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Abstract: Previous research has shown that psychometrically assessed cognitive abilities are
predictive of achievements in science, technology, engineering and mathematics (STEM) even in
highly selected samples. Spatial ability, in particular, has been found to be crucial for success in
STEM, though its role relative to other abilities has been shown mostly when assessed years before
entering higher STEM education. Furthermore, the role of spatial ability for mathematics in higher
STEM education has been markedly understudied, although math is central across STEM domains.
We investigated whether ability differences among students who entered higher STEM education
were predictive of achievements during the first undergraduate year. We assessed 317 undergraduate
students in Switzerland (150 from mechanical engineering and 167 from math-physics) on multiple
measures of spatial, verbal and numerical abilities. In a structural equation model, we estimated
the effects of latent ability factors on students’ achievements on a range of first year courses.
Although ability-test scores were mostly at the upper scale range, differential effects on achievements
were found: spatial ability accounted for achievements in an engineering design course beyond
numerical, verbal and general reasoning abilities, but not for math and physics achievements.
Math and physics achievements were best predicted by numerical, verbal and general reasoning
abilities. Broadly, the results provide evidence for the predictive power of individual differences in
cognitive abilities even within highly competent groups. More specifically, the results suggest that
spatial ability’s role in advanced STEM learning, at least in math-intensive subjects, is less critical
than numerical and verbal reasoning abilities.
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1. Introduction

Cognitive predictors of success in the domains of science, technology, engineering and
mathematics (STEM) have been a focus of numerous studies. While indicators of general intelligence
have been strongly linked with educational attainment in math and science [1], many studies suggest
that the cognitive profile of STEM learners goes beyond high general reasoning ability [2–4]. Along with
mathematical competence, spatial ability is among the cognitive factors that were identified as markers
for success in STEM and as a core cognitive resource for STEM learning. Large-scale studies in U.S.
populations revealed that high spatial ability (SA) predicted choice and long-term achievements
in STEM beyond verbal and quantitative abilities, both among highly selective groups and in
more heterogeneous samples [4–6]. Indeed, considerable research has examined spatial thinking
in various STEM disciplines such as engineering [7,8], chemistry [9], physics [10], geology [11,12] and
medicine [13]. Evidence has also accumulated supporting the utility of SA training, which is regarded
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as a potentially efficient way to increase young students’ chances of entering and remaining in STEM
domains [14,15].

Nevertheless, several questions remain open concerning the extent to which SA supports STEM
learning across levels and areas of education. For example, reviewing expert-novice studies in several
domains, Uttal and Cohen [16] concluded that psychometrically assessed SA is critical for STEM
novices (i.e., during the first 2–3 semesters as STEM majors), but becomes less critical with increasing
expertise. At the same time, other findings show that individual differences in SA, especially at
the upper scores range, predicted outcomes clearly beyond the novice level [17]. As described next,
we addressed two issues relevant to the understanding of the SA–STEM link that have not yet received
much attention. The first was whether SA predicts STEM achievements beyond other factors when
assessed among students already enrolled on STEM programs. The emphasis here was on ability
differences within an expectedly high-ability sample of STEM undergraduates, yet not as selected
as in other studies (e.g., the top 0.5% and 0.01% in [18]). The second issue was the degree to which
SA predicts achievements across STEM areas. The focus here was on advanced mathematics and
math-intensive areas such as physics, which are central in STEM education. Thus, we studied the
population for whom SA is expected to be particularly important: students who have just begun
their undergraduate studies in STEM. Our study was therefore a-priori targeted at students who
select advanced STEM programs rather than at generalizing to math and STEM learning more broadly.
We next describe each of the above issues in more detail.

1.1. The Unique Role of Spatial Ability in STEM and What Spatial Ability Tests Measure

Very broadly, spatial ability (SA) refers to “the ability to generate, retain, and manipulate abstract
visual images” [19]. In fact, several types of SA have been identified since the early factor analytic
studies on human cognitive abilities [20,21], and the exact distinctions vary between studies and
theoretical frameworks [22–26]. The most studied type of SA in the context of STEM is spatial
visualization (SV), which is the ability to “ . . . apprehend a spatial form, shape or scene in order to
match it with another spatial form, shape or scene, often with the necessity of rotating it in two or
three dimensions one or more times” [24]. Typical tests reflecting this factor are The Paper Folding
Test [27] and The Mental Rotations Test [28,29]. Others have differentiated mental rotation from SV [25],
defining the former as involving an analogue and holistic mental process and the latter as involving
more complex, multistep mental manipulations. Measures of both kinds have been extensively used
in previous research on STEM learning [30], and therefore were in focus of the present research as
well. We use the term SV in the broader sense suggested by Carroll [24], namely referring to complex
mental manipulations of objects, mostly in three dimensions, involving either rotation or other forms
of transformation. Since previous studies have often used the broad term SA even when measures
were of SV, we use the term SA when referring to previous research in this field.

Cognitive ability tests are multidimensional to varying degrees, and SA tests are no exception.
Research showed that solving SA tests involves not only strictly spatial-visual processes, but also a
variety of non-spatial components. For example, Miyake et al. [31] showed that performance on SA
tests, and particularly on SV tests, highly depended on executive functions, whereas others found that
analytical- and heuristic-based strategies are as common and at least as efficient as visualization per
se, sometimes even preferable [9,30,32,33]. These components may be considered domain-general in
nature, and potentially present in other types of ability tests. Consequently, both visual-spatial and
domain-general factors may drive a link between SA and STEM achievements, a distinction that is
important to the way this link is understood. The strongest evidence for the unique predictive validity
of SA for STEM achievements (i.e., not explained by other abilities) is based on ability differences
assessed before entry into higher-education STEM tracks. For example, both math and SA assessed
before age 13 predicted very long-term STEM outcomes such as advanced degrees and tenure positions,
and these predictions held even among extremely high-ability adolescents [18,34]. It is reasonable
to assume that those who have reached the top in STEM careers have done very well also earlier on,
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for example, during their undergraduate years. If certain abilities were critical for reaching those
distal outcomes, then it is also reasonable to expect that they would play a role in achievement
prediction earlier in the academic track. However, the interplay between cognitive abilities among
students who select STEM at the undergraduate level has been less systematically studied for its
impact on achievements. For example, many of the studies that focused on the way SA is related to
performance in specific domains in higher STEM education have not accounted for other relevant
cognitive abilities that may influence this relation (e.g., Sorby [35] in engineering; Stieff et al. [9]
in chemistry). Among studies that included non-spatial measures, for example with dentistry
students [13], SA predicted performance on very specific and spatially rich subjects (restorative
dentistry), but not more broadly (anatomy grades or the grade point average). Other studies focused
on advanced STEM learning among non-STEM participants [10,36], who may not represent the
population of STEM beginners. Finally, at least in the area of engineering, the focus has been stronger
on students with initially low SA [7,8] than on individual differences at higher levels of SA. Thus,
at the time point of beginning undergraduate STEM studies, it is less established whether having
exceptional spatial skills continues to affect achievements beyond other abilities.

1.2. The Role of Math in STEM Programs

Although the acronym ‘STEM’ has become a notion in itself, it in fact stands for a wide range of
knowledge domains. In some cases, a straightforward similarity exists between problems in SA tests
and domain-knowledge problems (e.g., switching between two- and three-dimensional representations
of objects), and studies in areas such as engineering and geology [8,11] support this observation.
However, such similarity is not obvious in all STEM areas. Our primary interest was in mathematics
for STEM beginners. Not only is math a STEM discipline itself, it is also central to study programs
in all STEM domains, and it is integral to studying other areas such as physics. Moreover, math is
one of the most abstract and demanding areas in higher STEM education, posing great difficulties
to many students and often crucial to their overall success. In spite of its importance, little is known
about the role of SA for math at this level. Our own review [37] revealed that whereas a ‘math-space’
link [38] seems established for fundamental forms of mathematical thinking (e.g., early number
representation) [39], evidence for a unique spatial-math link becomes mixed as early as the beginning
of formal education [3,40–43] and all the more so with respect to undergraduate math [36,44–46].
Furthermore, math in higher STEM education is, to a great extent, expressed in symbolic language.
Although ideas may be represented externally in visuo-spatial form (e.g., shapes of functions),
problem solving primarily relies on calculation, proof, and rigorous mathematical argumentation
(i.e., not relying on the senses). These might be at odds with problems in SA tests, which typically
simulate familiar physical experiences (e.g., rotating objects) and are often designed to activate an
analogue mental code. In fact, other types of processes in solving SA tests, which we have termed
‘domain general’ (i.e., analytical, heuristic based etc.), may have more in common with abstract math
thinking than visualization itself. Thus, it was unclear to what extent high spatial skills contribute to
math learning at this advanced level.

1.3. The Present Study

We were concerned with the interplay between cognitive abilities and success in specific topics
during higher STEM education, and particularly with the role of SA. We assumed that any specific
ability that serves as a critical cognitive resource for advanced STEM learning should have unique
predictive validity for achievements also when assessed among students enrolled on advanced STEM
studies. Consistent with previous research, we focused our investigation on SV ability. Specifically,
we examined whether SV predicted achievements in mathematics, math-intensive subjects, and in
typical ‘spatial’ areas in the course of higher STEM education, and whether it was predictive beyond
verbal and numerical reasoning abilities. We focused on STEM beginners: students at their first
undergraduate year in a STEM program, for whom SA is expected to be critically important. Since this
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population was likely to be a high-ability group due to factors such as self-selection and admission
criteria, our investigation also challenged the notion that ability differences cease to matter in higher
levels of performance (the so-called “threshold hypothesis” [47]). Building on the findings cited above,
as well as on other findings against a ‘threshold’ view of cognitive abilities [48,49], it was reasonable
to expect that variability in cognitive abilities among STEM students will be relevant to achievement
prediction. To this end, we examined the predictive validity not only of SV, but also of verbal and
numerical reasoning abilities. Our outcome variables were achievements on the most important
courses during the first undergraduate year, those that largely determine retention. Focusing on course
performance (mostly in the form of grades) as a criterion variable has been done previously in studies
on STEM learning [7,35,44]. The main advantage of this approach is the proximity of the outcome
variables both in time and in content to the type of learning in question, while keeping external validity
high. Nonetheless, some of the studies cited above focused on other types of outcomes, often more
distal ones (e.g., [34]), a point to which we return in the discussion.

We investigated the following questions:

1. Does SV ability predict achievements on major STEM courses during the first undergraduate
year beyond numerical and verbal reasoning abilities?

2. Does SV ability differ in its predictive validity between domains of achievements
(i.e., mathematics or math-intensive areas vs. explicitly spatial domains)?

We systematically investigated these questions by differentiating between ability domains,
achievement domains, and STEM programs. Additionally, we included multiple ability measures in
order to ensure that the results are not dependent on a particular type of ability test. We assumed
that different factors in SV test performance could underlie its link with achievements, namely factors
specific to the spatial modality or domain-general ones. The higher the spatial-demands in a field,
the stronger we expected its link with spatial-specific factors to be.

2. Method

In a prospective cohort design, we assessed students from two STEM programs on multiple
measures of SV, numerical and verbal reasoning abilities. Students’ grades on a range of first year
courses served as measures of academic achievements and were based on scores in written exams.
Cognitive abilities were modelled as latent variables (LVs), which enabled the direct estimation
and control of measurement error across the different tests (e.g., [50]). The effects of abilities on
academic achievements were then estimated in a structural equation model (SEM). Since our focus
was on the interplay between specific abilities in achievement prediction (i.e., their unique predictive
validity), we first specified a correlated factors model with three latent variables: verbal reasoning,
numerical reasoning and spatial visualization (SV). We then estimated the effects of these variables on
academic achievements, which indicated the extent to which each ability contributed to the prediction
over and above the other abilities in the model. Next, in order to directly estimate the contribution
of domain-general factors, we examined whether and to what extent specific abilities predicted
achievements beyond a general ability factor.

Latent variables analyses were conducted in MPlus (version 7.11; [51]). In all analyses,
robust maximum likelihood estimation (MLR) was used, which takes into account non-normal
distributions. We followed recommendations described by Kline (2016) for estimating model
fit: Exact fit: (1) Model Chi-square with its degrees of freedom and p value. Approximate fit
indices: (2) Steiger-Lind Root Mean Square Error of Approximation (RMSEA); [52], and its 90%
confidence interval (3) Bentler Comparative Fit Index (CFI); [53] (4) Standardized Root Mean Square
Residual (SRMR).
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2.1. Sample

Participants were students in their first undergraduate year at ETH Zurich, which is a large
public technological university in Switzerland, and of high reputation internationally. As in many
European universities, admission to ETH requires no admission exams and only a negligible tuition
fee, though a Gymnasium diploma is required. In the Swiss school system, the Gymnasium is the
highest track of secondary school, designed to prepare students for university education. Selection to
the Gymnasium starts in middle school (6th grade) or lower secondary school (8th or 9th grade).
About 20–25% of an age group eventually attend this academic school track. To this end, we had
grounds to expect our sample to be above average in their cognitive abilities. At the same time, as a
public university that serves all Gymnasium graduates, ETH attracts a large number of students
(e.g., graduation rates across the engineering bachelor programs are over 500 students per year).
Students differ in their educational background because although Swiss Gymnasium schools teach
the same core subjects, variation exists in their foci and the diploma is based on exams that are not
nationally standardized. Additionally, roughly 20% of students beginning bachelor studies at ETH
come from abroad (most of them from other German speaking countries, where admission to the
Gymnasium is typically less selective than in Switzerland). Finally, the first undergraduate year at ETH
is a critical one for retention: students undergo challenging exams with a failure rate of 30%. Thus,
while we expected a higher-than-average-ability sample, we did not expect an extremely selected
or gifted group. Considering that a large body of research in this area has been conducted in an
American population, it is noteworthy that differences between educational systems may complicate
the comparability of samples. For example, unlike in Switzerland, in the U.S. there is no equivalent
selection process to secondary school, but there are admission exams that lead to large differences
between universities in students’ cognitive preconditions. This is less the case in Europe, particularly
in smaller countries with only few universities. Additionally, university and college students in the
U.S. usually select their major area at a later time point during higher education than students in
European universities. Higher education in Switzerland resembles that of other European countries in
many respects, and thus sampling from ETH should allow generalizations beyond the institute itself,
presumably to high-level technological institutes elsewhere.

We recruited students from bachelor programs in mechanical engineering, mathematics and
physics. Math and physics students have an identical curriculum during the first undergraduate
year and therefore formed one group in this study, while engineering students formed the second
group. There were several reasons for selecting these groups. First, in both groups, math courses are
highly intensive during the first year and have a major weight in the overall grade. The major math
courses in both groups are analysis (calculus) and linear algebra, thereby providing consistency with
respect to the broad mathematical areas in question. At the same time, these math courses are taught
differently in each group (e.g., applied versus theoretical), since mathematics is required for different
purposes in these study programs. Second, we were interested in comparing math achievements
with achievements in more typical ‘spatial’ areas, which we expected to be present at least in the
study program of mechanical engineers. Third, both study programs include intensive physics courses
that are both mathematically demanding and potentially involve spatial demands. Finally, we were
interested in STEM areas that are central and exist as study programs in similar institutes worldwide.

Participation criteria were as follows: a first-year first-semester student in either math, physics or
mechanical engineering; a native (or native level) German speaker; not repeating any of the first
year courses (i.e., due to previous failure); and having taken a self-evaluation test in mathematics,
which is offered at the beginning of each academic year to all new students. This math test assesses
high-school level math knowledge and was included in order to address additional research questions
not discussed in this paper.

Sample size: We planned to conduct our main analyses separately in each of the study groups,
since courses differ between study programs. Prior simulation studies indicated that in order to detect
effects of about 0.3 (latent level) with a correlated factors model (i.e., path coefficients from any ability
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factor to an outcome), a minimum of about 150 observations would be needed in each group. Therefore,
we aimed to reach at least this sample size.

2.2. Measures

The study included multiple measures of cognitive abilities, which were to serve as indicators for
latent variables of these abilities. In addition to SV tests, we administered an intelligence test battery
with verbal, numerical and figural subscales. This enabled us both to investigate the incremental
predictive validity of SV, as well as to estimate the ability range of our sample relative to existing
norms. The study also included multiple measures of working memory, which are related to additional
research questions not discussed here.

2.2.1. Spatial Visualization Tests

The Paper Folding Test [27]. In this test, participants saw a drawing of a folded piece of paper in
which holes were made. They were asked to imagine what the paper would look like when unfolded,
and to decide which of the five shapes corresponds to the resulting image. The test consisted of 20
questions divided into two parts of 10 questions each. In line with the standard procedure described
in Ekstrom et al. [27], participants were given 3 min to complete each part. Scores on the test were the
total of correct answers and ranged from zero to 20.

Mental Rotations Test. This test was the Peters et al. [54] version of the original paper and pencil
Mental Rotations Test by Vandenberg & Kuse [28]. In this test, participants were shown a drawing of
a cubical figure and had to decide which two other figures out of four were rotated versions of the
target figure. In all cases, the target figure appeared on the left and the answer choices on the right.
Only two answers were identical to the target, but rotated along the y-axis. The two other answers were
mirror images of the target and thus could not become identical to the target by rotation. There were
24 questions divided into two parts of 12 questions each. In line with the procedure described by
Peters et al., participants were given 3 min to complete each part. An answer was scored as correct
only if both rotated figures were identified. Scores were the total of correct answers and ranged from
zero to 24.

Mental Cutting Test (MCT). This is a sub-set of CEEB Special Aptitude Test in Spatial Relations,
developed by the College Entrance Examination Board, USA [55]. In this test, participants were shown
a drawing of a 3D shape being cut by a plain. Their task was to decide which of five alternatives was
the resulting 2D cross-section. There were 25 questions in this test. In line with the standard procedure,
participants were given 20 min to complete the test. Scores were the total of correct answers and
ranged from zero to 25.

The mental cutting test “Schnitte”. This test was developed by Fay and Quaiser-Pohl [56]
(see also [57]) and focuses on the visualization of cross-sections. It was designed especially for
identifying exceptionally high spatial ability, and therefore it is a highly difficult test. As we expected
our students to be of high ability, we were particularly interested in including this test. The test
consists of 17 multiple-choice questions in which participants are asked to visualize various types
of cross-sections. Some questions display a 3D shape that is to be cut by a plane or by a 3D shape,
and participants need to decide which answer out of five alternatives corresponds to the resulting
cross-section. Another type of question shows a resulting cross-section, and participants are required
to decide from which combination of shapes out of five alternatives the cross-section could result.
Finally, some of the questions were presented only verbally (i.e., no drawings were provided) so that
participants had to mentally construct the entire problem. Participants were given 30 min to complete
the test. Scores on the test were the total of correct answers and ranged from zero to 17.

The following two tests are taken from the intelligence test battery IST 2000R (described in more
detail below):

Figure selection. In this test, participants saw five images of two-dimensional shapes and ten
arrays of these shapes ‘torn’ into pieces. Participants were asked to decide which of the whole objects
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results from putting together the pieces in each array. The test is essentially a two-dimensional object
assembly task, which we assumed strongly involve SV. Therefore, we included this task as an indicator
for an SV factor.

Cube task. In this test, five drawings of a cube were shown. Each cube had three visible sides,
on which different patterns of dots appeared. Below these, 10 additional cubes were presented,
each identical to one of the target cubes but presented in a different orientation. For each of the ten
cubes, participants had to decide which of the upper five target cubes is the correct one. This test is
expected to involve a high degree of mental rotation, therefore we included it as an indicator of an
SV factor.

2.2.2. Numerical and Verbal Reasoning Tests

Intelligence Structure Test

The German intelligence structure test 2000 revised (Intelligenz-Struktur-Test) (I-S-T) 2000R [58]
was developed along the theoretical lines of well-established models of intelligence [20,59,60] and
has been standardized in German speaking populations. The test measures reasoning ability in three
content domains: verbal, numerical and figural. There are three sub-scales per content domain,
each consisting of 20 multiple-choice questions at increasing difficulty levels. Sub-scales of verbal
reasoning include sentence completion (e.g., “the opposite of hope is__?__); analogies (forest:tree is like
meadow: ?); and similarities (which two words out of six have the most in common). Sub-scales of
numerical reasoning include arithmetic calculations (solving simple equations); number series (inferring a
rule underlying a series of numbers in order to decide which number is next, e.g., 9 7 10 8 11 9 12 ?);
and numerical signs (deciding which numerical operations are missing in order for an equation to be
correct, e.g.,: 6 ? 2 ? 3 = 5). Sub-scales of figural reasoning include figure selection and cube that are
described above, as well as a figural matrices test, which measures inductive reasoning with non-verbal
stimuli. This last test was not expected to reflect SV and was therefore not included in the ability
models and SEM analysis described next. We included this subscale in order to obtain complete scores
on the intelligence battery. Each sub-scale has a time limit of 8 to 10 min. The overall duration of
the entire battery is approximately 90 min. Raw scores on each sub-scale were the total of correct
answers and ranged from zero to 20. Raw scores per content domain were means of scores on the three
sub-scales and ranged from zero to 60. We used raw scores in all of the analyses.

2.2.3. Achievements on STEM Courses

Grading in most of the courses of the first undergraduate year is based on scores in written exams
usually taken at the end of the year. The exams are composed by senior faculty members based on
standard curricula and are given collectively to the entire cohort. Thus, a final grade in a course is not
determined by sources such as exercises or interim evaluations, and therefore reflects success in a final
exam. Exam scores are transformed into grades ranging from 1 (worst) to 6 (best) with steps of 0.25
points (i.e., equivalent to a 1–20 scale). We collected grades on some of the major first year courses in
each study program. In the mechanical engineering group, these were as follows: Analysis (calculus),
linear algebra, physics (mechanics), machine elements, technical drawing and CAD (computer-aided design);
and in the math-physics group: Analysis, linear algebra, two physics courses (physics I: mechanics,
physics II: waves, electricity and magnetism). Of these courses, technical drawing and CAD (T.D.CAD) is
the only course we could confidently describe as having SV at its focus. The course machine elements
combines spatial tasks (e.g., learned in T.D.CAD) with mechanics knowledge and to some degree
mathematics. For the rest of the courses, the degree of spatial material or demand was less clear.
Courses considered ‘math-intensive’ were all math and physics courses. The course machine elements
was the only exception for which grades were based both on an exam as described above, and on a
semester project.
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2.3. Procedure

Students were recruited across three consecutive cohorts (years 2012, 2013, 2014). The first
recruitment was in the framework of a pilot study. In this smaller sample, participants performed
all of the paper-and-pencil tests and a digital version of the test Schnitte. In the following two years,
two larger samples were recruited, which were administered the same paper and pencil tests as well as
a paper version of Schnitte. Students were recruited at the very beginning of the fall semester and were
offered monetary compensation for participation, which was compatible with a standard student’s job
(20 CHF per hour, a total of 100 CHF for five hours).

Students were invited to two group-testing sessions. The first session included all of the paper
and pencil tests except Schnitte, and the second session included working memory tasks (not discussed
here) and the test Schnitte. The sequencing of tests was fixed for all participants, sessions and samples.
For each cohort, we collected students’ grades in final exams during the fall of the following academic
year. Final exams on all courses take place in summer, i.e., after two semesters of study, except the exam
for T.D.CAD, which takes place in winter (after one semester). All participants gave their informed
consent for inclusion before they participated in the study.

3. Results

3.1. Sample

A total of 319 students participated in the study. Two participants were excluded from analysis
due to prior experience with first year courses or extreme outlier values on most measures. The final
sample size was therefore 317, with 150 mechanical engineering students and 167 math-physics
students. Table 1 summarizes sample size across cohorts, study groups and gender. The total number
of new students that enrolled on these study programs in the years 2012, 2013 and 2014 was 442, 465
and 426 respectively in mechanical engineering; and 299, 326 and 315 in math-physics. Thus, for each
cohort, our sample comprised 8–15% of the students in mechanical engineering and 9% to 26% of the
students in math-physics. The proportion of women in our sample matched those usually found in
these study programs at ETH. Mean age was 19.5 (SD = 1.4) and ranged from 17 to 25. There were no
significant differences between cohorts on age (F2,314 = 0.19, p = 0.83), proportions in study programs
(χ2 = 4.29, p = 0.12) or proportion of women (χ2 = 2.11, p = 0.35). There were no significant differences
between the three cohorts on any of the study measures, except for a small advantage for students in
the pilot sample on the number series test (F2,311 = 4.39, p = 0.01). Thus, the three cohorts were highly
similar on the predictor variables, indicating consistency in self-selection to the study (and to ETH).
We therefore aggregated cohorts for further analyses.

Table 1. Participation rates by sample, field and gender.

Cohort N Engineering Math-Physics

2012 (pilot) 65 38 27
2013 158 72 86
2014 94 40 54
Total 317 150 167

Women (%) 44 (14%) 14 (9%) 30 (18%)

3.2. Data Screening and Missing Data

Values over 3.5 SDs from the mean were considered outliers and treated as missing values.
There were 18 outlier values (0.4% of the dataset). Additionally, 14 scores on the test ‘Schnitte’ were not
recorded due to a technical error and were also treated as missing values. Finally, 44 participants (14% of
the sample) did not attend final exams and therefore had missing data on grades. Not attending exams
could be due to any of the following reasons: drop out (4.7%); switching to another department (1.9%);
postponing examination to a later time point (3.5%), or an unknown reason (3.8%). Independent
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samples t-tests (corrected for multiple comparisons) revealed a significant difference in favor of
students with grades only on one measure (‘numerical signs’; t = 3.76, p < 0.001; d = 0.60). Altogether,
the proportions of missing data on grades was 0.6% in the mechanical engineering group and 1% in the
math-physics group (for comparison, analyses in which participants with missing data on grades was
excluded are available in the supplementary materials part IV). Full information maximum likelihood
(FIML) was used for treating all missing data (the default in Mplus).

3.3. Descriptive Statistics

Table 2 presents descriptive statistics of all cognitive measures included in the study. As shown,
students’ highest scores were on numerical scales. For most scales, reliability estimates based on
Cronbach’s alpha were within an acceptable range, though lower than in more heterogeneous samples.
This may be expected since the lower the variability in test scores is, the lower the reliability estimates
tend to be [60–62]. For the verbal scales, these estimates were considerably lower. However, since the
verbal scales yielded lower reliability estimates than numerical and figural IST scales also in the
normative sample, we assume that the estimates in our sample resulted from both lower score
variability, as well as test properties independent of this sample (e.g., verbal test items being less
unitary than numerical and figural items). The verbal scales have, nonetheless, been used extensively
before as part of the IST test battery. Also, as described next, we modelled all abilities as latent
veriables, which takes into account measurement error in the observed scores. The verbal scales
loaded clearly on one factor, and they also showed consistent correlations with some of the outcome
measures. Lower reliability estimates have usually been described as resulting in an underestimation
of a relationship between the scale and other variables (e.g., [60]). To our view, finding correlations
in spite of lower reliability, together with the other points mentioned above, justified retaining these
scales in the analysis. We additionally report the general lower bound (GLB) estimate of scale reliability,
which has been found to be a more accurate measure of reliability than the alpha coefficient in cases of
skewed distributions [63,64].

Table 2. Means, standard deviations and reliability estimates of all measures included in the study.

Ability Test Mean SD
Scale

Range Skew
Reliability

Cronbach’s Alpha a GLB

Spatial visualization

Paper folding 16.71 2.46 0–20 −0.41 0.73 0.85
M.Rotations 16.10 3.96 0–24 −0.19 0.80 0.86

Mental cutting 19.20 3.88 0–25 −0.63 0.78 0.87
Schnitte 8.55 3.04 0–17 −0.08 0.61 0.73

IST: Figural reasoning
Figure selection 14.06 3.39 0–20 −0.65 0.72 (0.76) 0.84

Cubes 14.56 3.66 0–20 −0.55 0.79 (0.79) 0.86
Matrices 11.62 2.73 0–20 −0.14 0.60 (0.66) 0.75

Total figural 40.24 7.06 0–60 −0.31 0.85 (0.87) 0.81

IST: Verbal reasoning
S.completion 14.21 2.74 0–20 −0.73 0.56 (0.63) 0.72

Analogies 14.24 2.12 0–20 −0.24 0.36 (0.68) 0.58
Similarities 12.61 2.55 0–20 −0.37 0.54 (0.71) 0.67

Total verbal 41.06 5.54 0–60 –0.45 0.70 (0.88) 0.88

IST: Numerical reasoning
Calculations 17.03 2.48 0–20 −0.92 0.70 (0.80) 0.78

Number series 17.21 2.51 0–20 −1.46 0.77 (0.90) 0.85
Numerical signs 17.24 2.52 0–20 −0.77 0.71 (0.84) 0.82

Total numerical 51.48 5.84 0–60 −0.85 0.85 (0.95) 0.85

M.Rotations = Mental rotations; S.completion = sentence completion; GLB = greatest lower bound; a For IST
sub-scales: values in brackets are based on a normative sample of high-school graduates (N = 1445); for IST
sum-scores, values in brackets are based on a total (mixed) normative sample (N = 3484).

To determine the ability level of our sample, we compared scores on the intelligence scales to
existing norms in a population of high-school graduates and in the general population. Performance
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in the present sample was above average in both these populations, as shown in Table 3. In general
IQ scores, our sample had a mean IQ of 119.71 (SD = 11.15) relative to the norms for high-school
graduates, and 128.15 (SD = 10.72) relative to the general population norms. Thus, the data confirmed
that students in our sample were of high general cognitive ability. We assume that this is not solely a
result of an early selection process in middle school (as described in the methods section), but also of
self-selection to this technological university.

Table 3. Means and standard deviations (in parentheses) of raw sum-scores on the IST in the present
sample and in two normative samples.

Ability Current Sample
Normative Sample

High-School Graduates a General Population b

Verbal 41.06 (5.54) 36.94 (8.34) 31.56 (7.89)
Numerical 51.48 (5.84) 39.19 (12.19) 33.04 (11.25)

Figural 40.24 (7.06) 33.30 (8.34) 30.84 (8.50)
General 132.39 (13.26) 107.63 (21.24) 95.17 (22.59)

a 202 high-school graduates from Germany (age group 19–20); b 1190 German participants with various educational
backgrounds (ages 15–20). Norms were established in the year 2000.

Norms were additionally available for the test Schnitte. Mean performance among general
high-school graduates in Germany was 7.9 (SD = 3.27), and 8.0 (SD = 3.84) among scientific high-school
graduates. Thus, performance in the present sample (M = 8.55, SD = 3.04) was comparable to the
level among students with a scientific high-school background. For the other SV tests (paper folding,
mental rotations and mental cutting), norms were not readily available. In comparison to the data
reported in previous studies, our sample seems to have performed in the upper range found for
students in scientific fields. For example, Peters et al. [54] reported a mean of 14.8 (SD = 4.8) on the
mental rotations test for 135 males in scientific bachelor programs. Tsutsumi, Schroecker, Stachel,
and Weiss [65] reported means on the mental cutting test in the range of 15–18 for students in
technological universities.

3.4. Group Differences

We examined whether engineering and math-physics students differed on the independent
(observed) variables, as such differences might influence the results of grade prediction. Independent
samples t-tests (corrected for multiple comparisons) revealed small effect-size differences in favor
of math-physics students on two measures: Schnitte (M = 8.01, SD = 2.78 in engineering; M = 9.06,
SD = 3.18 in math-physics; t = 3.01, p = 0.003, d = 0.34); and verbal similarities (M = 12.07, SD = 2.61 in
engineering; M = 13.11, SD = 2.41 in math-physics; t = 3.67, p < 0.001, d = 0.41). Differences that did
not reach significance were all of small to negligible effect size. Thus, students from these two study
programs were more similar than different on the mean level of cognitive ability.

Finally, although not the focus of this study, some gender differences emerged on the cognitive
variables. Independent samples t-tests revealed significant differences in favor of men on the Mental
Rotations Test (Men: M = 16.42, SD = 3.88; Women: M = 14.14, SD = 3.94; t = 3.62, p < 0.001, d = 0.59);
and on numerical signs (Men: M = 17.49, SD = 2.45; Women: M = 15.91, SD = 2.59; t = 3.95, p < 0.001,
d = 0.64). Men also tended to outperform women on the Mental Cutting Test (Men: M = 19.40, SD = 3.86;
Women: M = 18.07, SD = 3.86; t = 2.10, p = 0.04, d = 0.34); and women tended to outperform men
on the Paper Folding Test (Men: M = 16.59, SD = 2.42; Women: M = 17.66, SD = 2.53; t = 2.72,
p < 0.01, d = 0.44) and on figural matrices (Men: M = 11.47, SD = 2.75; Women: M = 12.59, SD = 2.43;
t = 2.56, p = 0.02, d = 0.42), but these differences did not reach significance levels once correcting for
multiple comparisons. There was no indication for gender differences on the other ability tests,
academic achievements or drop-out rates.
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3.5. Latent Structure of Cognitive Abilities

Prior to estimating the relations between abilities and academic achievements, we conducted
exploratory and confirmatory factor analyses in order to establish a model of cognitive abilities.
The detailed analyses can be found in the supplementary materials (Section 2). Here, we report the final
model that was retained. The respective correlation matrix of observed variables is presented in Table 4
and the model is shown in Figure 1. Fit statistics for this model were as follows: χ2/df = 95.42/50,
p ≤ 0.001; RMSEA (90% CI) = 0.05 (0.04–0.07); CFI = 0.94; SRMR = 0.05. In this model, the three
verbal tests were indicators of a verbal reasoning factor; the three numerical tests were indicators of a
numerical reasoning factor; and the six SV tests were indicators of an SV factor. Based on prior analyses,
the residual variances of the two cross-sectioning tests were freely estimated. Tests for measurement
invariance of this model across the groups are reported in the supplementary materials (Section 3).J. Intell. 2018, 6, x FOR PEER REVIEW  12 of 23 

 

 
Figure 1. Three correlated factors model of cognitive abilities. Sent = Sentence completion; Analo = 
Analogies; Simil = similarities; Calc = Calculations; Numsr = Number series; Numsg = Numerical 
signs; PFT = Paper Folding Test; MRT = Mental Rotations Test; MCT = Mental Cutting Test; Schni = 
Schnitte; Figsl = Figure selection. All paths are significant at p < 0.001. 

3.6. Prediction of Academic Achievements 

Tables 5 and 6 present the observed correlations between cognitive measures and grades among 
engineering and math-physics students respectively (the full correlation matrices are included in the 
supplementary materials Section 1). It is evident from these tables that SV tests significantly 
correlated with grades on two engineering courses (machine elements and technical drawing and 
Computer Aided Design (CAD)), whereas none correlated significantly with math and with 
mechanics among engineering students. It is also evident that numerical ability tests significantly 
correlated with all of the grades in this group. Among math-physics students, all ability measures 
significantly correlated with almost all of the grades. Notably, of the SV tests, only MCT and 
Schnitte—the two cross-sectioning tests—significantly correlated with grades. 

Tables 7 and 8 present correlations between latent abilities and grades in each group 
respectively. Course grades were retained as observed variables in order to keep a differentiation 
between the courses.1 The correlations in Tables 7 and 8 indicate how each of the abilities related to 
grades without controlling for other abilities (i.e., bidirectional paths in a measurement model). As 
before, numerical reasoning was the primary factor related to math and mechanics grades among 
engineering students, whereas SV was related only to two ‘spatial’ courses; among math-physics 
students, all abilities were correlated with all of the grades. 

                                                 
1 Since math-based grades were highly correlated, we estimated in subsequent analysis a similar model with 

a latent variable for math, which strengthened the current pattern of results. 

Figure 1. Three correlated factors model of cognitive abilities. Sent = Sentence completion;
Analo = Analogies; Simil = similarities; Calc = Calculations; Numsr = Number series;
Numsg = Numerical signs; PFT = Paper Folding Test; MRT = Mental Rotations Test; MCT = Mental
Cutting Test; Schni = Schnitte; Figsl = Figure selection. All paths are significant at p < 0.001.
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Table 4. Correlations between scores on ability tests (N = 317).

Test 1 2 3 4 5 6 7 8 9 10 11 12 13

1. PFT -
2. MRT 0.37 *** -
3. MCT 0.40 *** 0.36 *** -
4. Schnitte 0.37 *** 0.23 ** 0.50 *** -
5. Figsl 0.47 *** 0.35 *** 0.41 *** 0.37 *** -
6. Cube 0.46 *** 0.40 *** 0.35 *** 0.22 *** 0.34 *** -
7. Sent 0.12 −0.03 0.19 ** 0.21 *** 0.08 0.06 0.04 -
8. Analo 0.27 *** 0.08 0.23 ** 0.32 *** 0.16 ** 0.09 0.15 * 0.33 *** -
9. Simil 0.22 ** 0.05 0.12 0.25 *** 0.12 * 0.10 0.13 0.34 *** 0.37 *** -
10. Calc 0.15 * 0.12 0.26 *** 0.16 * 0.20 *** 0.23 *** 0.14 0.16 ** 0.16 ** 0.13 * -
11. Numsr 0.19 * 0.15 0.18 ** 0.08 0.13 0.21 *** 0.23 *** 0.01 0.16 ** 0.13 0.40 *** -
12. Numsg 0.21 *** 0.29 *** 0.22 *** 0.19 *** 0.24 *** 0.32 *** 0.24 *** 0.06 0.18 *** 0.20 * 0.49 *** 0.46 *** -

PFT = Paper Folding Test; MRT = Mental Rotations Test; MCT = Mental Cutting Test; Figsl = Figure selection; Sent = Sentence completion; Analo = Analogies; Simil = similarities;
Calc = Calculations; Numsr = Number series; Numsg = Numerical signs. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.6. Prediction of Academic Achievements

Tables 5 and 6 present the observed correlations between cognitive measures and grades among
engineering and math-physics students respectively (the full correlation matrices are included in the
supplementary materials Section 1). It is evident from these tables that SV tests significantly correlated
with grades on two engineering courses (machine elements and technical drawing and Computer
Aided Design (CAD)), whereas none correlated significantly with math and with mechanics among
engineering students. It is also evident that numerical ability tests significantly correlated with all of
the grades in this group. Among math-physics students, all ability measures significantly correlated
with almost all of the grades. Notably, of the SV tests, only MCT and Schnitte—the two cross-sectioning
tests—significantly correlated with grades.

Table 5. Correlations between ability measures and grades among engineering students (N = 150).

AbilityT Test Analysis L.Algebra Physics
(Mechanics)

Machine
Elements T.D.CAD

Spatial visualization

Paper Folding 0.07 0.09 0.11 0.25 ** 0.35 ***
Mental Rotation −0.03 −0.04 0.00 0.15 0.29 ***
Mental Cutting 0.14 0.15 0.06 0.25 * 0.33 ***

Schnitte 0.10 0.07 0.06 0.16 0.30 ***
Figure selection 0.03 0.04 0.06 0.20 * 0.28 **

Cubes 0.00 0.02 0.03 0.07 0.23 **

Verbal reasoning
S.completion 0.04 −0.02 −0.01 0.26 *** 0.05

Analogies 0.14 0.14 0.18 0.32 *** 0.27 **
Similarities −0.04 −0.10 −0.07 0.11 0.14

Numerical reasoning
Calculations 0.39 *** 0.32 *** 0.37 *** 0.26 ** 0.24 **
Num. series 0.26 ** 0.27 ** 0.30 ** 0.27 ** 0.09
Num. signs 0.20 * 0.24 ** 0.23 ** 0.18 * 0.14

T.D.CAD = technical drawing and CAD; * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 6. Correlations between ability measures and grades among math-physics students (N = 167).

Ability Test Analysis L.Algebra Physics I
(Mechanics)

Physics II
(Electricity)

Spatial visualization

Paper Folding 0.16 0.25 * 0.18 * 0.16
Mental Rotation 0.06 0.15 0.12 0.06
Mental Cutting 0.24 ** 0.34 *** 0.35 *** 0.35 ***

Schnitte 0.10 0.27 ** 0.25 ** 0.30 ***
Figure selection 0.09 0.18 * 0.13 0.11

Cubes 0.02 0.10 0.03 0.00

Verbal reasoning
S.completion 0.18 0.25 ** 0.39 *** 0.42 ***

Analogies 0.20 * 0.25 ** 0.27 ** 0.28 ***
Similarities 0.10 0.29 *** 0.21 * 0.19 *

Numerical reasoning
Calculations 0.28 ** 0.34 *** 0.34 *** 0.28 ***
Num. series 0.10 0.10 0.05 0.02
Num. signs 0.20 * 0.19 * 0.25 * 0.17

* p < 0.05, ** p < 0.01, *** p < 0.001.

Tables 7 and 8 present correlations between latent abilities and grades in each group respectively.
Course grades were retained as observed variables in order to keep a differentiation between the
courses.1 The correlations in Tables 7 and 8 indicate how each of the abilities related to grades

1 Since math-based grades were highly correlated, we estimated in subsequent analysis a similar model with a latent variable
for math, which strengthened the current pattern of results.



J. Intell. 2018, 6, 48 14 of 24

without controlling for other abilities (i.e., bidirectional paths in a measurement model). As before,
numerical reasoning was the primary factor related to math and mechanics grades among engineering
students, whereas SV was related only to two ‘spatial’ courses; among math-physics students,
all abilities were correlated with all of the grades.

Table 7. Correlations between latent abilities and grades among engineering students.

Title Analysis L.Algebra Physics (Mechanics) Machine Elements T.D.CAD

Spatial visualization 0.07 0.08 0.10 0.27 ** 0.46 ***
Verbal reasoning 0.08 0.01 0.06 0.40 *** 0.24

Numerical reasoning 0.46 *** 0.44 *** 0.48 *** 0.36 *** 0.27 *

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table 8. Correlations between latent abilities and grades among math-physics students.

Latent ability Analysis L.Algebra Physics I Physics II

Spatial visualization 0.19 0.35 *** 0.29 ** 0.26 **
Verbal reasoning 0.29 ** 0.45 *** 0.51 *** 0.52 ***

Numerical reasoning 0.24 * 0.28 ** 0.29 ** 0.21 *

* p < 0.05, ** p < 0.01, *** p < 0.001; T.D.CAD = technical drawing and CAD.

Figures 2 and 3 display the structural models with three correlated factors for each of the study
groups respectively (fit statistics are presented in Table 9). In these models, the effects of the three
abilities on grades were simultaneously estimated. As in multiple regression, each of the effects
indicates the degree to which an ability predicts grades over and above the other abilities in the
model (further analyses confirmed that removing non-significant paths did not result in worse fit,
confirming these paths were redundant).J. Intell. 2018, 6, x FOR PEER REVIEW  14 of 23 
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Figure 2. A SEM with three correlated factors for predicting grades among engineering students
(N = 150). Bolded values indicate p < 0.001; * p < 0.05.

As shown in Figures 2 and 3, the pattern of prediction differed between study programs,
ability domains and areas of achievements. SV remained a significant predictor of grades on a
highly ‘spatial’ course in the engineering program (T.D.CAD). The effect of SV on the other engineering
course (machine elements) was no longer significant. Among math-physics students, SV had no
incremental predictive power for any of the grades. Thus, SV did not contribute beyond other abilities
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to grades on math-intensive courses. Verbal and numerical abilities were also differentially related
to achievements in each group. Among engineering students, numerical ability had strong unique
effects on math and physics courses, whereas among math-physics students its effects were no longer
significant once other abilities were controlled for. Verbal ability, in turn, had unique effects on all
grades among math-physics students, but not among engineering students (except for the course
machine elements).
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Table 9. Standardized path coefficients for models A and B in each group.

Course Grades

Model A
General and Specific Abilities

Model B
General and Specific Residuals

V N SV g V N SV g

Engineering
Analysis - 0.43 *** - - - 0.51 ** - 0.14
Linear algebra - 0.41 *** - - - 0.51 ** - 0.12
Mechanics - 0.45 *** - - - 0.51 ** - 0.16
Machine.E 0.27 * - - 0.34 * 0.19 - - 0.45 ***
T.D.CAD 0.11 - 0.46 *** - - - 0.29 ** 0.38 **

Math-physics
Analysis 0.25 * 0.16 - - 0.18 - - 0.29 *
Linear algebra 0.32 ** - - 0.31 * 0.28 * - - 0.46 **
Physics I 0.42 ** - - 0.22 0.37 ** - - 0.41 **
Physics II 0.48 ** - - 0.12 0.42 ** - - 0.34 **

V = verbal reasoning; N = Numerical reasoning; SV = spatial visualization; g = general ability; Cells without values
are path estimates that were removed due to close to zero or negative values; *** p < 0.001; ** p < 0.01; * p < 0.05.

The contribution of domain-general factors to achievement prediction was indirectly inferred
from the above models. That is, if initially a factor had significant correlations with grades
(see Tables 7 and 8), but in the structural model it had no significant effects on these grades, then the
initial correlations were assumed to be due to some commonality between the ability factors
(hence ‘domain general’). To disentangle the effects of specific abilities from domain-general factors,
we additionally tested models in which a general ability factor was included. Thus, we replaced
factors-correlations with a second-order factor that had direct paths to each of the specific abilities.
Conceptually, we assumed that this factor captured reasoning ability that is needed for performance
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in the three ability domains. We then performed two types of analyses. In the first, we estimated
the effects of both first- and second-order factors on grades (model A in Figure 4). In the second,
we estimated the effects of the residual variances of the first-order factors as well as of the general
factor on grades (model B in Figure 4). The residual terms of the first-order factors represent the part
of the variance in these factors that is not explained by the general factor. The second method should
therefore indicate more precisely whether specific abilities are predictive of the outcomes when the
effects of the general factor are completely controlled for (e.g., [66]).
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An initial estimation of all paths simultaneously (i.e., paths from all of the specific factors, or their
residuals, and from the general factor to the outcome variables) yielded identification problems,
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presumably because many paths were redundant and had estimates close to zero. We therefore
prespecified the models, removing paths with negative and close to zero estimates. The standardized
path coefficients for the resulting models are presented in Table 9 and model fit in Table 10.

Table 10. Fit statistics for models A and B in each group.

Model χ2 df (p) RMSEA (90% CI) CFI SRMR

Engineering
Model A 134.62 103 (0.02) 0.05 (0.02–0.07) 0.962 0.07
Model B 133.05 100 (0.02) 0.05 (0.02–0.07) 0.960 0.06

Math-physics
Model A 138.92 90 (<0.001) 0.06 (0.04–0.08) 0.944 0.07
Model B 140.56 90 (<0.001) 0.06 (0.04–0.08) 0.942 0.07

Overall, the pattern of effects in models A and B was largely similar to the one in the correlated
factors model. That is, most of the effects of specific abilities remained significant beyond a general
ability factor. However, when specific effects were estimated from the residual variances of the specific
abilities (as in model B), some of these effects became weaker, and the direct effects of the general
factor became stronger. This was the case for grades on the two engineering courses machine elements
and T.D.CAD, and for all of the grades in the math-physics group. In contrast, the specific effects of
numerical reasoning on math and physics (mechanics) in the engineering group remained consistently
strong across the models. Taken together, isolating domain-specific from domain-general effects still
showed strong domain-specific effects in both of the groups, but in some cases domain-general factors
clearly contributed to the prediction. Considering the initially significant correlations between all
ability factors and grades among math-physics students (see Table 8), the stronger domain-general
effects in this group could be expected. It should be noted that the overlap between specific abilities in
our sample was likely lower than in more heterogeneous samples (this is often found in high-ability
groups [67]), possibly limiting its predictive power.

4. Discussion

While previous research showed the unique predictive validity of early-assessed SA for long-term
STEM achievements, we investigated whether ability differences among students who entered
higher STEM education can be linked with their achievements during the first undergraduate year.
Our primary focus was on the particular role of SV ability for different STEM topics. Additionally,
as we were dealing with a high-ability sample, our investigation also challenged the view that cognitive
abilities forfeit their predictive power in highly selected samples. Differently from other studies on
advanced STEM learning, we systematically differentiated between ability domains, domains of
achievements, study programs and ability measures. Overall, our data clearly showed that ability
differences in this high-ability population are relevant to achievement prediction, corroborating
previous findings against a ‘threshold’ view of cognitive abilities [34,44,48,49]. The results were also
clear with respect to our two research questions, namely whether SV predicts achievements on STEM
courses beyond numerical and verbal reasoning abilities, and whether SV differs in its predictive
validity between domains of achievements. Across ability measures and study programs, SV did
not uniquely predict achievements in math-intensive courses, which constitute a major part of the
curriculum. In fact, SV was unrelated to the math and physics grades of engineering students
even before controlling for other abilities. Among math-physics students, two cross-sectioning
tests significantly correlated with math and physics grades, but without incremental effects over
other abilities or a domain-general ability factor. In contrast, SV had unique predictive validity
for achievements on an engineering technical drawing course. Moreover, numerical and verbal
reasoning abilities were uniquely predictive of achievements on most math and physics courses.
Thus, the predictions seem highly domain specific: differences in SV, even among the spatially
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talented, mattered when complex spatial tasks were in focus (technical drawing), whereas differences
in numerical or verbal reasoning abilities among the mathematically talented mattered when math
was in focus. Nonetheless, at least for math-physics students, the effects on math and physics grades
were partly driven by domain-general factors. Moreover, when a general factor was controlled for,
the effect of SV on technical drawing grades decreased. It therefore appears that rather than broadly
determining STEM success during the novice phase, as would be expected based on prior research
assumptions, SV emerged as a narrower STEM predictor relative to other abilities, which in turn
predicted success on a broader range of core STEM subjects. Apparently, when it comes to predicting
mathematics achievements, SV seems to have a lower threshold than numerical and verbal abilities
(i.e., a lower level is sufficient for success). We next discuss further explanations and implications of
these results.

4.1. Predictions at a High-Ability Range

One may suspect that the lack of correlations between SV and math-based achievements is a
result of a restriction of range in SV, and that in more heterogeneous samples positive correlations
would emerge. We cannot rule out this possibility. However, our goal was to study predictors of
achievements among students who select advanced STEM programs rather than among students in
general. The different patterns of abilities–achievements relations that we found indicate that in spite
of the high-ability range in this group, sufficient variability existed for detecting effects. For this reason,
we find it unlikely that the weak correlations between SV and math achievements found here are
entirely due to a restriction of range, but rather assume they indicate a weaker relevance of SV to some
domains of achievements. It is also noteworthy that the highly challenging test ‘Schnitte’, which was
specifically designed for individuals with high SA, yielded the same pattern of links with grades as
the other tests, even though its score range was broader.

Nonetheless, to elaborate on the more general case, it should be noted that all of the abilities were
at the high range in this sample, and numerical ability even more so than SV. Consequently, all of
the effects are potentially underestimated if generalizations to a broader population are to be made.
The effects in a less selective sample are thus expected to be magnified proportionally: numerical and
verbal abilities will still have stronger effects on math than SV. If indeed a higher frequency of lower
SV scores were necessary to find effects on math achievements, one possible implication could be that
poor SV ability is a stronger marker than exceptional SV ability for succeeding or not in advanced
math learning. This would, in fact, be in line with findings on SV–math relations among students
who performed poorly on SV tests (e.g., [35]). Finally, to the extent that SV ability predicts STEM
achievements more strongly in a lower ability range, it would remain to be determined whether this
stems from spatial-visual factors or from domain-general ones. The point may even be more important
in less selective samples, because the overlap between cognitive abilities (i.e., domain generality) tends
to be stronger in lower ability ranges [67]. With higher variability in general ability, its contribution to
achievement prediction is likely to be stronger.

4.2. Correlates of Advanced Mathematics

It appears that for students who are not particularly poor in SV, being more talented spatially
might not further contribute to achievements in math-intensive courses, at least in those that form the
basis for even more advanced courses. That SV nonetheless predicted technical drawing grades in
this sample suggests that the courses substantially differ in their spatial demands. It is possible that
advanced math courses, although highly demanding, do not draw on exceptional spatial skills as more
specialized engineering courses do. Math courses may focus on translating complex spatial structures
into abstract mathematical formalism, more than they require superb visualization of such structures.
Furthermore, ‘space’ in advanced math is often not entirely familiar from “real world” experience,
for example when dealing with dimensions higher than three. Although students may use mental
images to visualize abstract math concepts, these do not necessarily require particularly high spatial
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skills, nor is it clear whether they are crucial for better learning. This does not mean that SV ability is
unimportant to advance math, but rather points at a possible limitation of SV as a cognitive resource
for learning higher math. Additionally, our finding that positive correlations between one type of SV
tests (visualization of cross-sections) and some math achievements were mediated by factors common
to other domains of reasoning suggests that factors other than visualization—which may be strongly
present in some spatial tests—play a role when it comes to mathematics.

The results additionally suggest differential cognitive demands between math-intensive courses,
since cognitive abilities related differently to math-courses across study programs. As mentioned in
the method section, mathematics is taught in essentially different ways in each of the study programs
we investigated. An informal inquiry among math faculty (who teach these courses in both programs)
informed us that for math-physics students, math is typically highly theoretical and centrally dealing
with proof learning. It has also been described as requiring an extreme change in the ways in
which students are used to thinking of mathematics at the Gymnasium, as it introduces concepts
that sometimes contradict their previously acquired knowledge and intuitions. Mathematics for
mechanical engineers, although also highly abstract compared with Gymnasium classes, is typically
more strongly linked with real world applications and relies more often on calculations than on proof.
Although merely descriptive, we speculate that such differences in teaching approach have implications
on the kinds of mental processes and abilities that are required for successful learning. For example,
application-oriented mathematics may require high efficiency in utilizing domain-specific skills and
knowledge, which may explain the almost exclusive relation between numerical reasoning ability and
math in the engineering group. Math that is more theoretical and proof-based may require additional
reasoning abilities and rely less critically on calculation efficiency. The stronger domain-general links
of abilities-grades in the math-physics group and the unique link with verbal reasoning may be seen
as indications in this direction. Obviously, a more systematic investigation would be needed in order
to confirm these observations.2 Nevertheless, the data provides initial evidence that even within the
same mathematical areas (i.e., calculus and algebra) basic cognitive abilities can have different roles.

4.3. The Present Results in Light of Previous Research

Our results seem inconsistent with findings on the unique predictive validity of SA among
students of extremely high ability (e.g., the top 0.01% in Lubinski and Benbow, 2006). There are some
obvious differences between the present study and these earlier ones, primarily in scale, the kinds of
outcomes considered, and more broadly being conducted in educational systems that may substantially
differ. Such factors likely limit the comparability of results. Nevertheless, we assume some invariance in
the cognitive aspects of STEM learning across social-cultural systems, and find additional explanations
noteworthy. First, the timing of ability assessment might be critical, as ability differences during early
adolescence are likely to be influenced by ongoing cognitive development. Thus, differences in earlier
age might reflect not only ability level per se, but also, for example, differences in developmental rates.
These may considerably influence the prediction of future outcomes. Additionally, the studies on
gifted adolescents used above-level testing (i.e., tests that were designed for college admission rather
than for 13-year olds), which ensured large score ranges within a highly selected group. It is plausible
that using tests that are more challenging in our sample would have yielded different results, though it
is difficult to predict in what way. In particular, it is unclear whether higher variance further up the SV
scale (i.e., due to more difficult tests), would have revealed effects where variance in lower levels did
not. Also noteworthy is that in predicting long-term achievements, early ability differences may be
markers of general potential for learning and creativity, more than they indicate which abilities are
engaged in particular learning tasks. Moreover, while the above studies predicted general achievement

2 The above discussion builds on the common assumption that cognitive abilities relate to various outcomes because they
serve as a cognitive resource, i.e., that some causality is involved. Obviously, we cannot test this assumption directly here.
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criteria (e.g., choices, degrees, publications), we focused on the interplay between abilities and specific
achievements, which we assumed more closely indicate which abilities are relevant to STEM learning.
The differences in prediction patterns may have therefore stemmed, in part, from different choices
of outcome criteria, and in this respect should be seen as complementary. Finally, measures of SA
in previous studies might have involved more non-spatial factors than in the present one, and these
might have influenced predictions. For example, in Wai et al. (2009), SA included a figural matrices
test, which is a strong indicator of fluid reasoning, and a mechanical reasoning test, which is highly
influenced by prior experience with mechanical rules. These factors may, in themselves, be essentially
important to STEM, but they do not necessarily reflect SV ability.

Studies that examined SA and advanced mathematics among STEM students are scarce. Miller and
Halpern [44] found positive effects of SA training on physics but not math grades of high-ability STEM
students, and concluded that SA training was not relevant to the content of math courses, which is
consistent with our own conclusion. Some studies with younger populations also found small or no
effects of SA on math performance [3], but others found more positive relations between SA and math,
mostly among non-STEM students or with simpler forms of math [35,64]. Further research on the role
of SA in advanced math learning therefore seems warranted.

Finally, we were surprised by the weak correlations between SV and physics grades in both of
the groups, and particularly with mechanics, which has been positively related to SV before [10,68].
One possible explanation for these differences is that students in our sample may have had higher levels
of prior-knowledge in science: first at entry level due to self-selection, and at the time of achievements
assessment (i.e., course exams), as it reflected learning during an entire academic year. As suggested by
Uttal and Cohen [16], SA may be particularly important when domain-knowledge is low. Consistent
with this, SV was related to mechanics problem solving [10,68] and to advanced math problems [36]
among non-STEM students who had no formal knowledge on these topics. It follows that if students
who select STEM programs have enough prior knowledge so that SV ability is not ‘needed’ for many
topics, then the connection between SV ability and STEM is more relevant before rather than after
entry into undergraduate STEM. This is, in fact, consistent with findings that SA was particularly
predictive of later choice in STEM comparing to other domains [4]. Nonetheless, students in our
sample can by no means be regarded ‘experts’. Although they may have acquired STEM knowledge in
high school, they are novices with respect to many new and challenging knowledge domains at the
undergraduate level.

5. Conclusions

The results of this study highlight the importance of differentiating between domains of ability as
well as domains of achievements in research on SA and STEM. Additionally, a distinction between the
predictive power of early SA and its role in later STEM learning may be useful. When it comes
to advanced STEM learning, different thresholds may exist for different disciplines. While SA
may play a role in advanced math learning, it might not be as critical as other reasoning abilities,
or as it is for spatially demanding topics. Considering that math-based courses are at the core of
STEM education and critical particularly to beginners, this has potential implications on the way in
which students are prepared for higher education in STEM. For example, SA training might benefit
performance in particular spatial tasks, but may not be the optimal way of improving students’
achievements in math-intensive courses. Even if SA training yields learning gains in math in less
selected samples, these could be driven by factors not specific to visualization. Understanding what is,
in fact, being trained in SA training could help clarify these questions.

The point may also be important with respect to the ongoing discussion on women’s
underrepresentation in STEM (e.g., [69]). Although it is beyond the scope of this study to directly
address this issue, the possibility that high spatial skills are not crucial for higher mathematics puts in
a different light the often-made arguments linking women’s poorer performance in SA tests to this
gender gap. Interestingly, even the highly competent women in our study tended to do worse than men
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in mental rotations, but there was no indication that women had less success in their math-intensive
courses, and mental rotation was unrelated to math achievements across groups. Nonetheless, since the
number of women in our sample was too small for drawing strong conclusions, we think that future
research is needed in order to clarify whether the current results apply to high-ability women in
advanced STEM education.

Limitations

The present study was not a large-scale one, therefore generalizations to the population of
STEM undergraduates are yet to be shown. Nonetheless, the results were consistent across cohorts,
study programs and ability measures, providing grounds to further investigate these issues in larger
samples and comparable universities. Ideally, using tests that are more challenging in these populations
would yield larger ability differences and thus enable further exploration of their impact. Additionally,
our frequent reference to studies conducted in U.S. populations raises factors such as differences in
educational systems and even cultural differences as potential limiting factors for the generalizability of
the results. For example, in the U.S., students choose their major at a later point in their undergraduate
studies comparing to Europe and other parts of the world, where they enroll on a particular program
from the start. Thus, it is difficult to directly compare the category ‘STEM beginners’ between these
systems. We nevertheless assume that STEM programs worldwide are similar in several basic aspects,
such as the centrality of mathematics, hence the present findings should be relevant beyond educational
systems. Finally, we focused on two major STEM disciplines, but this is still only a partial selection
out of the variety of disciplines in this category. Similarly, although our outcome variables represent
major areas of study during the first undergraduate year, they are not an exhaustive selection of
achievements. Research on other domains of STEM, on further types of achievements as well as in
more advanced years, could further inform our knowledge on the particular role of SA in advanced
STEM learning.
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