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Abstract: In the context of respiratory disease, chronic obstructive pulmonary disease (COPD)
is the leading cause of mortality worldwide. Despite much development in the area of drug
development, currently there are no effective medicines available for the treatment of this disease.
An imbalance in the protease: Antiprotease ratio in the COPD lung remains an important aspect of
COPD pathophysiology and several studies have shown the efficacy of antiprotease therapy in both
in vitro and in vivo COPD models. However more in-depth studies will be required to validate the
efficacy of lead drug molecules targeting these proteases. This review discusses the current status of
protease-directed drugs used for treating COPD and explores the future prospects of utilizing the
potential of antiprotease-based therapeutics as a treatment for this disease.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is considered to be one of the major diseases
of modern times. With a continuous rise in pollution across the globe, combined with continued
cigarette smoking in both developing and developed countries, COPD is set to become the third
leading cause of death by 2030 [1,2]. Despite major efforts to find a treatment for COPD, effective
therapeutic strategies remain elusive [3–7]. COPD is a progressive lower respiratory tract disorder
encompassing chronic bronchitis and emphysema. Chronic bronchitis is caused by increased secretion
of mucus from differentiating goblet cells leading to a thicker mucus layer lining the airways [8].
Emphysema is caused by the destruction of the terminal bronchioles leading to decreased gas exchange
in the lower airways [9]. Both diseases result in decreased pulmonary function and quality of life.
Cigarette smoking is considered the primary cause of COPD, although only 15–20% of smokers are
thought to develop COPD. This fact can be rationalized by the fact that around 90% of COPD cases
are either ex-smokers or current smokers [10,11]. Moreover, around 1–5% of COPD cases have an
underlying genetic component caused by a deficiency of the serum glycoprotein α-1 antitrypsin
(A1AT) [12,13]. A1AT is the primary serine antiprotease responsible for protecting the lungs against
the actions of neutrophil-derived serine proteases.

COPD is also considered to be an age-related disorder [14,15]. Therefore, with an increase in the
worldwide aging population, the number of patients being diagnosed with COPD is also on the increase.
Presently, bronchodilators are the mainstay treatment for the management of COPD but fall short of
overall effectiveness [16–18]. In addition to environmental insults such as cigarette smoke, bacterial
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and viral pathogens may also play a major role in the development of COPD and contribute to the
rise in exacerbation frequency among the COPD population [19–21]. Given the increasing healthcare
and societal burden associated with the increase in COPD, a number of therapeutic programmes are
ongoing to develop strategies for the treatment of COPD [22–30]. As it will be beyond the scope of this
review to discuss all of the ongoing therapeutic programmes, we will focus on the current status of
antiprotease therapy against COPD.

2. Proteases Involved in COPD Pathophysiology

The protease: Antiprotease imbalance is considered to be one of the core physiological mechanisms
involved in the pathogenesis of COPD [31]. One of the major genetic causes of COPD is A1AT
deficiency [32]. A1AT is a serine protease inhibitor which regulates the neutrophilic chemotaxis
involving both CXCR1 and FcγRIIIb signaling [33]. In addition, A1AT has also been shown to regulate
the levels of cathepsin B and metalloproteinase-2 (MMP2) in A1AT deficient patients treated with
A1AT augmentation therapy [34].

There are four different types of proteases namely serine, cysteine, aspartic, and MMPs which are
thought to be involved in the pathogenesis of COPD. Among serine proteases, specifically, neutrophil
elastase (NE), dipeptidyl peptidase 4, cathepsin G, proteinase 3, cathepsin C, mast cell-derived tryptase
and chymase are found to be associated with the severity of COPD [35–40]. The metal-activated
proteinases including MMP-2, MMP-8, MMP-9, MMP-12, and MMP-13 are found to be highly
expressed in both in vivo models and clinical samples [41–46]. The cysteine proteases including
caspase-1, caspase-3, caspase-7, caspase-8, caspase-9, caspase-11, cathepsin K, and cathepsin S have
also been shown to be up-regulated in COPD patients [47–55]. Finally, elevated levels of the aspartic
proteases cathepsin D and cathepsin E have been demonstrated in COPD patient tissue and various
COPD models [56–59].

3. The Role of Serine Proteases and Their Inhibitors in COPD

3.1. Neutrophil Elastase (NE)

Neutrophil Elastase (NE) is the primary enzyme present in azurophil granules in the neutrophil
cytoplasm and is thought to play a role in the proteolytic breakdown of phagocytosed molecules.
Neutrophils are the first cell type to arrive in the lung following stimulation by microbial pathogens,
smoking, and various other environmental exposures [60]. However, unopposed NE activity in the
lung may lead to lung parenchyma destruction and subsequent increased production of inflammatory
mediators [61]. A1AT is considered to be the primary regulator of NE activity. In normal lungs,
A1AT accounts for around 90% of anti-NE activity at the lower respiratory tract providing protection to
the underlying connective tissues [62]. Elevated serum levels of NE have been found to be associated
with COPD severity [63]. In addition, higher NE concentrations exist in saliva and exhaled breath
condensate of COPD patients [64,65]. Therefore several previous studies have focused on the inhibition
of NE as a treatment strategy for COPD.

MR899 was the first NE inhibitor used in clinical trials for COPD (Figures 1 and 2) [66]. MR899 is
a cyclic thiol compound derived from homocysteine lactone and thiolactic acid. It was found to be a
competitive and reversible NE inhibitor. Oral administration of MR899 at a dose of 500 mg twice a
day for 4 weeks was tested to check its efficacy in reducing levels of lung destruction markers. In this
study, urinary levels of desmosine and plasma elastin-derived peptides thought to be derived from NE
activity were measured. Interestingly, MR899 was found to be effective only in those COPD patients
who had only recently been diagnosed with COPD and who had less established disease.

FR901277 is a cyclic peptide lactone isolated from the fermentation broth of Streptomyces
resistomycificus. FR901277 was shown to be effective in reducing porcine pancreatic elastase
(PPE)-induced emphysema in hamsters (Figures 1 and 2). The median effective dose at around
8 mg/kg body weight by intratracheal instillation effectively inhibited the increase observed in lung



J. Clin. Med. 2018, 7, 244 3 of 20

compliance and vital capacity of the lungs after 2 weeks of PPE treatment. However, despite these
promising studies follow-up studies using FR901277 have not been carried out. ONO-6818 was found
to effectively reduce the lung hemorrhage and neutrophil accumulation associated with NE-induced
rat emphysema model (Figures 1 and 2) [67]. Oral pre-administration of ONO-6818 at a dose of
100 mg/kg was found to reduce increased hemoglobin concentration as well as neutrophil count and
myeloperoxidase activity in bronchoalveolar lavage (BAL) fluid within 6 h of human NE instillation.
In addition, histopathology studies demonstrated a decrease in emphysematous changes in the
ONO-6818 treated group. Furthermore, ONO-6818 was shown to reduce NE-induced increases in lung
compliance and mean linear intercept (Lm) in the rat model. However, despite these promising results
ONO-6818 was later shown to have a deleterious effect on liver function.
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In another study, the specific NE inhibitor, ZD0892, was shown to have a profound effect in both
the acute and chronic phase emphysema guinea pig models (Figures 1 and 2) [68]. Oral administration
of ZD0892 at a dose range of 3–30 mg/kg resulted in lower total neutrophil cell counts in BAL fluid
in a dose-dependent manner. Moreover, it lowered the levels of desmosine and hydroxyproline in
BAL fluid. In addition, the expression of inflammatory mediators such as macrophage inflammatory
protein 2 (MIP-2), monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor-α (TNF-α)
were also found to be reduced upon ZD0892 administration. More importantly, ZD0892 was also
found to effectively reduce inflammation in chronic smoke exposed guinea pigs. Interestingly
SSR69071, a saccharide derivative was found to be more potent than earlier tested NE inhibitors [69].
SSR69071, when orally pre-administrated at a dose range of 0.3 to 30 mg/kg body weight before
elastase instillation, was shown to effectively reduce elastase-induced lung hemorrhage in mice.
SSR69071 was also shown to decrease lung hemorrhage and lung injury.
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Preclinical studies with AZD9668, an orally available NE inhibitor has found it to be effective
against both human NE- and cigarette smoke-induced emphysema models (Figures 1 and 2) [70].
Affinity studies with AZD9668 have shown it to bind NE more rapidly compared to ONO-6818.
Moreover, it showed more specificity for NE compared to other NE inhibitors such as ONO-6818 and
sivelestat. In an acute NE instilled model, AZD9668 was shown to effectively reduce BAL hemoglobin
level at a dose of >1.5 mg/kg and BAL hydroxyproline and desmosine levels at a dose of 2.5 mg/kg
and 10 mg/kg, respectively. In a chronic smoke-induced emphysema mouse model, AZD9668 was
shown to effectively reduce BAL neutrophil levels at a dose of 6 mg/kg and BAL IL-1β level at
a dose of 1 mg/kg body weight. Moreover, AZD9668 was shown to completely prevent airspace
enlargement (emphysema) and small airway remodeling in chronic models. Although AZD9668 was
shown to be effective in preclinical models, it was shown to be ineffective in clinical trials of COPD.
In a randomized, placebo-controlled phase IIb trial, three months treatment with AZD9668 improved
neither the lung function nor the sign and symptoms associated with COPD patients with a history of
budesonide/formoterol therapy [71]. In another clinical trial in COPD patients, AZD9668 at a dose of
60 mg twice a day did not reduce inflammation or lung damage when applied in combination with
tiotropium [72].

In addition to synthetic protease inhibitors, plant-derived protease inhibitors have been evaluated.
Bauhinia bauhinioides L., a plant from the Caesalpinioideae sub-family has been shown to secrete many
protease inhibitors. Among them, Bauhinia bauhinioides Kallikrein proteinase Inhibitor [73] (rBbKI)
and Bauhinia bauhinioide scruzipain inhibitor [74] (BbCI) have been found to effectively ameliorate
elastase-induced emphysema (Figure 1). In a model of elastase-induced emphysema model, rBbKI was
shown to effectively reduce elastase-induced inflammation and extracellular matrix remodeling.
Moreover, rBbKI reduced the number of BAL cells and inflammatory markers including TNF-α,
lung remodeling markers (MMP-9, MMP-12, and TIMP-1), and oxidative stress markers (eNOS and
iNOS) markers in respiratory airways and alveolar walls. In addition, rBbKI diminished the increase in
lung mechanical stress parameters such as respiratory system elastance, respiratory system resistance,
airway resistance, lung tissue elastance and lung tissue damping. BbCI was also shown to effectively
ameliorate lung inflammation and extracellular lung remodeling at a dose of 2 mg/kg.
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Recently, the potency of an arthropod-derived serine protease inhibitor in the elastase-induced
emphysema model was evaluated [75]. In the study, the authors employed BmTI-6, a Kunitz-type
serine protease inhibitor to test its efficacy against elastase-induced emphysema model (Figure 1).
The lung Lm was found to be reduced in the recombinant BmTI-6-D1 *(Domain 1) treated group.
In addition, the BmTI-6-D1 instillation reduced the respiratory mechanics and the macrophages,
neutrophil and lymphocyte count in BAL fluid. Moreover, it increased the volume proportion of
collagen and elastic fibers and decreased NE activity compared to the elastase only treated group.

3.2. Cathepsin G (cat G)

Cathepsin G (cat G) is one of the three major serine proteases secreted by the azurophilic granules
of neutrophils [76]. In addition to its antibacterial activity, cat G plays a role in innate immunity,
chemoattraction and extracellular matrix degradation [77,78]. Cat G was found to protect against
Streptococcus pneumoniae-induced lung damage [79]. In contrast, genetic knockdown of cat G has
also been found to protect lung tissue destruction from long-term exposure of cigarette smoke [37].
Moreover, increased expression of cat G can lead to alveolar wall destruction and abnormal secretion
of mucus from the airway serous cells in COPD patients [80–82].

Garavilla et al. described the cat G inhibitory activity of RWJ-355871 in lipopolysaccharide
(LPS)-induced acute inflammation model (Figures 1 and 2) [83]. Upon aerosolized instillation of
RWJ-355871, levels of exhaled nitric oxide were reduced by 20–37% in this model. In addition,
neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts in BAL among in the RWJ-355871
treated group were found to be significantly reduced compared to control groups. In another set of
experiments, by the same group, RWJ-355781 treatment did not reduce the total cell count in the BAL of
treated animals, however, it reduced the neutrophilic load by 66% in the smoke-induced inflammation
model [84]. In addition, RWJ-355781 instillation reduced the levels of keratinocyte-derived chemokine
(KC), a murine homolog of IL-8, in a smoke-induced acute inflammation model. These studies
demonstrate the efficacy of RWJ-355781 in acute inflammation models. However, in-depth studies in
chronic lung models are required in order to establish the potential of RWJ-35578 for the treatment
of chronic lung inflammation associated with COPD. Recent studies by Cracian et al. demonstrated
the potential of N-Arylacyl O-sulfonated aminoglycosides for cat G inhibition in in vitro models [85].
The aminoglycoside derivatives of neomycin, kanamycin, and apramycin showed significant inhibition
of cat G at IC50 doses ranging from 0.42 to 209 µM. However, further in vivo studies will be required
to determine the therapeutic potential of these aminoglycosides for the treatment of COPD.

3.3. Proteinase 3 (PR3)

Proteinase 3 (PR3) is the most abundant serine protease present in the azurophilic granules of
neutrophils [86] and is mostly active in the immune response to infection and is an autoantigen in
Wegeners’ disease [87]. In addition, it possesses antibacterial activity against a host of pathogens
such as Pseudomonas aeruginosa, Staphylococcus aureus, Aspergillus fumigatus, and Candida albicans [88].
As degranulation-associated neutrophilic inflammation was found to play a major role in COPD
pathophysiology, PR3 has also received attention with regard to its potential role in inflammation.
PR3 also takes part in various pro-inflammatory responses such as activation of TNF-α and IL-1β [89].
The PR3 concentration as well its activity was found to be up-regulated during exacerbations in COPD
in contrast to the levels found in stable COPD patients [90]. In addition, mice deficient in PR3 were
significantly protected from lung tissue destruction after long-term cigarette smoke exposure for
6 months [37]. These studies suggest a role for PR3 in COPD pathophysiology.

Elafin/trappin-2, an innate serine protease inhibitor primarily secreted by epithelial cells, was found
to regulate PR3 activity (Figures 1 and 2). In the PPE-induced emphysema model, trappin-2 reduced
lung neutrophil accumulation within 24 h of intranasal administration [91]. An engineered trappin-2,
trappin-2 A62L, decreased PR3 induced pro-inflammatory cytokines such as IL-6 and IL-8 by lung cells [92].
In addition, the engineered NE-resistant variants, GG- and QQ-elafin, showed prominent anti-inflammatory
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activity compared to WT-elafin. The GG-elafin variant was shown to reduce inflammation in both
LPS challenged in vitro and acute in vivo lung inflammation models [93]. In a yet another study of
elastase-induced emphysema, WT-elafin was shown to protect against lung destruction and prevent
neutrophil alveolitis [94].

In addition to innate inhibitors, several types of synthetic PR3 inhibitors have been evaluated for
their efficacy. Among them, kanamycin derived N-arylacyl O-sulfonated aminoglycoside, KanCbz,
has been shown to have the most potent IC50 (16 µM) against PR3 compared to other tested derivatives
(Figures 1 and 2) [85]. Though a large number of studies have shown anti-inflammatory properties of
elafin, there was no clinical evaluation of this inhibitor in COPD. Therefore, clinical trials with elafin or
its functional variants may be an interesting future treatment option for COPD.

3.4. Dipeptidyl Peptidase IV (DPP IV)

DPP IV, commonly known as cluster of differentiation 26 (CD26), is a cell surface serine protease
which primarily cleaves X-proline or X-alanine dipeptides from the N-terminus of polypeptides [78].
DPP IV is expressed both as a type II transmembrane protein and in soluble form [95,96]. Pertaining to
its ubiquitous in nature, it is also found in the respiratory tract in the lung parenchyma (type I and II
cells), interstitium and in alveolar macrophages and mononuclear lymphoid cells [97].

Decreased serum levels of DPP IV were found to be associated with COPD pathogenesis,
independent of age and smoking history [36,98]. More importantly, elevated levels of DPP IV was
also associated with acute exacerbation in COPD patients [36]. Interestingly, the lung tissue of
smokers and end-stage COPD patients were demonstrated to have higher expression of DPP IV than
non-smoker tissue [99]. Moreover, immunostaining studies on airway epithelia, pleural mesothelia,
and alveolar macrophages of COPD patients were shown to have enhanced expression of DPP IV [97].
Owing to its neutrophil chemorepellant nature, DPP IV may serve as an augmentation therapy for
COPD. Several lines of evidence have shown that soluble recombinant DPP IV may have important
anti-inflammatory effects [100–102]. Herlihy et al. showed that recombinant human DPPIV treatment
(2 µg/mL) reduced neutrophil infiltration in a type II collagen-induced lung inflammation model [100].
In addition, DPP IV was also found to regulate C-X-C motif chemokine 12 (CXCL12), which primarily
activates the inflammatory cascade stimulated by inflammatory stimuli such as LPS [101]. The release
of DPP IV from the cell membrane into the circulation may be important in COPD pathogenesis. MMPs
were found to be associated with the release of DPP IV from the cell membrane [103]. As elevated levels
of a number of MMPs were also found to be associated with COPD, this may represent a mechanism
to explain elevated levels of DPP IV in COPD.

3.5. Tryptases

Tryptases are tetrameric serine proteases secreted by mast cells [104]. They are the most abundant
form of serine proteases secreted by mast cells during anaphylactic shock [105]. There are two
types of tryptases, namely, α-tryptase and β-tryptase [106]. In addition to its active role in allergic
reactions, tryptases have also been found to be associated with smoking-related chronic lung diseases.
An increase in tryptase levels was found in the BAL of smokers [107]. Several studies have shown
apositive correlation between peripheral airway tryptase positive cells and lung function (FEV1/VC)
in patients with COPD indicating a possible role for tryptases in this disease [40,108]. In contrast,
tryptase levels were found to be lower in subepithelial layer of central airways of COPD patients and
not found to correlate with lung function [109]. In addition to its high cell count, the level of tryptase
activity was found to be elevated (3.4 times) in patients with severe COPD compared to mild COPD
patients [110]. Although a number of tryptase inhibitors such as lactoferrin, APC 366, MOL 6131,
and nafamostat mesilate have been used to study the underlying signaling mechanisms in allergic
induced airway disease models [111–114], a study pertaining to COPD pathophysiology is yet to be
carried out (Figure 1). Thus, pre-clinical studies to evaluate tryptase inhibitors in COPD models maybe
useful to delineate further a role for this protease in COPD.
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3.6. Chymases

Chymases are serine proteases secreted by the mast cells and possess cathepsin G-like
specificity [115]. The primary function of chymases is the conversion of angiotensin-I to angiotensin-II.
Excessive leakage of chymase due to higher mast cell degranulation by different stimulants leads
to cellular matrix degradation, activation of TGF-β/Smad signaling, conversion of active MMPs
from their zymogen form, and activation of several interleukins (such as IL-1β, IL-18, etc.) and
endothelins [116–118]. There are basically two types of chymases: α-chymases and β-chymases.
The chymases present in humans are α-class whereas rodents possess β-chymases in addition
to α-chymases [119]. In addition to their role in vascular diseases, chymases were also found
to be associated with lung diseases such as pulmonary fibrosis, pulmonary arterial hypertension
(PAH), asthma, and COPD [116,120–122]. Several investigators have shown a higher number of
chymase-positive cells in lung specimens of COPD patients [40,121]. Specifically, the numbers of
chymase-positive cells were found to be higher in peripheral airway cells as compared to central
airways. In addition, the numbers of chymase-positive cells were found to be positively correlated
with FEV1% predicted among the COPD patients [121]. Moreover, chymase was shown to stimulate
mucin production by the human bronchial epithelial cells [123]. Therefore, inhibition of chymases may
be of interest in COPD treatment.

Many investigators have shown that inhibition of chymase has a profound effect on vascular
remodeling, PAH, and atherosclerosis. Chymase inhibitors like BAY 1142524, RO5066852, TY-51469,
JNJ-10311795, and many others have been tested in PF, atherosclerosis, and inflammation (Figures 1
and 2) [83,124–126] but studies relating to their effect on COPD have been very limited. De Garavilla et
al. provided the first evidence of the anti-inflammatory effect of chymase inhibitor JNJ-10311795 against
LPS-induced airway inflammation [83]. The JNJ-10311795 inhibitor was shown to reduce inflammatory
mediators within 24 h of LPS instillation. However, because of its low oral bioavailability (<1%) and
low plasma half-life in rats, the aerosolized administration was postulated to be a more effective way of
treating airway inflammation. In another study, JNJ-10311795 exhibited anti-inflammatory properties
in a smoke-induced airway inflammation model [84]. Therefore, it will be very useful to study the
anti-inflammatory effect of chymase inhibitors in COPD models to dissect the underlying mechanisms
and may provide an alternative therapeutic target for COPD treatment in the near future.

4. The Role of MMPs and Their Inhibitors in COPD

MMPs are zinc- and calcium-dependent endopeptidases responsible for extracellular matrix
remodeling [127]. There are more than 20 MMPs believed to be involved in various pathological
conditions including inflammation. On the basis of substrate specificity, MMPs are classified as
collagenases, gelatinases, stromelysins, elastases and membrane-bound proteinases [128]. In addition
to transcriptional activation and post-transcriptional modifications, the functional activities of MMPs
were also found to be regulated by the TIMPs [129].

Several investigators, through both in vitro and in vivo studies, have validated the role of MMPs
in emphysema pathophysiology [28,130–133]. Thus, many studies have been undertaken to study the
effect of both specific and broad-spectrum MMP inhibitors for emphysema treatment. Among them,
the first randomized, double-blind study was undertaken by Salmen et al. [134] who tested the
efficacy of a broad spectrum MMP inhibitor, CP-471,474, in a cigarette smoke-induced emphysema
model in guinea pigs (Figure 1). CP-471,474 reduced the level of MMP-1 within 2 months after
smoke exposure. Moreover, it reduced the alveolar size and destruction of lung parenchyma as
compared to smoke-treated guinea pigs. In another set of experiments, Pemberton et al. tested the
efficacy of the inhaled MMP inhibitor, ilomastat, in a chronic smoke-exposed mouse model (Figures 1
and 3). Ilomastat reduced lavage neutrophil and macrophage counts at the 6-month time point [135].
In addition, it also reduced the airspace size as compared to smoke-exposed animals alone. Ma et al.
synthesized a substituted γ-Keto carboxylic acid (1j) from BAY 12-9566, a selective inhibitor of MMP-12,
and tested its efficacy against a PPE-induced emphysema model (Figures 1 and 3) [136]. This inhibitor
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reduced elastase-induced increase in lung wet weights, and morphometric analysis also showed that it
protected alveolar septal walls and elastic fibres from proteolytic cleavage. Moreover, the histological
data showed that it also protected the lung against hemorrhage induced by cigarette smoke exposure.
On the other hand, a dual inhibitor of MMP-9/MMP-12 and AZ11557272, protected mice against
an increase in small airway thickness and increases in total lung capacity, residual volume and
vital capacity in smoke-exposed guinea pigs (Figures 1 and 3) [137]. However, a clinical, randomized,
double-blind, placebo-controlled study with selective MMP-9 and MMP-12 inhibitor, AZD1236, did not
yield any significant effect in reducing symptoms associated with moderate /severe COPD [138].

J. Clin. Med. 2018, 7, x FOR PEER REVIEW  8 of 19 

 

showed that it protected alveolar septal walls and elastic fibres from proteolytic cleavage. Moreover, 
the histological data showed that it also protected the lung against hemorrhage induced by cigarette 
smoke exposure. On the other hand, a dual inhibitor of MMP-9/MMP-12 and AZ11557272, protected 
mice against an increase in small airway thickness and increases in total lung capacity, residual 
volume and vital capacity in smoke-exposed guinea pigs (Figures 1 and 3) [137]. However, a clinical, 
randomized, double-blind, placebo-controlled study with selective MMP-9 and MMP-12 inhibitor, 
AZD1236, did not yield any significant effect in reducing symptoms associated with moderate /severe 
COPD [138]. 

 
Figure 3. Structure of different matrix metalloprotease inhibitors tested against COPD models. 

Simvastatin, a lipid-lowering medication was found to effectively reduce the emphysematous 
changes in murine models (Figures 1 and 3) [139,140]. Simvastatin reduced changes in the Lm of lung 
and lung destruction significantly in smoke-treated mice. In addition, simvastatin reduced MMP-8 
and MMP-9 activity in this model (139). Further, clinical studies with salmeterol/fluticasone 
significantly reduced the levels of IL-8 and MMP-9 in sputum samples of treated COPD patients 
[141]. 

These studies indicate the importance of MMP inhibition in reducing emphysema in rodent 
models of COPD. However, few clinical studies have been performed looking directly at MMP 
inhibition, due to the off-target effects of some of these inhibitors. Therefore, the development of more 
refined and specific MMP inhibitors will be necessary for future development for the treatment of 
COPD. 

5. The Role of Cysteine Proteases and Their Inhibitors in COPD 

5.1. Caspases 

Although the protease: Antiprotease imbalance theory is considered to be an important 
mechanism underlying emphysema development, other mechanisms may explain pathological 
changes associated with the development of emphysema [142,143]. The vascular theory envisages the 
chronic loss of both epithelium and endothelium cells of the lung due to altered programmed cell 
death. Aoshiba et al. showed that a single intratracheal injection of active caspase-3 into the mouse 
lung could induce emphysematous changes [144]. These results were further validated by Yokohori, 
et al. through clinical studies in patients with emphysema [145]. They showed that the percentage of 
alveolar wall cells undergoing apoptosis and the total number of alveolar wall cells undergoing 
proliferation was higher in emphysema patients compared to healthy smokers and non-smokers. 
Further, emphysematous lungs exhibited other signs of apoptosis such as DNA fragmentation, the 
presence of active caspase-3, Bad, Bax, and fragmented poly (ADP-Ribose) polymerase in lung 
homogenate [48,146,147]. These increases in apoptosis were mediated by a variety of inflammatory 
mediators including the IL-1 receptor, IL-18 receptor-α, P2X7 receptor, endothelin-1 receptor, and the 
NLRP3 inflammasome [47,53,148–150]. 

Figure 3. Structure of different matrix metalloprotease inhibitors tested against COPD models.

Simvastatin, a lipid-lowering medication was found to effectively reduce the emphysematous
changes in murine models (Figures 1 and 3) [139,140]. Simvastatin reduced changes in the Lm of lung
and lung destruction significantly in smoke-treated mice. In addition, simvastatin reduced MMP-8 and
MMP-9 activity in this model (139). Further, clinical studies with salmeterol/fluticasone significantly
reduced the levels of IL-8 and MMP-9 in sputum samples of treated COPD patients [141].

These studies indicate the importance of MMP inhibition in reducing emphysema in rodent
models of COPD. However, few clinical studies have been performed looking directly at MMP
inhibition, due to the off-target effects of some of these inhibitors. Therefore, the development of
more refined and specific MMP inhibitors will be necessary for future development for the treatment
of COPD.

5. The Role of Cysteine Proteases and Their Inhibitors in COPD

5.1. Caspases

Although the protease: Antiprotease imbalance theory is considered to be an important
mechanism underlying emphysema development, other mechanisms may explain pathological
changes associated with the development of emphysema [142,143]. The vascular theory envisages
the chronic loss of both epithelium and endothelium cells of the lung due to altered programmed cell
death. Aoshiba et al. showed that a single intratracheal injection of active caspase-3 into the mouse
lung could induce emphysematous changes [144]. These results were further validated by Yokohori,
et al. through clinical studies in patients with emphysema [145]. They showed that the percentage
of alveolar wall cells undergoing apoptosis and the total number of alveolar wall cells undergoing
proliferation was higher in emphysema patients compared to healthy smokers and non-smokers.
Further, emphysematous lungs exhibited other signs of apoptosis such as DNA fragmentation,
the presence of active caspase-3, Bad, Bax, and fragmented poly (ADP-Ribose) polymerase in lung
homogenate [48,146,147]. These increases in apoptosis were mediated by a variety of inflammatory
mediators including the IL-1 receptor, IL-18 receptor-α, P2X7 receptor, endothelin-1 receptor, and the
NLRP3 inflammasome [47,53,148–150].
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L-Carbocysteine, a well-known mucolytic agent, was shown to inhibit hydrogen peroxide-mediated
caspase-3 and caspase-9 activation through Akt phosphorylation in airway epithelial cells [151].
Moreover, carbocysteine also reduced the airspace enlargement and alveolar destruction of rat lungs
exposed to cigarette smoke and lowered the mRNA expression of caspase-3 in the lung parenchyma of
this model (Figures 1 and 4) [152]. Administration of BQ-123 and bosentan, both endothelin-1 antagonists,
for 21 days reduced smoke-induced increases in both Lm and destructive index in lung tissue (Figure 1).
In addition, it also lowered the distribution of caspase-3 positive cells as well as caspase-3 mRNA
expression in lung tissue [150]. Intraperitoneal injection of hydrogen sulfide (H2S) donor sodium
hydrosulfide (NaHS) in a smoke-induced emphysema model inhibited smoke-induced oxidative stress,
caspase-3 activation and emphysema in mouse lungs (Figures 1 and 4) [153]. Moreover, it attenuated
the TNF-α levels, neutrophil, and monocyte counts and decreased smoke-induced bronchial wall
thickness. In an in-depth in vitro study, resveratrol was showed to protect bronchial epithelial cells
from smoke-mediated apoptosis by attenuating the expression of caspase-3 and caspase-4 (Figures 1
and 4) [154]. These studies provide evidence for targeting caspase-mediated apoptotic pathways in order
to ameliorate emphysema development. However, the basic understanding of underlying mechanisms
behind the role of apoptosis in emphysema pathogenesis is still in its infancy and further work needs to
be done to translate these findings to the clinic.
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5.2. Cathepsin S (cat S)

Cathepsin S (cat S) is an elastolytic cysteine protease with both intracellular and extracellular
activities including tissue remodeling [55]. Recent studies have shown an increased level of serum cat
S in COPD patients which were inversely correlated with severe airway limitation [55]. Zheng et al.
showed that IFN-γ is a potent stimulator of cat S and selective inhibition of cat S attenuates the
IFN-γ induced DNA damage, emphysema, and apoptosis in murine models [155]. Increased numbers
of CD8+ T lymphocytes in peripheral airways was found to be associated with COPD [156–158].
In addition, the CD8+ cell count in the bronchial biopsies has also been found to be inversely
correlated with lung function (FEV1) in chronic bronchitis (CB) patients [159]. More in-depth studies
reveal that IFN-γ, a crucial product of CD8+ T lymphocytes, was linked with alveolar enlargement,
neutrophilic inflammation and enhanced complications underlying emphysema with concomitant
induction and activation of various cathepsins and MMPs [160]. Selective inhibition and genetic
knockdown studies of cat S further illustrated the underlying mechanism behind IFN-γ induced
emphysema pathophysiology [155].

Interestingly, secretory leukocyte protease inhibitor (SLPI), which is predominantly secreted
at airway mucosal surfaces during inflammation, decreased IFN-γ induced cat S expression [161].
Geraghty et al. showed that the SLPI inhibited IFN-γ induced IκB β degradation and subsequently
reduced cat S expression in macrophages (Figure 1) [161]. Although there is some evidence that cat S
may play a role in COPD pathophysiology, no clinical trials directed towards this protease has been
conducted so far. Moreover, studies with COPD genetic models will provide more validation to the
use of anti-cat S therapy for COPD treatment.
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5.3. Cathepsin K (cat K)

Cathepsin K (cat K), a lysosomal cysteine protease, was found to be secreted by lung epithelial
cells [162]. Although the role of cat K is well known in lung fibrosis, very little is known about
its potential role in COPD. Only one study has demonstrated increased expression of cat K in
lung homogenates of COPD patients [54]. In addition, they showed that chronic smoke exposure
significantly increased cat K expression by alveolar macrophages.

6. The Role of Aspartic Proteases and Their Inhibitors in COPD

6.1. Cathepsin D (cat D)

Cathepsin D (cat D) is an aspartyl endopeptidase primarily involved in the degradation of
proteins in lysosomal compartments [163]. In addition, it plays an important role in antigen processing,
cell proliferation, and activation of various bioactive protein precursors [164,165]. Moreover, cat D
has also been found to be associated with emphysema [160]. Similar to the activation mechanism
(described earlier), IFN-γ plays an important role in the induction and activation of cat D [166].
Moreover, an increased expression of cat D localized primarily in macrophages was observed in a
smoke-exposed murine model [56]. However, the scientific knowledge in the area of cat D mediated
emphysema pathogenesis is very limited to date.

6.2. Cathepsin E (cat E)

Cathepsin E (cat E), a major intracellular non-lysosomal aspartyl protease, plays an important
role in antigen processing [167]. cat E was found to be mainly associated with different types
of cancer [168–170]. Elevated expression of cat E is associated with airflow limitation in COPD
patients [58,59] and found to be inversely correlated with FEV1% predicted in COPD patients.
Upon deciphering the underlying mechanism behind increased expression of cat E in COPD, it was
revealed that it mediates the increased expression of mitochondrial fission protein dynamin-related
protein 1 and activates the caspase-dependent apoptosis pathway leading to parenchymal destruction
in smoke-exposed murine models [59]. Although there is limited information available linking cat
E expression and COPD pathogenesis, more in-depth mechanistic studies are required in order to
understand the basic physiology behind such activity.

7. Conclusions

In COPD, dysregulated protease activity results in upregulation of proinflammatory mediators,
increased recruitment of inflammatory cells to the lung, inactivation of important innate
and antimicrobial proteins resulting in sustained inflammation and destruction of lung tissue.
One way to treat such protease-mediated events in COPD is with protease inhibitor therapy.
However, the translation of promising protease inhibitors from relevant in vivo models to the clinic has
been disappointing thus far. Many clinical trials have focused on the ‘short-term’ benefits of protease
inhibitor treatment but longer-term clinical trials may be required in order to more confidently assess
the impact of inhibitor therapy. In addition, due to the presence of multiple protease activities in the
COPD lung, it may be important to identify definitively whether there is a key protease or proteases
central to direct tissue destruction or activation of other proteases in the diseased lung. Under these
circumstances, neutralisation of one such protease with a specific protease inhibitor may lessen the
overall protease burden in COPD without the need for multiple inhibitors.
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Abbreviations

A1AT α-1 antitrypsin
Akt Protein kinase B
Bad Bcl-2-associated death promoter
BAL Broncho alveolar lavage
Bax BCL2-associated X protein
BbCI Bauhinia bauhinioide scruzipain inhibitor
BmTI-6-D1 Kunitz-type serine protease inhibitor 6 Recombinant Protein Domain 1
CB Chronic bronchitis
CE/CSE Cigarette smoke extract
COPD Chronic obstructive pulmonary disease
CXCL 12 C-X-C motif chemokine 12
CXCR1 C-X-C chemokine receptor type 1
DPP IV Dipeptidyl peptidase IV
eNOS Endothelial nitric oxide synthases
FcγRIIIb Fcγ receptor IIIb
FEV1/VC Forced expiratory volume (first second)/vital capacity.
H2O2 Hydrogen peroxide
IFN-γ Interferon gamma
IL-1 Interleukin 1
IL-18 Interleukin 18
IL-1β Interleukin 1 beta
IL-8 Interleukin 8
iNOS Inducible nitric oxide synthase
Lm Mean linear intercept
LPS Lipopolysaccharide
MCP-1 Monocyte chemoattractant protein 1
MMP Matrix metalloproteinase
NaHS Sodium hydrosulfide
NE Neutrophil elastase
NLRP3 NACHT, LRR and PYD domains-containing protein 3
P2X7 P2X purinoceptor 7
PAH Pulmonary arterial hypertension
PF Pulmonary fibrosis
PPE Porcine pancreatic elastase
PR3 Proteinase 3
rBbKI recombinant Bauhinia bauhinioides Kallikrein proteinase Inhibitor
RLV Relative lung volumes
RVH Right ventricular hypertrophy
SLPI Secretory leukocyte protease inhibitor
Smad Mothers against decapentaplegic homolog transcription factor
TGF-β Transforming growth factor beta 1
TNFα Tumor necrosis factor-alpha
VL Lung volumes
WT-elafin Wild type elafin
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