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Abstract: Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays
a significant role in protection against cellular damage by activating four subtypes of adenosine
receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation,
and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time
that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antag-
onist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO)
surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally
administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved
kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary
kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion.
Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in
fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in
the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory
cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that
LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.
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1. Introduction

Kidney fibrosis is characterized by glomerulosclerosis, vascular sclerosis, and tubuloin-
terstitial fibrosis and is considered the final outcome of chronic kidney disease (CKD) [1,2].
As the tubulointerstitial space occupies more than 90% of the kidney, tubulointerstitial
fibrosis is an easily observed pathological process leading to end-stage kidney disease
(ESKD) [3]. Tubulointerstitial fibrosis is accompanied by: (i) the infiltration of inflammatory
cells, (ii) the activation of fibroblasts, (iii) the accumulation of extracellular matrix (ECM),
and (iv) the production of tubular atrophy [4]. These events occur partially or together.

Adenosine is formed both intracellularly and extracellularly through catalytic enzymes
that hydrolyze nucleotides [5]. Under distress conditions, including ischemia, hypoxia, and
inflammation, extracellular ATP levels are increased and rapidly hydrolyzed to adenosine.
Adenosine serves as a signaling molecule that initiates receptor-mediated functions. The
adenosine receptors (ARs) are named adenosine receptor A1 (A1AR), adenosine receptor
A2A (A2AAR), adenosine receptor A2B (A2BAR), and adenosine receptor A3 (A3AR) [6]. The
four ARs belong to the family of G protein coupled receptors (GPCRs), and ARs signaling
occurs not only through inhibition or stimulation of adenylyl cyclase (cAMP), but also
through phospholipase C (PLC), Ca2+, and mitogen-activated protein kinases (MAPKs) [7].
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In the kidney, adenosine regulates the kidney physiological responses such as tubu-
loglomerular feedback (TGF), blood flow, glomerular filtration rate (GFR), renin release,
and NaCl transport [8,9]. However, a chronically excessive kidney adenosine level causes
tubulointerstitial fibrosis and kidney dysfunction [10,11].

Interestingly, 8-(p-sulfophenyl) theophylline, a non-selective ARs antagonist, effec-
tively decreased kidney fibrosis and improved kidney function [11]. Our previous stud-
ies have demonstrated that novel, orally active, species-independent, A3AR antagonists
protected against UUO-induced kidney fibrosis [12] and diabetic nephropathy [13] by
modulating ECM accumulation and fibroblast activation. Renoprotective effects of phar-
macological inhibition [14–17] and genetic deficiency of A3AR [15] have been reported in
several kidney injuries including ischemia-reperfusion injury (IRI) [14,15], myoglobinuria
injury [15], and adriamycin-induced nephropathy [17]. Besides, A2AAR acts as a strong
anti-inflammatory effector responding to extracellular adenosine [18].

Numerous studies have demonstrated that A2AAR is expressed in inflammatory
and immune cells, such as monocyte [19], neutrophils [20], lymphocytes [21], and NK
cells [22]. Pharmacological activation of A2AAR [23–30] has been shown to be effective in
several kidney injury models such as IRI [23–25], diabetic kidney injury [26,27], puromycin-
induced podocyte injury [28], and UUO-induced kidney fibrosis [29,30]. These results
provide evidence of dual action as an A3AR antagonist, and a A2AAR agonist may have
better protective effects against kidney injuries.

Thus, the present study has determined the renoprotective effect of LJ-4459, a newly
developed potent dual acting A2A and A3 AR ligand on UUO-induced tubulointerstitial
fibrosis. LJ-4459 has been reported (i) to have high binding affinity to both hA2AAR and
hA3AR, (ii) to be a full A2AAR agonist and a full competitive A3AR antagonist, (iii) to
have 0.51 of log P, and (iv) to have similar anti-inflammatory potency as indomethacin in
carrageenan-induced paw edema assay [31].

2. Results
2.1. Pretreatment of LJ-4459 Improves Kidney Function and Attenuates Kidney Tubular Injury in
the Obstructed Kidney

Our previous studies have established an obstruction-induced tubulointerstitial fi-
brosis model in rat and mice [12,32]. Based on these analyses, mice were administered
LJ-4459 to start 1 d prior to UUO surgery and all mice were euthanized after 7 d of treat-
ment (Figure 1A). The urinary adenosine excretion was significantly increased after UUO
surgery (data not shown), which was not affected by LJ-4459 treatment (Supplementary
Figure S1). We examined the effect of LJ-4459 on kidney dysfunction and kidney tubu-
lar injury in the obstructed kidneys. Plasma creatinine and blood urea nitrogen (BUN),
markers of kidney injury, were significantly increased in UUO mice [32]. Plasma creatinine
was effectively reduced by 10 mg/kg LJ-4459 treatment (Figure 1B). BUN tended to be
decreased by LJ-4459 treatment, but it did not reach statistical significance (Figure 1C). In
addition, kidney tubular injury markers such as urinary KIM-1 and NGAL were signifi-
cantly reduced by 10 and 1 mg/kg treatment with LJ-4459, respectively (Figure 2A,B). The
KIM-1 mRNA levels increased in the obstructed kidneys, which were reduced by LJ-4459
treatment (Figure 2C). The NGAL mRNA and protein expression levels increased after
UUO surgery and were decreased by LJ-4459 treatment (Figure 2D–H). The results of PAS
staining showed morphology changes as indicated by tubular atrophy after UUO surgery,
which was attenuated by LJ-4459 treatment (Figure 2I). Tubular cell apoptosis indicated by
TUNEL staining was increased in the obstructed kidneys, which was decreased by LJ-4459
treatment (Figure 2J). To examine the toxicity of LJ-4459, we performed the MTT assay
using mouse proximal tubular epithelial (mProx) cells. LJ-4459 did not affect cell viability
up to 100 µM (Supplementary Figure S2), suggesting lack of toxicity.
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Figure 1. LJ-4459 improves kidney function in UUO mice. (A) Schematic diagram of the in vivo experimental schedule. 
Drug administration was start at 1 d before the UUO surgery, and mice were euthanized after 7 d of treatment. Plasma 
was analyzed for (B) plasma creatinine (mg/dL) and (C) BUN (mg/dL). Data are presented as mean ± SE of 7–8 mice. † p < 
0.05 vs. UUO mice. 

Figure 1. LJ-4459 improves kidney function in UUO mice. (A) Schematic diagram of the in vivo experimental schedule.
Drug administration was start at 1 d before the UUO surgery, and mice were euthanized after 7 d of treatment. Plasma was
analyzed for (B) plasma creatinine (mg/dL) and (C) BUN (mg/dL). Data are presented as mean ± SE of 7–8 mice. † p < 0.05
vs. UUO mice.

2.2. Pretreatment of LJ-4459 Decreases Kidney Inflammation in the Obstructed Kidney

We evaluated the anti-inflammatory effect of LJ-4459 in the obstructed kidneys. As ex-
pected, the obstructed kidneys led to an increase of inflammatory cytokines such as ICAM-
1, iNOS, and IL-6, which were reduced in response to LJ-4459 treatment (Figure 3A–C).
Macrophage infiltration, as indicated by F4/80-positive staining, was increased in the ob-
structed kidneys, whereas LJ-4459-treated obstructed kidneys had decreases in these effects
(Figure 3D,E). In parallel, the protein expression levels of ICAM-1 and iNOS were increased
in the obstructed kidneys, which were reduced by LJ-4459 treatment (Figure 3F–H).

2.3. Pretreatment with LJ-4459 Inhibits Tubulointerstitial Fibrosis in the Obstructed Kidney

In order to confirm whether LJ-4459 has an anti-fibrotic effect, we detected the ECM
proteins, such as collagen I, collagen IV, and fibronectin, and α-smooth muscle actin (α-
SMA). Picrosirius red staining indicated that there was a lot of UUO-induced accumulation
of ECM in the obstructed kidneys. The excessive accumulation of ECM was reduced after LJ-
4459 treatment (Figure 4A,B). The collagen I staining results showed that positively stained
areas were increased in the obstructed kidneys and were decreased in LJ-4459-treated
obstructed kidneys (Figure 4C,D). Consistently, the collagen I, collagen IV, fibronectin,
and α-SMA protein expression levels were significantly increased in obstructive kidneys.
These ECM proteins and α-SMA expression levels were inhibited by LJ-4459 treatment
(Figure 4E–I).

2.4. Pretreatment with LJ-4459 Reduces Oxidative Stress in the Obstructed Kidney

We evaluated the state of oxidative stress in the obstructed kidneys. The mRNA
expression levels of NOX1, NOX2, and NOX3 were increased in the obstructed kidneys.
These mRNA expression levels were reduced by LJ-4459 treatment (Figure 5A–C). The
8-oxo-dG staining results showed that positively stained areas were increased in obstructed
kidneys. These positively stained areas were reduced in LJ-4459-treated obstructed kidneys
(Figure 5D,E). The 4-hydroxynonenal (4-HNE) staining, which indicates oxidative stress,
was increased in the obstructed kidneys, whereas LJ-4459-treated obstructed kidneys had
decreases in these effects (Figure 5F,G).
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nification: 200×; scale bar: 50 μm). (G,H) Immunoblotting analysis of NGAL in the kidney. The 
levels of proteins were normalized with GAPDH. (I) Paraffin-embedded kidney sections were 
stained with PAS (original magnification: 200×; scale bar: 50 μm: enlarged images have been 
shown in the inset). (J) TUNEL assay (original magnification: 400×; scale bar: 20 μm). Data are 
presented as mean ± SE of 7–8 mice. * p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice. 

Figure 2. LJ-4459 attenuates kidney tubular injury in UUO mice. Urine was analyzed for (A) urinary
KIM-1 (ng/mg), and (B) urinary NGAL (ng/mg). (C) The mRNA levels of KIM-1 were measured.
(D) The mRNA levels of NGAL were measured. Levels of mRNA were normalized with 18S. Paraffin-
embedded kidney sections were stained with (E,F) NGAL antibody (1:200; original magnification:
200×; scale bar: 50 µm). (G,H) Immunoblotting analysis of NGAL in the kidney. The levels of
proteins were normalized with GAPDH. (I) Paraffin-embedded kidney sections were stained with
PAS (original magnification: 200×; scale bar: 50 µm: enlarged images have been shown in the inset).
(J) TUNEL assay (original magnification: 400×; scale bar: 20 µm). Data are presented as mean ± SE
of 7–8 mice. * p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice.
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as ICAM-1, iNOS, and IL-6 were measured by real time RT-PCR. The levels of mRNA were normalized with 18S. (D,E) 
Paraffin-embedded kidney sections were stained with anti-F4/80 antibody (1:400; original magnification: 100×; scale bar: 
50 μm). Immunoblotting analysis of (F–H) ICAM-1 and iNOS in the kidney. The levels of proteins were normalized with 
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Figure 3. LJ-4459 ameliorates kidney inflammation in UUO mice. (A–C) The mRNA levels of inflammation markers such
as ICAM-1, iNOS, and IL-6 were measured by real time RT-PCR. The levels of mRNA were normalized with 18S. (D,E)
Paraffin-embedded kidney sections were stained with anti-F4/80 antibody (1:400; original magnification: 100×; scale bar:
50 µm). Immunoblotting analysis of (F–H) ICAM-1 and iNOS in the kidney. The levels of proteins were normalized with
GAPDH. Data are presented as mean ± SE of 7–8 mice. * p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice.
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tion: 100×; scale bar: 50 μm). (E–I) Immunoblotting analysis of collagen I, collagen IV, fibronectin, and α-SMA in the kid-
ney. The levels of proteins were normalized with HSC70 or GAPDH. Data are presented as mean ± SE of 7–8 mice. * p < 
0.05 vs. sham mice, † p < 0.05 vs. UUO mice. 
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pression levels of NOX1, NOX2, and NOX3 were increased in the obstructed kidneys. 
These mRNA expression levels were reduced by LJ-4459 treatment (Figure 5A–C). The 8-
oxo-dG staining results showed that positively stained areas were increased in obstructed 
kidneys. These positively stained areas were reduced in LJ-4459-treated obstructed kid-
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Figure 4. LJ-4459 inhibits kidney fibrosis in UUO mice. Paraffin-embedded kidney sections were stained with (A,B)
sirius red staining (original magnification: 100×; scale bar: 50 µm) and (C,D) anti-collagen I antibody (1:400; original
magnification: 100×; scale bar: 50 µm). (E–I) Immunoblotting analysis of collagen I, collagen IV, fibronectin, and α-SMA in
the kidney. The levels of proteins were normalized with HSC70 or GAPDH. Data are presented as mean ± SE of 7–8 mice.
* p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice.
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ded kidney sections were stained with (D,E) 8-oxo-dG antibody (1:400; original magnification: 100×; scale bar: 50 μm) and 
(F,G) anti-4HNE antibody (1:200; original magnification: 100×; scale bar: 50 μm). Data are presented as mean ± SE of 7–8 
mice. * p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice. 
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mined that the expression levels of ERK and NF-κB. ERK [12] and NF-kB [17] have been 
shown to mediate A3AR-induced kidney injury. The obstructed kidneys were markedly 
increased in total (t-NF-κB) expression levels and the phosphorylation of NF-κB (p-NF-
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Figure 5. LJ-4459 decreases oxidative stress in UUO mice. (A–C) The mRNA levels of oxidative markers such as NOX1,
NOX2, and NOX3 were measured by real time RT-PCR. The levels of mRNA were normalized with 18S. Paraffin-embedded
kidney sections were stained with (D,E) 8-oxo-dG antibody (1:400; original magnification: 100×; scale bar: 50 µm) and (F,G)
anti-4HNE antibody (1:200; original magnification: 100×; scale bar: 50 µm). Data are presented as mean ± SE of 7–8 mice.
* p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice.

2.5. Pretreatment with LJ-4459 Suppresses ERK and NF-κB Phosphorylation in the
Obstructed Kidney

To dissect the mechanisms involved in the renoprotective effect of LJ-4459, we deter-
mined that the expression levels of ERK and NF-κB. ERK [12] and NF-kB [17] have been
shown to mediate A3AR-induced kidney injury. The obstructed kidneys were markedly
increased in total (t-NF-κB) expression levels and the phosphorylation of NF-κB (p-NF-
κB). UUO-induced increases in total and phosphorylation of NF-κB were suppressed by
LJ-4459 treatment (Figure 6A–C). In addition, phosphorylation of ERK (p-ERK) expression
levels was upregulated in obstructed kidneys, which was decreased by LJ-4459 treatment
(Figure 6D,E).
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Figure 6. LJ-4459 downregulates ERK and NF-κB phosphorylation. (A–E) Immunoblotting analysis of NF-κB and ERK
phosphorylation in the kidney. The levels of proteins were normalized with GAPDH or their respective total protein. Data
are presented as mean ± SE of 7–8 mice. * p < 0.05 vs. sham mice, † p < 0.05 vs. UUO mice.

3. Discussion

The present data demonstrated that LJ-4459, a newly developed dual-acting ligand
acting as both an A2AAR agonist and an A3AR antagonist [31], attenuated the progression
of tubulointerstitial fibrosis in UUO mice. In addition, kidney injuries including kidney
dysfunction and inflammation were improved by LJ-4459 treatment.

Kidney fibrosis is a consequence of multiple mechanisms, including the infiltration
of inflammatory cells, the production of fibrotic cytokines and growth factors, and the
deposition of ECM [4,33]. In addition, ROS regulate various signaling pathways, leading
to inflammation and fibrosis [34]. UUO has been used as a tubulointerstitial fibrosis model
characterized by the excessive accumulation of matrix protein, degradation of the proximal
tubular mass, and increased tubular cell death [35,36]. In our experimental condition,
we confirmed that the UUO operation leads to kidney injury, including tubulointerstitial
fibrosis (Figure 4), tubular injury (Figure 2), inflammation (Figure 3), and oxidative stress
(Figure 5).

ARs are a family of GPCRs widely distributed in almost all organs, playing roles in
physiological and pathological functions by mediating downstream signaling [37]. All ARs
affect cAMP levels, and the Gi-coupled A1AR and A3AR inhibit AC activity. On the other
hand, the Gs-coupled A2AAR and A2BAR stimulate AC activity. Furthermore, this leads to
activation of cAMP-dependent protein kinase A (PKA), MAPKs, phospholipase C (PLC),
and calcium-dependent protein kinases (PKC) pathways [6,7].

Either A2AAR activation [23–30] or A3AR inhibition [12–17] have renoprotective
effects. In particular, A2AAR agonists, ATL-146e [24,25] and CGS21680 [27,29,30], protect
against kidney injury by decreasing cytokine expression and macrophage infiltration. In
addition, A3AR antagonists, MRS1220 [16], LJ-1888 [12], and LJ-2698 [13], protect against
kidney fibrosis via decreasing profibrotic gene expression. Interestingly, our previous study
showed that an A3AR antagonist, LJ-2698, significantly increased A2AAR expression in
the mouse kidney [13]. Thus, we hypothesized that as a targeted dual-acting ligand as an
A2AAR agonist and an A3AR antagonist, LJ-4459, would be protective against kidney injury.
As expected, LJ-4459 effectively reduced all parameters related to the progression of kidney
injury, including tubular damage (Figure 2), inflammation (Figure 3), tubulointerstitial
fibrosis (Figure 4), and oxidative stress (Figure 5). LJ-4459 at 1 or 10 mg/kg showed kidney
protective effect in most, if not all, parameters measured in the present study. To provide
full dose–response effect, it is necessary to perform experiments using a wider dosage
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range, including lower doses of LJ-4459. Considering the clinical implications, further
studies that examine the effect of LJ-4459 on various models of CKD including diabetic
kidney disease are needed.

In our present study, we showed that phosphorylation of ERK and NF-κB were in-
creased in obstructed kidneys, and this was attenuated by LJ-4459 treatment (Figure 6).
Previous studies have shown that NF-κB is a target gene of ERK signaling [38] and it
contributes to kidney fibrosis [39]. In line with our data, A2AAR agonists have anti-
inflammatory effects through the decreased phosphorylation of ERK [40,41] and NF-κB [41]
in neutrophils and T cells. In addition, an A3AR antagonist blocked fibrosis via decreased
phosphorylation of ERK [12] and NF-κB [17]. Therefore, these results suggest that the reno-
protective effects of LJ-4459 are associated with the ERK and NF-κB signaling pathways.

In contrast, A2AAR agonists increased phosphorylation of ERK in liver [42] and
brain [43] tissue. In addition, A3AR antagonists increased phosphorylation of NF-κB in
microglial cells [44] and mesothelial cells [45]. More importantly, an A3AR agonist has
been shown to protect against sepsis kidney injury [46]. These controversial effects suggest
that ARs mediate different roles in tissue and cell types. Moreover, the ARs have been
affected by acute versus chronic diseases [9,47]. The detailed mechanism of the effect of
LJ-4459 on A2AAR and A3AR in CKD is not clear yet.

In summary, LJ-4459, a new dual-acting agent that acts as both an A2AAR agonist
and an A3AR antagonist, effectively prevented obstruction-induced kidney dysfunction,
inflammation, tubulointerstitial fibrosis, and oxidative stress.

4. Materials and Methods
4.1. Reagents

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
unless otherwise specified.

4.2. Animal Experiments

All experimental animals were approved by the Institutional Animal Care and Use
Committee at Ewha Womans University (IACUC No. 18-007, 9 March 2018). The 6-week-
old male C57BL/6J mice were purchased from the Ewha Laboratory Animal Genomic
center (Seoul, Korea). Unilateral ureteral obstruction (UUO) surgery was performed
as described in our previous study [12,32]. Mice were housed in a room maintained at
22± 2 ◦C with a 12 h dark/12 h light cycle and were randomly divided into three groups: (i)
UUO without LJ-4459 treatment (0 mg/kg), (ii) UUO+LJ-4459 1 mg/kg, and (iii) UUO+LJ-
4459 10 mg/kg. Briefly, to creative the kidney tubulointerstitial fibrosis model, the left
ureter was ligated at two points with silk (4-0; Ailee Co., Ltd., Busan, Korea) and was cut
between the two ligation points. The UUO mice were administered 0.25% carboxymethyl
cellulose (CMC) or LJ-4459 (1 or 10 mg/kg) for 7 d by oral gavage. Drug administration
was start at 1 d before the UUO surgery, and all mice were euthanized after 7 d of treatment.
Contralateral kidney of UUO without LJ-4459 treatment was used as a sham kidney.

4.3. Measurements of Blood Parameters

Blood was collected from the jugular vein before sacrifice and centrifuged at 3000 rpm
for 15 min at 4 ◦C to collect the serum from the supernatant. Plasma creatinine (Arbor
Assays, Ann Arbor, MI, USA) and blood urea nitrogen (BUN, Arbor Assays, Ann Arbor,
MI, USA) were measured by using ELISA kits.

4.4. Measurements of Urine Parameters

Urine was collected in metabolic cage for 24 h and centrifuged at 3000 rpm for 15 min
at 4 ◦C. Urinary kidney injury molecular-1 (KIM-1, MKM100, R&D Systems, Minneapolis,
MN, USA) and urinary neutrophil gelatinase-associated lipocalin (NGAL, Immunology
Consultants Laboratory, Inc., Portland, OR, USA) were measured by using ELISA kits.
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4.5. Histology and Immunohistochemistry

The kidney was fixed with 4% paraformaldehyde-lysine-periodate (pH 7.4), dehy-
drated, embedded in paraffin, and sectioned. To examine the kidney morphology, 3 µm
tissue sections were stained with periodic acid–Schiff (PAS, Abcam, Cambridge, MA, USA)
reagent. To examine the kidney collagen accumulation in the kidney, 5 µm tissue sections
were stained with picrosirius red (Abcam) reagent. Immunohistochemistry used anti-
neutrophil gelatinase-associated lipocalin (NGAL, 1:200; Abcam), anti-F4/80 (1:400; Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA), anti-8-hydroxy-2-deoxyguanosine (8-oxo-
dG, 1:400; Trevigen, Gaithersburg, MD), anti-4-hydroxynonenal (4-HNE, 1:200; Nikken
SEIL Co., Shizuoka, Japan), and anti-collagen I (1:400; Southern Biotech, Birmingham,
CA, USA) primary antibodies. Images were obtained by Zeiss microscopy (Carl Zeiss,
Thornwood, NY, USA) and quantified using Image-Pro 4.5 software (Cybernetics, Silver
Spring, MD, USA).

4.6. Terminal Transferase-dUTP-Nick-End Labeling (TUNEL) Assay

Apoptosis was measured using the TUNEL assay according to the manufacturer’s
protocol (Roche Diagnostics, Mannheim, Germany). Briefly, after deparaffinization and
rehydration, kidney sections were incubated with TUNEL reaction mixture for 60 min at
37 ◦C in a humidified dark chamber. Images were taken using a Zeiss ApoTome Axiovert
200M microscope (Carl Zeiss Microscopy).

4.7. Western Blot Analysis

Whole kidney protein was extracted with lysis buffer. After centrifugation (13,000 rpm,
4 ◦C, 15 min), the lysate was mixed with 5x sample buffer and heated at 95 ◦C for 6 min.
Total protein concentrations were measured using Bradford methods (BioRad Laboratories,
Hercules, CA, USA). Whole lysates were subjected to SDS-PAGE gel electrophoresis and
transferred onto a polyvinylidene difluoride membrane (PVDF, GE Healthcare BioSciences
Co., Piscataway, NJ, USA). PVDF membranes were blocked using 5% skim milk for 1 h at
room temperature, and subsequently were incubated overnight at 4 ◦C with primary anti-
bodies, such as anti-NGAL (1:1000; Abcam), anti-intercellular adhesion molecule-1 (ICAM-
1, 1:1000; Santa Cruz Biotechnology), anti-inducible nitric oxide synthase (iNOS, 1:1000;
Santa Cruz Biotechnology), anti-collagen I (1:1000; Southern Biotech), anti-collagen IV
(1:1000; Southern Biotech), anti-fibronectin (1:1000; Santa Cruz Biotechnology), anti-alpha
smooth muscle actin (α-SMA, 1:1000; Abcam), anti-p-nuclear factor kappa B (p-NF-κB,
1:1000, Cell Signaling Technology, Denver, MA, USA), anti-t-nuclear factor kappa B (t-NF-
κB, 1:1000, Cell Signaling Technology), anti-p-ERK (1:1000, Cell Signaling Technology),
anti-t-ERK (1:1000, Cell Signaling Technology), anti-glyceraldehyde 3-phosphate dehydro-
genase (GAPDH, 1:1000; Sigma-Aldrich), and anti-heat shock 70 kDa protein 8 (HSC70,
1:1000; Santa Cruz Biotechnology). The blots were reacted with peroxidase-conjugated
secondary antibodies (Vector Laboratories, Inc., Burlingame, CA, USA) and detected by
enhanced chemiluminescent sensitive plus reaction (BioFX Laboratories, Inc., Owings Mills,
MD, USA). The positive immunoreactive protein bands were detected by LAS-3000 film
(FUJIFILM Corporation, Tokyo, Japan). Each blot density was normalized to GAPDH or
HSC70 and compared with that of each control.

4.8. Quantitative Real Time Reverse Transcriptase Polymerase Chain Reaction

Total cellular RNA was extracted with TRIzol reagent (Invitrogen, Carlsbad, CA, USA).
Expression of mRNAs were measured by real-time PCR using a 20 µL reaction volume
consisting of cDNA transcripts, primer pairs, and SYBR Green PCR Master Mix (Applied
Biosystems, Carlsbad, CA, USA) with the StepOneTM (Applied Biosystems). 18S was used
as an internal control to normalize the genes. The primer sequences are shown in Table 1.
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Table 1. Primer sequences used for real time RT-PCR analysis.

Gene Forward (5′ → 3′) Reverse (5′ → 3′)

18S CGAAAGCATTTGCCAAGAAT AGTCGGCATCGTTTATGGTC

NGAL GGCCAGTTCACTCTGGGAAA TGGCGAACTGGTTGTAGTCC3

ICAM-1 CTTCCAGCTACCATGCCAAA CTTCAGAGGCAGGAAACAGG

iNOS GGCAGCCTGTGAGACCTTTG CATTGGAAGTGAAGCGTTTCG

IL-6 AGTTGCCTTCTTGGGACTGA TCCACGATTTCCCAGAGAAC

NOX1 AGCCATTGGATCACAACCTC AGAAGCGAGAGATCCATCCA

NOX2 TGCACCATGATGAGGAGAAA CCACACAGGAAAACGCCTAT

NOX3 ATTTCACTACCCCGTGAGCG TCAGGCAGGCTCTGTGATTC

4.9. Statistical Analyses

All results are expressed as the mean ± standard error (SE). Analysis of variance
(ANOVA) was used to assess the differences between multiple groups, followed by Fisher’s
least significant difference (LSD) test. The level of statistical significance was set at p-values
less than 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22115667/s1, Figure S1: Effect of LJ-4459 on urinary excretion of adenosine. Figure S2:
Effect of LJ-4459 on cell viability of mProx cells.
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