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Abstract: Two optimization strategies, codon usage modification and glycine supplementation,
were adopted to improve the extracellular production of Bacillus sp. NR5 UPM β-cyclodextrin
glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated
and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation
index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following
optimization of glycine supplementation enhanced the secretion of β-CGTase activity up to 2.2-fold
at 12 h of cultivation as compared to the control. β-CGTase secreted into the culture medium by
the transformant reached 65.524 U/mL at post-induction temperature of 37 ◦C with addition of
1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant β-CGTase
was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid
(Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular β-CGTase
production when compared to the single approach, hence offering the potential of enhancing the
expression of extracellular enzymes, particularly β-CGTase by the recombinant E. coli.

Keywords: cyclodextrin glycosyltransferase; codon usage; cyclodextrin; glycine; inducer;
extracellular enzyme

1. Introduction

Cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) is a carbohydrate-active enzyme
(CAZy) that belongs to glycosyl hydrolase family 13 (http://www.cazy.org/). This enzyme catalyzes
transglycosylation reactions, including hydrolysis, cyclization, coupling and disproportionation [1].
Through the cyclization reaction, CGTase catalyzes the conversion of starch into cyclodextrin, with
well-characterized ones such as α, β and γ-cyclodextrins [2]. Cyclodextrin has a broad range of
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applications in the food [3], agriculture [4] and pharmaceutical [5] industries, as well as in environmental
engineering [6], hence it is crucial to develop an efficient process for the synthesis of CGTase.

Due to the problems concerning low CGTase production at longer cultivation time by the natural
host cells [7], the use of a genetically engineered strain is seen as the potential approach to fulfil the
higher demand of cyclodextrin at an industrial scale. However, the issues of inclusion body formation,
slow growth and inactivation of protein [8] has made the expression and production of CGTase from
recombinant Escherichia coli even more challenging. In order to circumvent these obstacles, several
strategies have been adopted that include codon usage optimization where codons are modified in a
selected sequence to the high-frequency codons favored in the expression host [2]. Codon optimization
is a synonymous mutation that modifies the nucleotide sequence of a gene without altering the amino
acid sequence.

Evidence showed that the choice of the synonymous codons can influence protein production
by improving the correlation with the transfer RNA (tRNA) levels in the host [9] and changing the
messenger RNA (mRNA) secondary structure [10]. The codons favored by the host cell are normally
correlated with the large quantity of aminoacyl tRNAs [11] which guarantees the recycling of tRNA,
hence resulting in an efficient gene translation. The presence of rare codons in the native gene could
disrupt the translational efficiency due to the longer waiting time for a suitable aminoacyl tRNA [12].
In addition, rare codons could cause a slow elongation rate along the mRNA, resulting in ribosomal
pause, hence causing the mRNA to be unstable [13]. In the worst case scenario, the rare codons could
stimulate mRNA degradation [14].

It is also crucial to understand the genetic information of CGTase, so that a functional protein
could be produced in a heterologous expression system. Several bioinformatics tools present in the
ExPasy server, and in particular ProtParam [15], have been used to derive information about the
stability, the total charge, the isoelectric point (pI) and hydrophobicity of β-CGTase.

The optimization of the cultivation process has been regularly employed to improve the expression
of extracellular CGTase [16]. The use of inducers gives substantial advantages in altering the integrity
of the cell wall of E. coli that will promote the secretion of extracellular recombinant enzyme into the
culture medium. It is common that microbial cell membranes are very selective for the translocation of
materials [17] in and out of the cell membrane. However, the rate and amount of materials transported
across the cell membrane can be changed by altering the cell membrane permeability [18]. Glycine has
been particularly shown to act as the best inducer in enhancing the secretion of recombinant β-CGTase
as compared to Triton X-100 and xylose [19], even though all of these inducers were reported to play
a role in increasing the permeability of cell membrane, which allowed protein translocation across
the membrane.

In a previous study, the individual supplementation of glycine into the culture media was shown
to enhance the α-CGTase secretion from 2.4 to 32 U/mL at 48 h of cultivation [20]. It is even more
impressive that the addition of glycine as an inducer did not cause apparent effects on bacterial cell
viability [19], which indicates that the secretion of recombinant β-CGTase into the culture medium was
not due to cell lysis. Since the optimization of either codon usage or glycine supplementation could
enhance the secretion of enzyme into the culture medium, we are hypothesizing that the combined
optimization could further improve the extracellular expression of β-CGTase even better than a
single approach.

2. Results and Discussion

2.1. Construction of Recombinant E. coli for Expression of codon-Optimized cgt-BS Gene

The codons for the native cgt-BS gene were optimized using the GenScript Rare Codon Analysis
Tool software (https://www.genscript.com/tools/codon-frequency-table) to be more corresponding to
the codon usage of E. coli, where the codon adaptation index (CAI) was increased from 0.67 to 0.78.
Table 1 shows the codon usage of E. coli (as obtained from http://www.kazusa.or.jp/codon/; last accessed
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on 29 April 2019) as compared to the fraction of codons for both native (cgt-BS) and codon optimized
(cocgt-BS) gene sequences.

The replacements of several rare codons with those favored by E. coli were noted such as AGA(R)
and CGA(R) to CGC(R) and AUA(I) to AUC(I). The major changes in frequencies of selected codons
to those preferred by E. coli were also recorded such as CUG(L) from 2 to 27, UUA(L) from 31 to
13 and CCG(P) from 2 to 18. The changes in codons of β-cyclodextrin glycosyltransferase (CGT-BS)
were balanced with the host preference without altering the amino acid sequences. In a previous
study, the systematic codon optimization strategy was employed to further improve the expression of
α-CGTase in E. coli with 2.79-fold increment following after IPTG induction at 48 h of fermentation [2].
In this study, the codon optimized cocgt-BS gene was constructed in pQE30xa and in frame with
6×-His tag to assist in protein purification using affinity chromatography. The expression vector was
successfully constructed and verified by sequencing before it was transformed into E. coli JM109.

Table 1. Codon preference in E. coli, codon usage in the native gene (cgt-BS) and the optimized synthetic
gene (cocgt-BS).

Amino
Acid

Codon

Relative
Frequency Frequency Amino

Acid
Codon

Relative
Frequency Frequency

E. coli cgt-BS cocgt-BS E. coli cgt-BS cocgt-BS

Ala (A)

GCA 0.22 11 7

Leu (L)

CUA 0.03 5 0
GCC 0.25 8 9 CUC 0.10 4 6
GCG 0.34 5 16 CUG 0.55 2 27
GCU 0.19 9 1 CUU 0.10 9 5

Arg (R)

AGA 0.04 3 0 UUA 0.11 31 13
AGG 0.03 1 0 UUG 0.11 9 9
CGA 0.05 5 0 Lys (K) AAA 0.76 22 27
CGC 0.37 4 12 AAG 0.24 10 5
CGG 0.08 1 2 Met (M) AUG 1.00 15 15
CGU 0.42 8 8 Phe (F) UUC 0.49 11 14

Asn (N) AAC 0.61 34 41 UUU 0.51 24 21
AAU 0.39 36 29

Pro (P)

CCA 0.20 7 4

Asp (D) GAC 0.41 11 20 CCC 0.10 3 2
GAU 0.59 37 28 CCG 0.55 2 18

Cys (C) UGC 0.57 1 4 CCU 0.16 7 5
UGU 0.43 3 0

Ser (S)

AGC 0.27 16 19

Gln (Q) CAA 0.31 22 10 AGU 0.13 11 8
CAG 0.69 10 22 UCA 0.12 16 14

Glu (E) GAA 0.70 22 21 UCC 0.17 6 9
GAG 0.30 9 10 UCG 0.13 4 14

Gly (G)

GGA 0.09 13 3 UCU 0.19 14 3
GGC 0.40 17 22

Thr (T)

ACA 0.30 17 11
GGG 0.13 13 7 ACC 0.43 14 26
GGU 0.38 16 27 ACG 0.23 14 13

His (H) CAC 0.48 7 7 ACU 0.21 11 6
CAU 0.52 10 10 Trp (V) UGG 1.00 15 15

Ile (I)
AUA 0.07 12 0 Tyr (Y) UAC 0.47 20 19
AUC 0.46 13 30 UAU 0.53 28 29
AUU 0.47 24 19

Val (V)

GUA 0.17 18 10
GUC 0.20 11 18
GUG 0.34 5 11
GUU 0.29 19 14

2.2. Prediction of Theoretical Physicochemical Properties of β-Cyclodextrin Glycosyltransferase (CGT-BS)

The physicochemical parameters of recombinant CGT-BS protein were analyzed using ExPASY’s
ProtParam tool at http://web.expasy.org/protparam/ and compared with the selected Bacillus spp.
CGTases proteins (Table 2). The positively charged amino acids for the selected CGTases proteins
including CGT-BS were relatively similar, ranging between 46 and 52. The presence of low number of

http://web.expasy.org/protparam/
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positively charged amino acids (Arg and Lys) as compared to negatively charged amino acids (Asp and
Glu) in CGT-BS and other selected Bacillus spp. CGTases might contribute to the stability of these
proteins. Arg was reported to act as suppressor of aggregation and destabilizer of proteins, while Lys
have either little effect or might not contribute to the stability of proteins [21].

However, the formation of a salt bridge was suggested through the interaction of a positively
charged amino acid with a negatively charged one, potentially contributing to protein conformational
stability, especially when these two ionic groups are located adjacent to each other [22]. In addition,
the aliphatic index of CGT-BS indicates a higher value and showed a close similitude to other selected
CGTases proteins, hence indicating thermally stable CGTase proteins. Nonetheless, the instability
index classified all selected CGTases including CGT-BS as stable proteins.

2.3. Optimization of Glycine Supplementation to Improve Extracellular Secretion of Recombinant β-CGTase

To further enhance the expression level of the extracellular recombinant β-CGTase from E. coli,
the optimum glycine supplementation was determined using a central composite design (CCD).
Glycine was found to cause morphological changes, such as an enlargement of spheroidal morphology
in E. coli, as it is integrated into the nucleotide-activated peptidoglycan precursors, which leads to the
increased permeability of host cell [23,24]. The glycine added into the culture medium could replace
the alanine residues in the peptide component of the peptidoglycan of E. coli cell wall, resulting in a
more loosely cross-linked peptidoglycan and therefore, enhancing the permeability of outer membrane
of E. coli [25], without causing bacterial cell lysis [19,24].

A total of 20 experimental runs of different combinations of glycine supplementation were
carried out in this study where the response was β-CGTase activity. The fifth column of Table 3
shows experimental values obtained in this study as compared to the values predicted by CCD (sixth
column). β-CGTase activities measured were ranged from a minimum value of 3.109 U/mL to a
maximum value of 65.733 U/mL. Based on Analysis of Variance (ANOVA) (Table 4), the model fit
the data well and the model terms A, B and C corresponding to concentration of glycine, induction
time and post-induction temperature, respectively were implied as significant factors that influence
the expression of recombinant β-CGTase with p-values less than 0.05. In addition, p-value for
‘lack of fit’ showed greater than 0.05, hence indicated the ‘lack of fit’ of the model is insignificant.
Therefore, the model was fit with the responses data collected and was desirable for further experiment.
The multiple regression equation for the β-CGTase activity derived from the above three factors
analyzed by Design Expert Software (Stat-Ease Inc., Minneapolis, MN, USA, Version 7) is as follows:

β-CGTase = 64.17 + 2.17A− 3.15B + 2.18C + 3.90AB− 1.52AC + 0.4BC− 7.25A2
− 9.96B2

− 20.81C2

where A, concentration of glycine; B, induction time; C, post-induction temperature.
The goodness of the model expressed by coefficient of determination (R2) was calculated as 0.9966.

This explained 99.66% of the total variation for β-CGTase activity. Meanwhile, the Adjusted R2 was
calculated to be 0.9936, indicating that only <1% of the total variation was not included in the model.
The adjusted R2 also indicated that a good agreement was achieved between the response value and
predicted value [26]. The predicted R2 of 0.9763 was in reasonable agreement with the adjusted R2.
Therefore, the regression model was applied to calculate the predicted values (Table 3). From the results
obtained, the optimum β-CGTase activity for the experimental and predicted values was achieved
using 1.2 mM glycine, 37 ◦C post-induction temperature and 2 h induction time.
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Table 2. Physicochemical parameters of CGT-BS (this study) in comparison to the other CGTases from selected Bacillus spp., computed using ExPASY’s ProtParam tool.

Description Accession
Number

Theoretical
MW (Da) pI R+ R− EC a

(M−1·cm−1)
EC b

(M−1·cm−1)
II Stability AI GRAVY TNA

Bacillus sp. NR5 UPM cyclodextrin
glycosyltransferase (cgt) gene * HQ876173.1 80,622.34 4.81 48 76 142,810 142,560 24.57 stable 75.36 −0.405 11,108

B. circulans strain 251 cgt gene X78145.1 77,309.28 6.08 52 58 120,795 120,670 22.72 stable 74.05 −0.250 10,710

B. licheniformis cgtA gene for cyclomaltodextrin
glucanotransferase (CGTase) X15752.1 78,002.68 5.57 48 59 124,805 124,680 18.17 stable 71.75 −0.243 10,785

Bacillus sp. (strain no. 38-2) cyclomaltodextrin
glucanotransferase (CGTase) gene M19880.1 78,249.29 5.41 49 63 133,285 133,160 25.23 stable 75.76 −0.286 10,826

Bacillus sp. strain Y112 cyclodextrin
glycosyltransferase precursor (cgtase) gene KX579963.2 80,168.90 4.23 46 111 129,735 129,610 30.92 stable 73.39 −0.483 10,983

Bacillus sp. BL-31 cyclodextrin
glucanotransferase (cgt) gene EF363797.1 80,096.84 4.24 46 110 129,735 129,610 30.65 stable 73.39 −0.478 10,974

* This study. Theoretical isoelectric point (pI), number of positively charged amino acids − Arg + Lys (R+); number of negatively charged amino acids − Asp + Glu (R−); extinction
coefficient (EC) (a: assuming all pairs of Cys residues form cystines, b: assuming all Cys residues are reduced); instability index (II); aliphatic index (AI); grand average of hydropathicity
(GRAVY); total number of atoms (TNA).
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Table 3. Central composite design (CCD) matrix, the predicted and experimental values obtained for
the expression of codon optimized CGTase (cocgtBS) from recombinant E. coli.

Run
Concentration

(mM)
Induction
Time (h)

Post-Induction
Temperature (◦C)

β-CGTase Activity (U/mL)

Experimental Predicted

1 1.60 1.00 42.0 23.47 23.47
2 1.60 3.00 32.0 34.23 32.38
3 1.20 2.00 37.0 64.76 64.17
4 1.20 2.00 37.0 63.88 64.17
5 1.60 3.00 42.0 24.37 25.77
6 1.20 2.00 37.0 62.72 64.17
7 1.20 2.00 37.0 65.73 64.17
8 1.20 3.68 37.0 29.96 30.70
9 1.20 2.00 37.0 63.97 64.17

10 1.60 1.00 32.0 30.18 31.67
11 1.20 2.00 37.0 63.83 64.17
12 0.80 3.00 32.0 16.61 17.19
13 1.20 0.32 37.0 42.88 41.31
14 0.80 3.00 42.0 17.57 16.66
15 1.20 2.00 28.6 8.47 9.11
16 0.80 1.00 32.0 32.92 32.10
17 1.20 2.00 45.4 3.11 1.65
18 1.87 2.00 37.0 47.64 47.31
19 0.80 1.00 42.0 27.55 29.98
20 0.53 2.00 37.0 40.50 40.01

Table 4. Analysis of Variance (ANOVA) for response surface quadratic model for the expression of
extracellular recombinant CGTase (cocgtBS) from recombinant E. coli.

Source Sum of
Squares

Degree of
Freedom (df)

Mean
Square F Value p-Value

(Probability > F)
Significant Term
Based on p-Value

Model 7839.26 9 871.03 329.64 <0.0001 Significant
A 64.26 1 64.26 24.32 0.0006
B 135.82 1 135.82 51.40 <0.0001
C 64.98 1 64.98 24.59 0.0006

AB 121.96 1 121.96 46.16 <0.0001
AC 18.47 1 18.47 6.99 0.0246
BC 1.27 1 1.27 0.48 0.5044
A2 758.03 1 758.03 286.88 <0.0001
B2 1428.85 1 1428.85 540.75 <0.0001
C2 6229.12 1 6229.12 2357.42 <0.0001

Residual 26.42 10 2.64
Lack of fit 21.29 5 4.26 4.14 0.0724 Not significant
Pure error 5.14 5 1.03
Cor total 7865.69 19

R2 0.9966
Adjusted R2 0.9936

The relation between the concentrations of glycine and induction time on β-CGTase activity is
shown in Figure 1a. The ANOVA showed that the effect of glycine concentration on induction time (AB)
was the most significant factor on the expression of recombinant β-CGTase (p < 0.0001). The increased
of glycine concentration until it reached 1.2 mM followed by the induction time at 2 h resulted in higher
recombinant β-CGTase activity (65.733 U/mL). However, a reduction of the recombinant β-CGTase
activity (29.961 U/mL) was observed at 3.68 h of induction time with fixed glycine concentration, hence
indicating that induction time had greater effect than glycine concentration. When the induction
time was kept constant at 2 h, the recombinant β-CGTase activity was 40.495 and 47.644 U/mL with



Int. J. Mol. Sci. 2020, 21, 3919 7 of 16

the addition of 0.53 and 1.87 mM glycine, respectively (Table 3). At high inducer concentrations,
the reduction in specific growth rate was critical that led to early stationary phase and cell death [27].
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Figure 1. Effects of (a) glycine concentration vs. induction time, (b) glycine concentration vs.
post-induction temperature, (c) post-induction temperature vs. induction time on the recombinant
β-CGTase activities.

According to Li et al. [7], the extracellular secretion of the recombinant α-CGTase into the
culture medium of E. coli was affected by glycine induction time, where the supplementation of
glycine at the middle of the log phase of cell growth resulted in higher extracellular activity of the
recombinant enzyme. A higher cellular energy level or carbon source was not only used for producing
the recombinant protein, but also for the movement of proteins into the periplasm [28]. Therefore,
the induction time between the early-log stage and middle-log phase where the carbon source is still
available is suitable for the production of recombinant β-CGTase from E. coli.

The effect of glycine concentration on post-induction temperature (AC) was also a significant
factor (p = 0.0246) that influenced the expression of the extracellular recombinant β-CGTase (Figure 1b).
A higher glycine concentration at higher post-induction temperature resulted in an increment of the
recombinantβ-CGTase production until it reached the optimum level which was at 37 ◦C post-induction
temperature and 1.2 mM of glycine concentration. Any further increase beyond this point led to
reduction of the recombinant β-CGTase activity. When the induction time was kept constant at 2 h
with 1.2 mM glycine concentration, the recombinant β-CGTase activity was 8.469 and 3.109 U/mL at
28 ◦C and 45 ◦C post induction temperature, respectively.

It has been stated that the number of ribosomes per cell and level of ribosomal ribonucleic
acid (rRNA) remained constant in the temperature range of 23–42 ◦C [29]. The polypeptide chain
elongation rate would also increase with an increase in temperature, resulting in higher synthesis of
proteins. However, by further increasing the temperature, the microorganism spends a lot of energy for
maintenance. On the other hand, the transport of nutrients is also hindered at lower temperature [30].
Nevertheless, the interaction between induction time and post-induction temperature gave insignificant
effect to the expression of recombinant β-CGTase (p = 0.5044), which was greater than 0.05 (Figure 1c).
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Lo et al. [26] stated that the interactions among the cultivation conditions would not give a significant
influence towards the expression of the enzyme.

To confirm the model’s adequacy for predicting the maximum β-CGTase activity, the experiment
was carried out by using optimum conditions (1.2 mM glycine, 37 ◦C post-induction temperature and
2 h induction time) with a desirability of 0.965. Based on the results obtained, in comparison with the
predicted value, there was relatively small error which was only 2%. Therefore, a good agreement was
achieved between the predictive and actual values of β-CGTase activity at the optimum conditions,
giving high validity of the model. The supplementation of glycine into the culture medium enhanced
the extracellular secretion of β-CGTase activity by E. coli carrying pQEcocgt-BS as compared to the
culture without glycine (Figure 2).
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Figure 2. E. coli harboring pQEcoCGT-BS were grown in Terrific Broth (TB) media without glycine
(�) and with glycine supplementation at the optimized conditions (N) which were at post-induction
temperature of 37 ◦C, glycine concentration of 1.2 mM and induction at 2 h of cultivation as indicates
by arrow.

With the addition of glycine using the optimized feeding strategy as discussed earlier, theβ-CGTase
activity increased gradually and reached its highest secretion of 65.524 U/mL at 12 h of cultivation,
which was increased by 1.7-fold in comparison to a single approach of codon usage optimization and
5.6-fold as compared to the wild type strain when using soluble starch as a substrate [31]. In a different
study by Ding et al. [17], the secretion of recombinant α-CGTase into the culture medium of E. coli was
improved by adding 0.3% glycine, resulted in 12.89 U/mL of activity, which was 15 times higher as
compared to the culture without glycine.

2.4. Purification of Recombinant β-CGTase and Its Kinetic Parameters

The recombinant β-CGTase was purified from the 12 h culture induced with 1.2 mM glycine at 2 h
induction time at 37 ◦C. The recombinant β-CGTase carried an N-terminal fusion peptide containing a
6×-His sequence that has metal-binding affinity. The enzyme was purified through a combination
of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography, which resulted in
increased purity to 20.1-fold. The protein was then concentrated using ultrafiltration where the
purity was increased to 23.8-fold (Table 5). However, by taking into account the theoretical extinction
coefficient for the oxidized and reduced CGT-BS protein of 142,810 and 142,560 M−1

·cm−1, respectively
(Table 2) with the absorbance of the purified (ultrafiltration) protein fraction was 0.109, the purified
protein concentration was calculated to be 0.06 mg/mL. Nonetheless, the purity of codon optimized
protein (cocgt-BS) obtained in this study was not much different with the resultant recombinant cgt-BS
protein (non-optimized codon) in the previous study [19]. Similarly, the results of sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) also showed the expected band size of the



Int. J. Mol. Sci. 2020, 21, 3919 9 of 16

purified protein at approximately 80 kDa (Supplementary Figure S1), in correlation with the theoretical
molecular weight predicted using ExPASY’s ProtParam online tool (Table 2).

Table 5. Purification yield of recombinant codon optimized β-CGTase (cocgtBS) from E. coli following
induction with 1.2 mM glycine at 2 h of fermentation at 37 ◦C.

Purification Step Volume
(mL)

Total Activity
(U/mL)

Total Protein
(mg/mL)

Specific
Activity (U/mg)

Purification
Fold

Purification
Yield (%)

Crude 1000 77.1 16.2 4.8 1.0 100.0
Diafiltration 250 65.6 10.6 6.2 1.3 85.2

Affinity Chromatography 9 19.1 0.2 95.6 20.0 24.8
Ultrafiltration 3 11.0 0.1 113.4 23.8 14.3

A different range of soluble starch concentrations was then tested to produce β-cyclodextrin by
recombinant β-CGTase. A maximum β-cyclodextrin of 16.57 mg/mL was achieved by using 4 mg/mL
of soluble starch (Figure 3). However, the production of β-cyclodextrin was reduced and attained
almost a similar concentration with an increased soluble starch concentration. At this point, the enzyme
could probably reach saturation with the substrate [32]. The cyclization reaction of β-CGTase was
then described by Michaelis–Menten kinetic parameters (Figure 4) to evaluate the performance of
recombinant β-CGTase for β-cyclodextrin production [33,34]. The Vmax and Km values were evaluated
to be 1.25 mg/mL/min and 0.025 mg/mL, respectively. A small value of Km could indicate a high affinity
for the substrate [35] and it could achieve its highest catalytic efficiency at minimum concentration of
soluble starch.
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Figure 3. Production of β-cyclodextrin by purified β-CGTase using different concentrations of soluble
starch. Standard deviations are shown as bars and the deviation from the mean is below 5%.
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2.5. Characterization of Recombinant β-CGTase

The effects of pH and pH stability on the crude and purified codon optimized β-CGTase activities
were studied and presented in Figure 5a,b, respectively. The purified β-CGTase was highly tolerant
in the pH range of 5–7, with relative activity equivalent to 80% and more. Nonetheless, both the
crude and purified β-CGTases showed an optimum activity at pH 6. Extreme conditions at pH 4 and
pH 8–10 gave critical effects on both crude and purified β-CGTases relative activity with reduction
of more than 52%. After incubating the crude and purified β-CGTases with different pH buffer for
30 min, the purified β-CGTase showed more than 50% residual activity at pH 5–9. Meanwhile, crude
β-CGTase showed large reduction of its residual activity at the same pH range by 30–65%. An almost
similar result was obtained by Ong et al. [35] where the purified recombinant CGTase G1 was found to
be stable over a wide range of pH from 5 to 9 with a gradual loss of activity at acidic pH.
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Figure 5. Properties of the recombinant β-CGTase produced by E. coli harboring pQEcoCGT-BS;
(a) Optimal pH and (b) pH stability of the crude (#) and purified (�) β-CGTase.

The effects of temperature and temperature stability on crude and purified β-CGTase activities are
presented in Figure 6a,b, respectively. The purified β-CGTase could be classified as thermo-tolerant,
able to maintain a relative activity of more than 84% at 50–70 ◦C. However, the crude β-CGTase showed
a lower temperature tolerance where the relative activity was reduced to approximately 70% at the
same temperature ranges. However, the optimum temperature for both crude and purified β-CGTases
was the same at 60 ◦C.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 16 
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Following that, the crude and purified β-CGTases were incubated for 30 min with soluble starch
at different temperatures ranged from 40 to 90 ◦C. The residual activity of the purified β-CGTase was
reduced to 60% at 60 ◦C, but the residual activity of the crude β-CGTase was slightly lower at the
same temperature which was at 52%. In a previous study, the purified α-CGTase retained 50% of its
initial cyclization activity after incubation for approximately 8 h at 40 ◦C, 1.25 h at 45 ◦C and 0.5 h at
50 ◦C [7]. The high stability of the purified β-CGTase produced from this study with respect to pH
and temperature could makes this recombinant enzyme potentially useful in various applications.
However, more characterization studies need to be carried out in the future prior to its application at
an industrial scale.

3. Materials and Methods

3.1. Bacterial Strain and Plasmid

cgt-BS gene from a previous study [36] was mutated with codon usage optimization. Escherichia coli
JM109 [endA1, recA1, gyrA96, thi, hsdR17 (rk-,mk+), relA1, supE44, D (lac-proAB), F’ (tra D36, pro AB,
lacIqZ ∆ M15)] from Promega (Madison, WI, USA) was used as a host strain and plasmid pQE30xa
(QIAGEN, Hilden, Germany) was used as an expression vector.

3.2. Codon Optimization of cgt-BS Gene

The codons of the cgt-BS gene with the size of 2460 bp originally from Bacillus sp. NR5 UPM
(GenBank accession number: HQ876173.1) were optimized based on the codon preference of E. coli by
referring to a codon table containing fractional preference for each codon equal to that found in the
genome of E. coli. By using the GenScript Rare Codon Analysis Tool software (https://www.genscript.
com/tools/codon-frequency-table), the codons were optimized without compromising the encoded
amino acid sequences functional for protein expression. The synthesis of the codon-optimized gene
was performed by Apical Scientific Sdn. Bhd., Malaysia.

3.3. Construction of the Expression System

The amplified PCR fragment encoding the codon optimized cgt-BS gene was ligated into pQE30xa
vector, designated as pQEcoCGT-BS. The amplification of cocgt-BS gene was performed under
standard PCR conditions with 1 µg of genomic DNA, 200 %mol of each forward and reverse primer,
0.01 µL of Taq DNA polymerase in 1× reaction buffer and 0.2 mM of dNTPs in a final volume of
20 µL. The specific primers designed for amplification of cocgt-BS gene used for construction of
pQEcoCGT-BS expression system were coCGTF 5′-GGATCCCTTCTGTAAATTGACCAACCGG-3′ and
coCGTR 5′-AAGCTTTTACCAGTTGATCATTACGGTA-3′ for forward and reverse primer, respectively.
The forward and reverse primers were designed to contain the restriction sites BamHI and HindIII
(underlined), respectively. The amplified DNA fragment was purified after performing agarose gel
electrophoresis using Hi Yield Gel/PCR DNA Mini Kit (Real Biotech Corporation, Taipei, Taiwan)
and digested with BamHI and HindIII before ligation into pQE30xa. The ligation products were
subsequently introduced into E. coli JM109. Luria-Bertani (LB)-ampicillin (100 µg/mL) was used to
plate out the transformation mixtures. After overnight growth at 37 ◦C, colonies were chosen for
insert confirmation.

3.4. Prediction of Physicochemical Characteristics

Multiple physicochemical characteristics of the CGT-BS protein were evaluated by ExPASY’s
ProtParam online tool at http://web.expasy.org/protparam/ [15] including theoretical isoelectric point
(pI), number of positively and negatively charged amino acids, extinction coefficient (EC), instability
index (II), aliphatic index (AI), grand average of hydropathicity (GRAVY) and total number of atoms
(TNA), in comparison to other CGTases from selected Bacillus spp.

https://www.genscript.com/tools/codon-frequency-table
https://www.genscript.com/tools/codon-frequency-table
http://web.expasy.org/protparam/


Int. J. Mol. Sci. 2020, 21, 3919 12 of 16

3.5. Medium and Culture Conditions

Recombinant E. coli JM109 harboring pQEcoCGT-BS was inoculated into LB broth containing
100 µg/mL ampicillin for preparation of inoculum. The inoculum flask was incubated overnight
at 37 ◦C in an incubator shaker, agitated at 200 rpm until an optical density of 1.5 at 600 nm was
obtained. The inoculum size of 10% v/v was adjusted and standardized throughout the experiments.
The production medium was prepared using Terrific Broth (TB) supplemented with 100 µg/mL
ampicillin for the preparation of crude recombinant β-CGTase, according to the design of experiment
carried out using central composite design (CCD) as stated in Section 3.6. The culture was incubated at
37 ◦C, agitated at 200 rpm for 24 h and sampled every 4 h. For estimation of cell growth, the pellets were
appropriately diluted, and the optical density was measured at 600 nm by using spectrophotometer
(Hitachi U-2900, Hitachi, Japan).

3.6. Design of Experiments for Optimum Condition of Glycine Supplementation

Experimental design was carried out using Design Expert Software (Stat-Ease Inc., Minneapolis,
MN, USA, Version 7). The results obtained from the CCD was subjected to the statistical analysis
to identify the variables that had significant effect on the response which was β-CGTase activity.
Three parameters which were the concentration of glycine (mM), time of induction (h) and
post-induction temperature (◦C) consisting 20 runs (14 combinations with 6 replications of the
center points and axial points of α equals to 1.68) were carried out in this study. The value set for each
parameter is given in Table 3. The range of each parameters were based on previous study where the
glycine supplementation was optimized using one factor at a time approach [19]. All values were
tested in order to get the maximum production of recombinant β-CGTase. Expression of β-CGTase was
then confirmed by measuring its activity following 12 h of fermentation with culture condition stated in
Section 3.5 and with the optimal glycine supplementation. For the determination of enzyme expression
profile, cell-free supernatant was collected by centrifuging the fermentation broth at 14,500× g for 10 min
at 4 ◦C. All runs were conducted in triplicate and the significance value of the experimental data was
analyzed using ANOVA test to determine factors having a significant effect (p ≤ 0.05). The validation
of the response surface model was done in triplicate under the predicted optimum conditions.

3.7. Purification of Recombinant β-CGTase

The recombinant β-CGTase was subjected to AKTA Flux tangential flow filtration system
(GE Healthcare, New York, NY, USA) using a 30 kDa molecular weight cut-off (MWCO) membrane,
equilibrated with 10 mM imidazole. Affinity purification was then performed on a Ni-NTA column on
an AKTA Avant chromatography system (GE Healthcare) according to the manufacturer’s instructions.
The sample was incubated for 30 min in the column, followed by washing with buffer containing
20 mM imidazole (pH 8.0). Elution buffer containing 250 mM imidazole (pH 8.0) was used to elute the
bound enzyme. The fractions with maximum activity were pooled together and Amicon ultrafiltration
membrane kit (30 kDa MWCO membrane) was used to concentrate the samples. The samples were
assayed for β-CGTase activity and protein concentration.

3.8. Assay of β-CGTase Activity

The β-CGTase activity was measured using phenolphthalein assay [37]. Reaction mixture
containing 1 mL of 40 mg of soluble starch in 100 mM phosphate buffer (pH 6.0) and 0.1 mL of
enzyme solution was incubated at 60 ◦C for 10 min in a water bath. Then, 3.5 mL of 30 mM NaOH was
added to stop the reaction. Subsequently, 0.5 mL of 0.02% (w/v) phenolphthalein in 5 mM Na2CO3

solution was added to the reaction mixture and mixed well. After 15 min, the reduction in color
intensity was measured at 550 nm. Blanks lacking the CGTase were analyzed simultaneously with
each batch of samples. As a standard, the soluble starch and enzyme were replaced with 0.5 mg of
β-cyclodextrin and 0.1 mL of water, respectively. A calibration curve was made using β-cyclodextrin in
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100 mM phosphate buffer, pH 6.0. One unit of enzyme activity was defined as the amount of enzyme
that formed 1 µmol β-cyclodextrin per min under the conditions defined above.

3.9. Molecular Mass Determination of β-CGTase

Protein concentration was measured according to Lowry et al. [38] with bovine serum albumin
as a standard. The protein size was analyzed using sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE) at constant voltage of 100 V for 1.5 h at room temperature until
the band was migrated sufficiently. Gel (8.3 cm × 7.3 cm) was run according to the method of
Laemmli [39]. The concentrations of the stacking and resolving gels were 5% and 12%, respectively.
Appropriately diluted protein samples (30 µg) with 4×marker containing 50 mM Tris–HCl (pH 6.8),
40% (w/v) of glycerol, 10% (w/v) of SDS, 5% (v/v) of mercaptoethanol and 0.05% (w/v) of bromophenol
blue were boiled for 5 min before applied into each lane. The lane was formed by a 10-well comb
(Mini-PROTEAN®, Bio-Rad, Hercules, CA, USA) and the molecular weight marker (PageRuler™
Unstained Protein Ladder) from Thermo Scientific, Waltham, MA, USA was used as a standard. The gel
was stained with Coomassie Brilliant Blue R-250 (Fisher Scientific, Waltham, MA, USA).

3.10. Characterization of Crude and Purified Codon Optimized Recombinant β-CGTase

The measurement of the optimum pH for the crude and purified recombinant β-CGTase was
done by reacting 0.1 mL enzyme with 1 mL of 40 mg of soluble starch dissolved in different buffers at
pH 4–9 [40]. The phosphate buffer (0.1 M), pH 6 used in the β-CGTase assay was replaced with the
following buffers: sodium acetate buffer, 0.1 M (pH 4–5), potassium phosphate buffer, 0.1 M (pH 6–8)
and glycine-NaOH buffer, 0.1 M (pH 9). Meanwhile, the effect of pH stability on crude and purified
recombinant β-CGTase was determined by incubating 0.1 mL of enzyme with 0.2 mL of different
buffers at pH 4–9, without substrate at 50 ◦C for 30 min.

On the other hand, the optimum temperature for the crude and purified recombinant β-CGTase
was determined by incubating the reaction mixture of β-CGTase assay in 0.1 M phosphate buffer, pH 6.0
at different temperatures ranging from 40 to 80 ◦C for 10 min [40]. Meanwhile, the effect of temperature
on the stability of crude and purified recombinant β-CGTase was determined by incubating 0.1 mL
of enzyme with 0.2 mL of 0.1 M phosphate buffer (pH 6.0) without substrate for 30 min at different
temperatures, ranging from 40–90 ◦C. For both effects of pH and temperature, the reaction was carried
out according to the method of β-CGTase assay as described above [37].

3.11. Cyclodextrin Production and Kinetic Parameters of Purified β-CGTase

The kinetic parameters (Km and Vmax) for the pure enzyme were determined by incubating
0.5 U/mL of purified β-CGTase in 0.1 M phosphate buffer (pH 6.0) at various concentrations of soluble
starch solution, ranging from 2 to 10 mg/mL at 60 ◦C for 30 min. The values of Km and Vmax were
analyzed by linear regression with the linear transformation (Hanes-Woolf plot) of the Michaelis–Menten
equation using an Excel curve-fitting program (Microsoft Excel 2010, San Francisco, CA, USA) [41].
The concentrations of β-cyclodextrin in the final sample were determined by Refractive Index–High
Performance Liquid Chromatography (RI-HPLC) (Shimadzu, Kyoto, Japan), using a Lichrospher-NH2

column (Merck, Darmstadt, Germany) eluted with 65:35 acetonitrile–water at 1 mL/min.

4. Conclusions

The combined strategy of codon usage modification and optimization of glycine supplementation
has been shown to greatly improve the expression of extracellular recombinant β-CGTase as compared
to a single approach. The adaptation of rare codons of the cgt-BS gene to the preferred ones in E. coli is
important to ensure an efficient expression of functional protein, as demonstrated by a CAI of 0.78.
With the help of an in-silico tool, the recombinant CGT-BS protein was determined as a stable protein.
In addition, the optimized glycine feeding into the cultivation medium at the concentration of 1.2 mM,
induced at 2 h induction time at 37 ◦C post-induction temperature altogether managed to enhance
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the recombinant β-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to un-optimized
conditions. This combined approach could be potentially used to further enhance the expression of
recombinant protein at the upstream and downstream levels.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/11/
3919/s1.
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