bHLHs (basic helix-loop-helix) are differentially regulated upon viroid infection in
plants [26,28]. Similarly, in our study 77, 23, and 30 differentially expressed TFs were identified in
hop infected with single CBCVd, HLVd, and their mixed infection, respectively. The differentially
expressed TF families identified in this study included MYB, WRK, NAC, zinc finger, bHLH, bZIP,
ERF, and WD-40, which further reinforced their regulatory roles in defense response against viroid
infection in plants.

In summary, our analysis of the differential gene expression profile contributes to the
ever-expanding insight into the differences between transcriptional changes in hop leaves triggered by
single CBCVd, HLVd, and their mixed infection. Overall, the number of DEGs associated with CBCVd
infection was significantly higher than those of HLVd and their mixed infection, suggesting that in
mixed infection transcriptional gene silencing via gene methylation or direct interaction with hop plant
proteins could play a significant role in disease aggressiveness. However, further study is required to
elucidate the underlying mechanism and resolve this relationship.

In conclusion, the extensive transcriptome data generated by our study could serve as a valuable
resource, and further, the identification of DEGs will give impetus to research on the identification
of molecular markers as well as functional studies working towards strategies for improving viroid
resistance in crop plants.

4. Materials and Methods

4.1. Plant Inoculation and Disease Assessment

Viroid inoculations were performed on the clonally propagated virus and viroid free plants of cv.
‘Celeia’ obtained in a commercial hop nursery of the Institute of Hop Research and Brewing Žalec,
Slovenia. Ten plants for each viroid treatment (HLVd, CBCVd, HLVd + CBCVd) were biolistically
inoculated [12,75] two months after dormancy using dimeric viroid cDNA prepared from donor
plants infected by CBCVd (GenBank KM211547) [32] and HLVd (GenBank X07397) [18]. Inoculum
for HLVd + CBCVd treatment was prepared by mixing equimolar quantities of nucleic acids. Each
hop plant was inoculated in total with 360 ng cDNA by five shots into leaves using Helios GeneGun
(Bio-Rad). Immediately after inoculation plants were put into polyethylene bags to prevent drying of the
shot-wound leaf area and transferred to growing chamber conditions at 25 ◦C and 16h illumination (90
µmol m−2 s−1 PAR). After one-week, plants were transferred to an isolated test plot under environmental
field conditions. Plants of each viroid treatment were additionally isolated by white insect proof
mesh (1.6 × 1.6mm, Tenax, Italy) and were grown in 4Lpots as single bine on a string attached to a
3m height wirework. Non-inoculated plants were treated in the same conditions. To confirm viroid
infection plants were examined by RT-PCR after 4, 14, and 28- mpi using CBCVd and HLVd specific
primers [76,77]. The strand-specific RT-qPCR (ssRT-qPCR) was performed to monitor the titre of
HLVd and CBCVd in their individual and mixed infection. At the same time points (mpi) plants
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were assessed and scored for the presence of leaf malformations (absent: 0; mild: 1; severe: 2), plant
stunting and bine cracking (present: 1; absent: 0). During dormancy (7-11 and 20-24 mpi) plants were
maintained as a rootstock in the same pots and at the end of second vegetation (31mpi) the green part
of each plant was weighted to measure their biomass.

4.2. RNA Extraction, Library Construction and NGS Sequencing

Total RNA isolation was extracted from approximately 100 mg of mock-inoculated and
systematically infected individual CBCVd, HLVd, and CBCVd-HLVd coinfected hop leaves (28 mpi)
using a SpectrumTM Plant Total RNA Kit (Sigma-Aldrich, St. Louis, MO, USA) following the
manufacturer’s instructions. Briefly, plant material from an individual plant was flash frozen in liquid
nitrogen and pulverized. The powder was transferred to lysis solution, vortexed and incubated at
56◦C for 5 min. Cellular debris was centrifuged at maximum speed in a benchtop centrifuge and lysate
filtrated through filtration column by centrifugation. The binding solution was added to clarify the
lysate and mixed by pipetting. RNA was bound to the binding column and DNase digestion was
performed by On-Column DNase procedure. A triple washing procedure was followed, and cleaned
RNA was eluted in 50 µl of elution solution. Total RNA was quantified by means of absorbance
A260/280 using NanoVue spectrophotometer and RNA integrity numbers (RINs) determined by Agilent
Bioanalyzer 2100 electrophoresis using RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CO,
USA). RNA samples were stored at –80◦C until further processed.

NGS sequencing of poly-A RNA fraction was performed using the Ion Proton system. First,
poly-A mRNA was enriched using Dynabeads® mRNA DIRECT™ Micro Kit (Thermo Fisher Scientific,
Waltham, MA, USA) following the manufacturer’s procedure using 8 µg of total RNA input from
an individual plant. After elution of mRNA from oligo (dT)25 Dynabeads the whole amount of
isolated mRNA was used directly for RNA-seq library preparation employing Ion Total RNA-Seq kit
v2 (Thermo Fisher Scientific, Waltham, MA, USA) following the procedure for low-input RNA-Seq
whole-transcriptome. Briefly, mRNA was fragmented using RNase III enzymatic digestion, ligated to
Ion Adapters with barcodes and reverse transcribed. After purification, the cDNA was amplified, and
further yield and size distribution were assessed by the High Sensitivity DNA Kit (Agilent Technologies,
Santa Clara, CO, USA). Three libraries were pooled together in equimolar concentrations and used for
the preparation of template-positive Ion PI™ Ion Sphere™ Particles (ISPs) with 200 base-pair average
insert libraries following the manufacturer’s procedure. After amplification in Ion OneTouch™ 2
System, the enrichment of template-positive particles was performed using Dynabeads® MyOne™
Streptavidin C1 beads on an Ion OneTouch™ ES system. The enriched sample was used for sequencing
using the Ion PI™ Hi-Q™ Sequencing 200 Kit on Ion PI™ Chip v3 following the recommended protocol.
The sequenced reads were delivered quality and adapter trimmed in unaligned BAM format, which
was converted to FASTQ format using the SAMtools. Basic quality control for the sequenced data was
performed by FastQC script. Viroid infection status in samples was confirmed by the mapping of reads
against the respective sequence of HLVd and CBCVd. The raw RNA-seq were submitted to the Sequence
Read Archive (SRA) for public availability. The complete raw RNA-seq datasets for three biological
replicates of mock-inoculated, CBCVd infected, HLVd infected, and HLVd-CBCVd coinfected hop
plants have been deposited in the NCBI Sequence Read Archive under accession number SRR8775478,
SRR8775477, SRR8775467 (mock inoculated); SRR8775476, SRR8775475, SRR8775468 (HLVd infected);
SRR8775474, SRR8775473, SRR8775471 (CBCVd infected) and SRR8775472, SRR8775470, SRR8775469
(HLVd-CBCVd), respectively.

4.3. Transcriptome Assembly and Identification of Differentially Expressed Genes

The high-quality reads from all the transcriptome datasets were combined, and de novo assembled
into contigs termed as unigenes using CLC Genomics Workbench with default parameters settings
(K mer = 25). The completeness of the obtained hop transcriptome was evaluated with the BUSCO tool
(Benchmarking Universal Single-Copy Orthologs) based on evolutionarily informed expectations of
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gene content from near-universal single-copy orthologs using the plant odb9 release dataset version [39].
All assembled unigene sequences were compared with hop transcriptome database of the HopBase
genomic resources repository (http://hopbase.org/) using MEGABLAST at the typical cut-off E-value of
1.0 × 10−5, with similarity level and alignment length more than 95% and 100 bp, respectively. In order
to calculate the expression level of each unigenes, the clean reads of each library were mapped to
transcriptome reference sequences of HopBase. Furthermore, clean reads were mapped back onto
the assembled unigenes, and gene expression levels were estimated by RPKM (Reads per kilobase
of exon per million reads mapped) unit using the Expectation-Maximization algorithm of the Trinity
software package [44,78]. The obtained count data as an input was exported to DESeq2 R package [79]
for determining differential expression from digital gene expression (DGE) data of two groups using a
model based on the negative binomial distribution, and resulting P-values were adjusted using the
Benjamini and Hochberg approach [80] for controlling the false discovery rate (FDR). Genes with FDR
adjusted P-value <0.05 and at least a two-fold change (≥2 or ≤−2) were considered as differentially
expressed genes (DEGs) between two libraries. A heatmap was constructed using the log-transformed
and normalized value of unigenes based on Euclidean distance and complete-linkage methods using
the R statistics package heatmap3 [81].

4.4. Validation of RNA-Seq Data by Quantitative Real-Time PCR (RT-qPCR)

To examine the reliability of RNA-seq data, two pathogenesis-related (PR) genes, namely,
PR1 (PR1 gene family), chitinase-4 like (CH4) and eight randomly selected candidate DEGs
were subject to quantitative real-time PCR (RT-qPCR) analysis using specific designed primers
(Supplementary Table S8). Aliquots of the total RNA used in RNA-Seq analysis were treated with
the TURBO DNA-free™ Kit (Invitrogen, USA) to remove genomic DNA traces and 2 µg of total RNA
was used for cDNA synthesis using the Superscript®III First-strand cDNA Synthesis kit (Invitrogen,
Carlsbad, CA, USA), following the manufacturer’s instructions. RT-qPCR was performed on the CFX
Connect™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) using 20 µL of reaction
mixture containing 10-fold diluted cDNA, 10 µL 2× SYBR green PCR master mix (Applied Biosystems),
10 µM of forward and reverse gene-specific primers (Table S1) under the following amplification
condition: Initial denaturation at 95 ◦C for 3 min, followed by 40 cycles of denaturation at 95 ◦C
for 15 s, annealing at 58 ◦C for 30 s, and extension at 72 ◦C for 30 s. At the end of the reaction, the
specificity of each primer pair was assessed using a melting curve analysis. The threshold cycles (Ct) of
each candidate gene were averaged for triplicate reactions, and the relative transcriptional changes in
gene expression levels (fold-change) were calculated by the comparative Ct (2-∆∆Ct) [82] using DRH1
(DEAD-box ATPase-RNA-helicase) [83] as an internal reference for gene expression.

4.5. Functional Annotation and Gene Enrichment Analysis

To deduce the putative functions, the assembled sequences were aligned against the NCBI
non-redundant (nr) protein database against the Viridiplantae subset of the NCBI nr database via
BLASTX with a significance cut-off E-value of 1 × 10−3. Blast2GO command line tools (version
1.34.0) [84] were used for homology-based functional annotation of the transcripts, which assigned
Gene Ontology (GO) terms comprising of three functional groups, such as biological processes,
molecular functions, and cellular components to the query sequences. To gain an overview of the
gene pathway network and an understanding of the high-level functions and utilities of a biological
system, the bidirectional best hit (BBH) method was used for KEGG (The Kyoto Encyclopedia of Genes
and Genomes) pathway assignment using the online KEGG Automatic Annotation Server (KAAS)
(http://www.genome.jp/kegg/kaas/) [85]. The enrichment analysis was performed to evaluate the
enrichment of several GO categories of DEGs compared to all annotated genes. A hypergeometric
test equivalent to one-tailed Fisher’s exact with Bonferroni’s correction (FDR ≤ 0.05) was performed
using the AgriGO toolkit (Du et al., 2010) to find enrichment of functional categories. The p-value
cut off was set at p ≤ 0.05 for statistical analysis and all the GO terms qualifying this parameter

http://hopbase.org/
http://www.genome.jp/kegg/kaas/
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were visualized using ReviGO [86]. Similarly, a statistical enrichment of DEGs in KEGG pathways
was performed using the KOBAS network software [87] with an adjusted P-value < 0.05 as the
cut-off criterion. Furthermore, the list of gene identifiers and Log2 fold change values of DEGs were
submitted to the MapMan software [88], and mapping files were created using the Mercator tool
(http://mapman.gabipd.org/web/guest/mercator). The mapping file predicted by Mercator was used as
an input to the MapMan software for pathway visualization of DEGs involved in hop-viroid interactions.
In the case of expression data for duplicated gene identifiers, the lower value of fold-change was used
for analysis to avoid an overestimation of the data.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/
3154/s1.
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