Supplementary Material

Broadening the Scope of Polyoxometalates as Artificial Proteases in Surfactant Solutions: Hydrolysis of Ovalbumin by Zr(IV)-Substituted Keggin Complex

Nada D. Savić, David E. Salazar Marcano, Thomas Quanten and Tatjana N. Parac-Vogt*

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium; nada.savic@kuleuven.be (N.D.S); david.salazarmarcano@kuleuven.be (D.E.S.M); thomas.quanten@gmail.com (T.Q.)
*Correspondence: tatjana.vogt@kuleuven.be; Tel.: +32-16-32-76-12

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1. I. Silver-stained gel of ovalbumin in a 0.5 wt% CHAPS solution incubated for 9 days at 60 °C and pH 7.4 (10 mM sodium phosphate buffer). The time of the reaction is noted on top of each lane. II. Silver-stained gel of ovalbumin, 50 equivalents of monolacunary Keggin and 0.5 wt% CHAPS at pH 7.4 (10 mM sodium phosphate buffer) incubated at 60 °C over a period of 9 days. The time of the reaction is noted on top of each lane.</td>
<td>S5</td>
</tr>
<tr>
<td>Figure S2. The solvent accessible surface of OVA rendered with PyMol with a spherical probe of 1.4 Å. The three Trp residues are shown as spheres. The two black and one gray residues represent the solvent accessible residues (148 and 184) and the buried Trp residue (267), respectively.</td>
<td>S6</td>
</tr>
<tr>
<td>Figure S3. I. Tryptophan fluorescence quenching spectra of ovalbumin (10 µM) in the presence of 0.5 wt% of SDS solution in phosphate buffer (10 mM, pH 7.4) with increasing concentrations of Zr-K 1:2 (0–10 µM). The insert</td>
<td>S7</td>
</tr>
</tbody>
</table>
shows a plot of F_0/F versus the POM concentration. II. Derived Stern-Volmer plot used to calculate the association constant.

Figure S4. I. Tryptophan fluorescence quenching spectra of ovalbumin (10 μM) in the presence of 0.5 wt% of Zw3-12 solution in phosphate buffer (10 mM, pH 7.4) with increasing concentrations of Zr-K1:2 (0-10 μM). The insert shows a plot of F_0/F versus the POM concentration. II. Derived Stern-Volmer plot used to calculate the association constant.

Figure S5. I. Tryptophan fluorescence quenching spectra of ovalbumin (10 μM) in the presence of 0.5 wt% of CHAPS solution in phosphate buffer (10 mM, pH 7.4) with increasing concentrations of Zr-K1:2 (0-10 μM). The insert shows a plot of F_0/F versus the POM concentration. II. Derived Stern-Volmer plot used to calculate the association constant.

Figure S6. 31P NMR of Zr-K1:2 (2 mM) in the presence of OVA (20 μM) incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin.

Figure S7. 31P NMR of Zr-K1:2 (2 mM) in the presence of 0.5 wt% SDS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin.

Figure S8. 31P NMR of Zr-K1:2 (2 mM) in the presence of OVA (20 μM) and 0.5 wt% of SDS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin.
Figure S9. 31P NMR of Zr-K 1:2 (2 mM) in the presence 0.5 wt% of CHAPS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.

Figure S10. 31P NMR of Zr-K 1:2 (2 mM) in the presence of OVA (20 μM) and 0.5 wt% of CHAPS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.

Figure S11. 31P NMR of Zr-K 1:2 (2 mM) in the presence 0.5 wt% of Zw3-12 incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. Only one peak due to Zr-K 1:2 at -14.86 ppm is visible, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.

Figure S12. 31P NMR of Zr-K 1:2 (2 mM) in the presence of OVA (20 μM) and 0.5 wt% of Zw3-12 incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. Only one peak due to Zr-K 1:2 at -14.86 is visible, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.
Figure S1. I. Silver-stained gel of ovalbumin in a 0.5% CHAPS solution incubated for 9 days at 60 °C and pH 7.4 (10 mM sodium phosphate buffer). The time of the reaction is noted on top of each lane. II. Silver-stained gel of ovalbumin, 50 equivalents of monolacunary Keggin and 0.5 wt% CHAPS at pH 7.4 (10 mM sodium phosphate buffer) incubated at 60 °C over a period of 9 days. The time of the reaction is noted on top of each lane.
Figure S2. The solvent accessible surface of OVA rendered with PyMol with a spherical probe of 1.4 Å. The three Trp residues are shown as spheres. The two black and one gray residues represent the solvent accessible residues (148 and 184) and the buried Trp residue (267), respectively.
Figure S3. I. Tryptophan fluorescence quenching spectra of ovalbumin (10 μM) in the presence of 0.5 wt% of SDS solution in phosphate buffer (10 mM, pH 7.4) with increasing concentrations of Zr-K 1:2 (0-10 μM). The insert shows a plot of F₀/F versus the POM concentration. II. Derived Stern-Volmer plot used to calculate the association constant.
Figure S4. I. Tryptophan fluorescence quenching spectra of ovalbumin (10 µM) in the presence of 0.5 wt% of Zw3-12 solution in phosphate buffer (10 mM, pH 7.4) with increasing concentrations of Zr-K 1:2 (0-10 µM). The insert shows a plot of F₀/F versus the POM concentration. II. Derived Stern-Volmer plot used to calculate the association constant.
Figure S5. I. Tryptophan fluorescence quenching spectra of ovalbumin (10 μM) in the presence of 0.5 wt% of CHAPS solution in phosphate buffer (10 mM, pH 7.4) with increasing concentrations of Zr-K 1:2 (0-10 μM). The insert shows a plot of F_0/F versus the POM concentration. II. Derived Stern-Volmer plot used to calculate the association constant.
Figure S6. 31P NMR of Zr-K 1:2 (2 mM) in the presence of OVA (20 μM) incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin.
Figure S7. 31P NMR of Zr-K 1:2 (2 mM) in the presence of 0.5 wt% SDS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin.
c) 2 mM Zr-K 1:2 + 0.5% SDS + 20 μM OVA in phosphate buffer, pH = 7.4, after 7 days

b) 2 mM Zr-K 1:2 + 0.5% SDS + 20 μM OVA in phosphate buffer, pH = 7.4, after 1 day

a) 2 mM Zr-K 1:2 + 0.5% SDS + 20 μM OVA in phosphate buffer, pH = 7.4, after mixing

Figure S8. 31P NMR of Zr-K 1:2 (2 mM) in the presence of OVA (20 μM) and 0.5 wt% of SDS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin.
Figure S9. 31P NMR of Zr-K 1:2 (2 mM) in the presence 0.5 wt% of CHAPS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.
Figure S10. 31P NMR of Zr-K 1:2 (2 mM) in the presence of OVA (20 μM) and 0.5 wt% of CHAPS incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. The Zr-K 1:2 structure (-14.78 and -14.86 ppm) remains largely stable over time, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.
Figure S11. 31P NMR of Zr-K 1:2 (2 mM) in the presence 0.5 wt% of Zw3-12 incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. Only one peak due to Zr-K 1:2 at -14.86 ppm is visible, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.
c) 2 mM Zr-K 1:2 + Zw3-12 + 20 μM OVA in phosphate buffer, pH = 7.4, after 7 days

b) 2 mM Zr-K 1:2 + 0.5% Zw3-12 + 20 μM OVA in phosphate buffer, pH = 7.4, after 1 day

a) 2 mM Zr-K 1:2 + 0.5% Zw3-12 + 20 μM OVA in phosphate buffer, pH = 7.4, after mixing

Figure S12. 31P NMR of Zr-K 1:2 (2 mM) in the presence of OVA (20 μM) and 0.5 wt% of Zw3-12 incubated in phosphate buffer (10 mM, pH 7.4) at 60 °C. Only one peak due to Zr-K 1:2 at -14.86 is visible, the signal at -10.85 ppm is attributed to the lacunary Keggin. Additional peak appeared around -13.7 ppm.