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Abstract: For ship passage safety, a bridge across a waterway is a risk for accidents. However,
no standard for the safe distance between a bridge and a ship is available in Korea. The UK MCA
considers the 90% confidence interval of traffic distribution as the acceptable passage range, using it
for measuring the separation between offshore wind farms. In this study, an optimal ship safety
distance is proposed by evaluating traffic distribution at the Incheon and Busan harbor bridges and
analyzing the confidence intervals. The results, based on the Z-score, reveal that at the Incheon bridge,
all but one ship for 2-way departure were in circulation within the 95% confidence interval range,
whereas at the Busan harbor bridge, six ships for arrival and two ships for departure were outside the
95% range. Based on the results of this study, the design of bridges across waterways can incorporate
traffic distribution corresponding to each port.

Keywords: safety distance; traffic distribution; confidence interval; bridge across waterway;
port characteristics

1. Introduction

Bridges across waterways are currently present in waters navigated by ships worldwide,
including Korea, facilitating logistics transportation and improving road user convenience. These,
however, constitute a risk factor for ships navigating below by increasing the probability for accidents.
Serious collisions between ships and bridges are reported globally, and worldwide severe collisions
between bridges and ships occur more than once a year [1]. With an annual average of 9.7 maritime
accidents was related to bridges across waterways since the 1990s [2]. Park et al. [3] indicated that
about 90% of maritime accidents associated with bridges across waterways occur at bridges with a
primary span length of ≤500 m.

Korea’s maritime construction is driven by economic logic, without fully considering the safety of
ships and the impact on the port’s operation. In particular, for the Incheon bridge completed in 2009,
social costs were incurred due to varying views on the main span length [4]. Lee et al. [5] surveyed
63 pilots and 46 captains and navigation officers on the physical distance between the bridge and the
ship, with more than 85% indicating ≥3.0 B, proposing a safety distance from the bridge pier of over
3.0 B from the fairway’s end.

Subsequent research on bridges across waterways employed safety assessment methods and
analysis of ship-handling simulations to improve the way ships traverse such bridges [6]. In fact,
studies suggested that analysis of the construction procedures for bridges across waterways in Korea
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is crucial [7]; one study was carried out on the advancement of ship handling simulations for bridges
across waterways [8]. However, no study exists to verify the suggested 3.0 B distance from between the
bridge pier and the ship’s passage by quantitative analysis for bridges across waterways. Therefore,
adjustment of fairways and bridges across waterways were performed without considering the safety
distance from the piers and the ship’s route.

Le Guyader et al. [9] conducted density analysis and kernel density analysis on the 90% traffic
distribution probability range in the bay of Brest, France. In selecting the distance between a ship and
an offshore wind farm (Figure 1), the UK Maritime and Coastguard Agency (MCA) [10] considered a
90% confidence interval clearance range as acceptable.
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In this study, we intend to propose a range of safety distances for ships by evaluating the traffic
distributions around bridges across waterways. The maritime traffic pattern of a specific sea area is
influenced by the shipping route characteristics and the surrounding topographical environment [11].
In this study, the target bridges are the Incheon bridge involving a symmetrical fairway and the Busan
harbor bridge representing an asymmetrical fairway in Korea.

The maritime traffic survey utilizes data for at least 6–7 days, considering the weekly variation
in traffic volume [12]. In addition, Automatic Identification System (AIS) data were collected for
June 2019 to perform a more accurate distribution survey. In the port traffic distribution analysis,
only merchant ships (Cargo, Tanker, and Passenger) were utilized for regular navigation. For the
Incheon bridge, the total tonnage of ships shown in Table 1 is divided into 1-way and 2-way traffic [13].
Therefore, the data involve arrival and departure, with distances measured between the bridge pier
and the nearest ship when traversing the bridge pier.

Table 1. Classification of the ships according to passage rules at the Incheon bridge.

Classification
Gross Tonnage

Cargo Tanker, Passenger

2-way 5 K < x < 50 K 1 K < x < 50 K
1-way 50 K < x
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Meanwhile, for the Busan harbor bridge, no passage rules already exist. Small ships that would
encounter no problem at the passage were also excluded from the data to ensure the analysis reflected
regular ships navigation. Although several ships classifying methods exist, the size classification based
on 1000 GT was employed following the criteria (Table 2) for small ships defined in assessment on
navigational stress and fairway’ width according to traffic flow [14].

Table 2. Classification of ships by size according to precedent study.

Classification
LOA(m) Standard Deviation

Size Gross Tonnage

Small 0–1 K 48 ±20
Medium 1 K–10 K 104 ±20

Large Over 10 K 240 ±50

Table 3 shows the handling of missing values through the data preprocessing. AIS data had
missing values for 46 (2.5%) of 1822 (100.0%) ships. In the case of AIS data, it is a very important system
that transmits the ship’s own data and at the same time accepts information from other ships to help
determine the surrounding situation. However, AIS errors due to the non-entry of AIS information by
operators and radio transmission errors interfere with decision making [15]. In this study, 46 ships
due to AIS error were completely eliminated by using list-wise deletion, one of the techniques for
processing missing values. List-wise deletion affects the statistical power of the tests conducted [16].
Therefore, this study analyzed whether the preprocessed sample obtained sufficient sample power
through statistical sample power analysis through G * power version 3.1.7.9.

Table 3. Result of missing values treatment according to data preprocessing.

Bridge Collected AIS Data Missing Values Target Values

Incheon bridge 982 (100.0%) 22 (2.2%) 960 (97.8%)

Busan harbor bridge 840 (100.0%) 24 (2.9%) 816 (97.1%)

Total 1822 (100.0%) 46 (2.5%) 1776 (97.5%)

For GPS position errors that occur when analyzing historical tracks, the program MaTSAS (Marine
Traffic Safety Assessment Solution) was used to remove outliers in two dimensions of the GPS position
and smoothed the removed values through the average of the distances between the GPS positions.
Additionally, in this study, GPS position, heading, speed over ground, Maritime Mobile Service Identity
(MMSI), dimensions of the ship, type of cargo, and gross tonnage data were filtered out of numerous
AIS raw data to analyze ship safety distance. For the filtered data, they were classified according
to arrival and departure based on gross tonnage using aggregation, one of the data transformation
techniques [17].

After compiling all results, the scope of the bridges across waterways and the confidence interval
were analyzed to evaluate safety distances corresponding to the traffic distribution characteristics.
R Studio version 3.6.3 was utilized for the traffic distribution analysis. An overview of the data
preprocessing and processing methods and a flow chart of the methodology are displayed in
Figures 2 and 3.
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2. Characteristics of the Target Port and Data Collection

2.1. Target Port

Yu and Kim [18] considered the maritime traffic characteristics of Ulsan port to improve the
collision probability assessment method for Korea Maritime Safety Audit. In the present study,
to suggest the safety distance suitable for the traffic characteristics of each port, annual data analysis
for 2015–2019 on the number of ships, arrival and departure volumes, and accidents was conducted
to identify traffic characteristics of the Busan and Incheon ports in Korea. These are among Korea’s
leading trade ports, with high traffic volumes and shipment. Their locations in the Korean peninsula
are depicted in Figure 4. With both, their ships’ count trends are decreased from 2015 to 2019,
but Incheon’s annual freight volumes are maintained, and in Busan, annual freight volumes are
increasing. This means that the size of ship has increased every year (Table 4) [19].
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Table 4. Port status from 2015–2019 by count and gross tonnage.

Unit Port
Annual Status

2015 2016 2017 2018 2019

Count
Incheon 37,560 37,407 36,215 31,351 29,753
Busan 1 98,087 100,197 99,687 94,816 93,701

G/T Incheon 378,218,349 386,789,768 391,694,597 380,847,451 361,696,734
Busan 1 1,247,878,352 1,324,573,420 1,332,261,065 1,345,183,479 1,361,337,334

1 For Busan, the statistics for the Busan port and Busan new port are combined.

The status of maritime accidents from 2015 to 2019 at the ports of Busan and Incheon are presented
in Table 5, with annual averages of 56.2 and 34.6, respectively. Although only 18 accidents were
reported at Busan port in 2018, marine accidents continued to occur until the date [20].

Table 5. Summary of marine accidents in the Incheon and Busan ports of Korea from 2015–2019.

Unit Port
Annual Status

2015 2016 2017 2018 2019

Count
Incheon 22 37 22 43 49
Busan 66 85 52 19 59

2.2. Automatic Identification System (AIS) Data

Due to ship to ship communication limitations and the shipping industry’s network size, studies
involving big data analysis were scant due to lack of data accumulation [21]. Recently, due to the
development of V-sat and other devices, communication problems between ships were resolved,
and significant data were collected. Operational data provided by navigation devices such as GPS,
AIS, and ECDIS are valuable for forecasting, decision making, and preventing accidents in the ship
and shipping industry [22]. Among these, analyzing traffic characteristics of ports using AIS data is
the basic surveying process for the flow of ships in the target areas, and collecting and analyzing the
data. This allows the prediction of effects of the arrangement of routes and facilities used by ships on
safety, providing important basic data for conducting a quantitative assessment of the traffic volume.

Traffic characteristics analysis was performed on AIS data collected using the procedure in
Lee et al. [23] with the program MaTSAS [24]. The distances between ships and marine structures were
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also measured through MaTSAS following the same method in Son et al. [25]. The number of ships
used during the data collection periods and associated data are presented in Table 6.

Table 6. Data collection period and the number of ships used during data collection.

Date Bridge Status Number of Ships

1–30 June 2019
Incheonbridge

2-way Arrival 487
Departure 412

1-way Arrival 30
Departure 31

Busan harbor bridge 2-way Arrival 409
Departure 407

In Korea, Nationwide Differential Global Positioning System (NDGPS) is in operation, of which
Maritime DGPS consists of 11 reference stations and 8 integrity monitoring stations. In the case of
dynamic positioning, the accuracy was analyzed into 1.9 m in two dimensions at mean 25 km/h
(12.7 knots) [26]. The average sailing speeds passing through the target bridge are depicted in Table 7;
Incheon bridge was analyzed to be 11.4 knots for arrival and 10.8 knots for departure, while the average
speed of ships on the Busan Harbor bridge was analyzed to be 10.5 knots for arrival and 10.7 knots for
departure. The GPS navigation accuracy in two dimensions in the target port area was analyzed to be
less than 1.9 m. Therefore, the GPS error was not considered because it was analyzed as an insignificant
value compared to the distance under analysis.

Table 7. Sailing speeds passing through the target bridge.

Bridge
Arrival Departure

Average (knots) S.D (knots) Average (knots) S.D (knots)

Incheon bridge 11.4 2.0 10.8 2.5
Busan harbor

bridge 10.5 3.6 10.7 3.1

Dynamic data of Class-A AIS are received at every period of 10 s for vessels sailing below 14 knots.
When changing course during vessels sailing below 14 knots, AIS data are received at every period of
3.3 s [27]. If the distance from the GPS position to the bridge pier is measured for the collected AIS data,
an error may occur. Therefore, the nearest distance between the ship and the bridge pier was measured
through a historical track, in which the GPS Position was connected by one line according to MMSI.
However, there was a limitation in considering the Consistent Common Reference Point (CCRP) of all
target ships. Therefore, it was assumed that the AIS receiver was installed on the ship’s centerline.

The Incheon bridge is the largest in Korea, with a main span of 800 m, and several ships pass
through the side of the bridge pier and through the main bridge piers. The ships navigating the main
span are primarily merchant ships, while those utilizing the sides are fishing boats and others qualify
as low passenger vessels (Figure 5a). The Busan port’s eastern side involves a larger berthing capacity
than the western side [28], with the port redevelopment project suggesting transforming the western
side (1–4 pier) into a downtown facility [29]. The eastern is practically the principal hub for cargo
transportation. Due to these characteristics, the Busan harbor bridge’s fairway is the asymmetrical
distance from the eastern pier based on the bridge across the waterway (Figure 5b).
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The cable-stayed bridge reflecting previous research and design reports of the Incheon and
Busan ports bridges is displayed in Figures 6 and 7. The ship impact protection ball at the Incheon
bridge is the dolphin type [30], while that at the Busan harbor bridge is the artificial island type [31].
For the Incheon bridge, the layout of the fairway and navigable waterway below the bridge is nearly
symmetric, whereas for the Busan harbor bridge, the fairway, and navigable waterway below bridge
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3. Traffic Distribution Characteristics

3.1. Statistical Power Analysis

In this study, traffic distribution characteristics were analyzed for comparison, considering
differences in the layout of the fairway and the bridge across the waterway, which were designed
according to the ports. Before comparison the traffic distribution characteristics, a sample size statistical
power analysis was performed according to the effect size to assess whether the acquired data involve
sufficient statistical verification capabilities. The effect size refers to the degree of association between
two means divided by the standard deviation of the data, indicating the extent of a phenomenon in a
population. This is also termed as Cohen’s d and is expressed in following equation as:

Effect size(Cohen′s d) =
µ0 − µ1

σ
, (1)

where µ0 represents the mean of the distribution, µ1 is the mean of the null hypothesis, and σ denotes
the standard deviation of the distribution. Cohen [32] suggested that by using Type I (α) and Type II (β)
errors, the statistical verification of a sample is achieved when the Type I (α) is at 0.05, and power (1-β)
is at 0.8. The Type I error (α) refers to the probability of rejecting the true null hypothesis (p-value),
while the Type II error (β) is that of not rejecting the false null hypothesis [33].

The AASHTO LRFD [34] assumes a normal routing distribution in calculating the geometric
probability of collision, which is used to compute the bridge’s annual crash frequency and model the
mean value of that distribution as the centerline of the ship’s transit path. In the statistical program
G*power 3.1.9.7, α was set to 0.05 and (1-β) to 0.8. The average of the null hypothesis was set as the
centerline of the route’s width, and the sample size was calculated through the one-sample t-test.
The results are displayed in Table 8, with a sufficient sample size of the number of samples collected in
this study analyzed.
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Table 8. Sample size verification by sample power calculation (one-sample t-test).

Bridge Status Number of Ships Effect Size Sample Size

Incheon bridge
2-way Arrival 487 0.47 39

Departure 412 0.67 20

1-way Arrival 30 0.55 28
Departure 31 0.89 12

Busan harbor bridge 2-way Arrival 409 0.68 19
Departure 407 1.93 5

3.2. Normality Test

Many studies have been conducted on the traffic distribution and patterns in a port because these
are important for understanding and analyzing the flow of ships. Inoue [35] demonstrated that the
traffic distribution for 1-way or 2-way traffic is a normal distribution. Kim and Kwon [36] assumed a
normal distribution in analyzing the collision probability of the Mokpo bridge and Incheon bridge.
Nguyen et al. [37] also evaluated the distribution of ships in the target waters as a normal distribution
in developing the AIS preprocess program.

A ship can pass from the fairway’s center to the right of the ship’s bow direction. Considering
these characteristics, the distance between the ship and bridge pier on the right side of the ship’s bow
side was measured and a normality test was conducted [35].

Many statistical techniques are available for the normality test. In a completely normal distribution,
the skewness is 0, and the kurtosis is 3. The skewness measures the symmetry of the distribution,
with negative (−) values representing left-skewed and positive (+) values right-skewed. Kurtosis
is the degree of sharpness in the distribution, with (+) values indicating the center is higher than
normal and sharp, while (−) values highlight a flat distribution. For kurtosis, zero is used to facilitate
analysis, and termed excess kurtosis [38]. The equations for skewness and excess kurtosis are expressed
as follows:

Skewness =
∑
(xi − x)3{∑
(xi − x)2

} 3
2

, (2)

Ex. Kurtosis =
∑
(xi − x)4{∑
(xi − x)2

}2 − 3, (3)

where xi represents the value of the i-th sample and x is the mean of the sample. Kline [39] proposed
that when skewness and kurtosis are 0 in a standard normal distribution, if the distribution of the
absolute value of the skewness variable is less than 3 and the absolute value of kurtosis does not exceed
10, the distribution exhibits normality. The normality tests were performed through the skewness
and kurtosis of the distributions as well as the Kolmogorov–Smirnov (K–S) test [40] and Normal Q–Q
plot [41], which are commonly used for the normality test. Because of the normality test, the K–S test
satisfied the normality in all cases except the 2-way traffic at the Incheon bridge. Due to the review of
normality through skewness and kurtosis, both satisfied the conditions of normal distribution (Table 9).
Normal Q–Q plot analysis shows that in most cases, the expected value displays a linear similarity to
the Q–Q line, except for slight differences in the 150–250 m section of the Incheon bridge’s 2-way traffic
(Figures 8–10).
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Table 9. Summarized data for normality tests of traffic distributions.

Classification

Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

Arrival Departure Arrival Departure Arrival Departure

Target (Centerline) E1 W1 E1 W1 MP3 MP2

Count 487 412 30 31 409 407

Max (m) 700 642 574 586 379 453

Min (m) 163 116 234 228 126 216

Mean (m) 350 337 359 335 245 197

S.D (m) 107 94 75 73 36 38

Skewness 0.66 0.98 0.69 1.39 0.44 0.41

Ex. Kurtosis −0.39 3.62 0.44 5.92 0.88 3.13

K-S test (p-v) 8.90 × 10−5 3.10 × 10−6 0.99 0.30 0.10 0.14
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Figure 8. Histogram and Normal Q–Q plots for the Incheon bridge data for (a,b) 2-way arrival and
(c,d) 2-way departure.
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4. Ship Safety Distance

4.1. Analysis of Distance According to the Confidence Interval

Based on the normality test on traffic distribution through the bridge pier, normal distribution is
revealed except for the 2-way traffic at the Incheon bridge, with an approximate normal distribution.
We assumed that the number of samples collected sufficiently represents statistical verification,
and therefore, all traffic falls within a normal distribution.

The distance measurement method considering the width of the bridge pier, ship impact protection
size, and ship breadth is shown in Figure 11. The distance corresponding to C is within 80–99% of the
confidence interval using the Z-score, which involves analyzing deviations and cumulative percentages
through the mean and standard deviation in the normal distribution.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 11 of 21 

 

4. Ship Safety Distance 

4.1. Analysis of Distance According to the Confidence Interval 

Based on the normality test on traffic distribution through the bridge pier, normal distribution 
is revealed except for the 2-way traffic at the Incheon bridge, with an approximate normal 
distribution. We assumed that the number of samples collected sufficiently represents statistical 
verification, and therefore, all traffic falls within a normal distribution. 

The distance measurement method considering the width of the bridge pier, ship impact 
protection size, and ship breadth is shown in Figure 11. The distance corresponding to C is within 
80%–99% of the confidence interval using the Z-score, which involves analyzing deviations and 
cumulative percentages through the mean and standard deviation in the normal distribution. 

 
Figure 11. Method used for analyzing the ship safety distance. 

The distance corresponding to C is calculated from the following equation as: 𝐶 = 𝜇 − 𝑍𝜎 (4)

where 𝜇 is the mean of the traffic distribution considering the width of bridge pier, ship impact 
protection size, and ship breadth, 𝑍  represents the Z-score value according to the confidence 
interval, and 𝜎 denotes the standard deviation of the distribution. The distances between ships and 
bridge piers are presented in Table 10. These distances also consider the width of the bridge pier, ship 
impact protection size, and ship breadth. 

Table 10. Summarized data of distances from ship to bridge pier based on the confidence interval. 

Classification 
Incheon bridge Busan harbor bridge 

2-way 1-way 2-way 
Arrival Departure Arrival Departure Arrival Departure 

Target(edge) E1 W1 E1 W1 MP3 MP2 
Count 487 412 30 31 409 407 

Mean(m) 299 286 300 276 220 171 
S.D(m) 107 94 75 73 36 38 

C(m) 

80% CI 162 165 205 180 173 123 
85% CI 146 150 194 168 168 117 
90% CI 124 131 179 153 160 109 
95% CI 90 101 156 129 149 97 
99% CI 25 44 111 84 127 74 

Figure 11. Method used for analyzing the ship safety distance.

The distance corresponding to C is calculated from the following equation as:

C = µ−Zσ (4)

where µ is the mean of the traffic distribution considering the width of bridge pier, ship impact
protection size, and ship breadth, Z represents the Z-score value according to the confidence interval,
and σ denotes the standard deviation of the distribution. The distances between ships and bridge
piers are presented in Table 10. These distances also consider the width of the bridge pier, ship impact
protection size, and ship breadth.

Based on previous studies on the distribution of AIS data in the Bay of Brest [9] and the criteria
for selecting the distance between an offshore wind farm and a ship clearance by the UK MCA [10],
in this study, the distances between bridge piers and ships were calculated for analysis according
to a confidence interval of 90–99%. Data for ships that navigated outside the range of distances
depending on the 90–99% confidence interval are presented in Table 11. For the Incheon bridge,
99% of the ships passed within the confidence interval, but the confidence interval extends beyond its
fairway. Regarding the 95% confidence interval, one ship navigated outside the range for the 2-way
departure traffic, accounting for 0.2% of the total 2-way departure traffic. At 90% confidence interval,
1-way departure traffic accounted for 6.5% of the entire Incheon bridge 1-way departure ships traffic,
with three ships sailing outside the range for the 2-way departure traffic (Figures 12 and 13). At the
Busan harbor bridge, two arrivals and one departure were analyzed, and the 99% confidence interval
is within the fairway. At the 95% level, 6 arrivals and 2 departure ships were analyzed, while at 90%,
13 arrivals and 16 departure ships were involved (Figure 14).
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Table 10. Summarized data of distances from ship to bridge pier based on the confidence interval.

Classification
Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

Arrival Departure Arrival Departure Arrival Departure

Target (edge) E1 W1 E1 W1 MP3 MP2

Count 487 412 30 31 409 407

Mean (m) 299 286 300 276 220 171

S.D (m) 107 94 75 73 36 38

C (m)

80% CI 162 165 205 180 173 123

85% CI 146 150 194 168 168 117

90% CI 124 131 179 153 160 109

95% CI 90 101 156 129 149 97

99% CI 25 44 111 84 127 74

Table 11. Statistics for ships passing outside the confidence interval (90 to 99%).

Classification

Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

Arrival Departure Arrival Departure Arrival Departure

Count 487 (100%) 412 (100%) 30 (100%) 31 (100%) 409 (100%) 407 (100%)

90% CI 2 (0.5%) 3 (0.7%) 1 (3.3%) 2 (6.5%) 13 (3.2%) 16 (3.9%)

95% CI 0 (0.0%) 1 (0.2%) 0 (0.0%) 0 (0.0%) 6 (1.5%) 2 (0.5%)

99% CI 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (0.5%) 1 (0.2%)
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4.2. Comparison of the Distance Difference between Bridge Pier and Ship

Generally, to analyze the passage safety of routes and waters, an evaluation of the largest ship
navigating through the target waters is necessary. In this study, the maximum ship breadth is utilized
for the distance of 3.0 B [6] from the end of the fairway to the bridge pier proposed in a previous study,
with the maximum ship breadth at the target bridges presented in Table 12.
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Table 12. Maximum breadth of bridge crossing waterway.

Classification
Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

Max. breadth (m) 37 60 38

For 1-way traffic, the mean value is at the centerline of the waterway, while for 2-way traffic,
it is on the right side of the centerline by 0.1 times the waterway, and standard deviation depends on
the width of the waterway and traffic volume [35]. Therefore, at the Incheon bridge, the passage is
relatively free because its navigable waterway is larger than at the Busan harbor bridge. Additionally,
the 1-way traffic involves a lower arrival and departure distance difference than the 2-way traffic, since
it exhibits the characteristics of navigating to the centerline of the waterway. Data from analyzing
the absolute value differences by dividing the distances according to the confidence interval by the
maximum ship’s breadth are presented in Table 13.

Table 13. Data for distance divided by ship’s maximum breadth for two bridges across waterways.

Classification

Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

Arrival Departure Arrival Departure Arrival Departure

80% CI 4.39 B 4.46 B 3.42 B 3.00 B 4.56 B 3.24 B

85% CI 3.93 B 4.06 B 3.23 B 2.80 B 4.41 B 3.08 B

90% CI 3.34 B 3.54 B 2.98 B 2.55 B 4.21 B 2.88 B

95% CI 2.43 B 2.74 B 2.59 B 2.16 B 3.91 B 2.56 B

99% CI 0.68 B 1.19 B 1.85 B 1.40 B 3.33 B 1.95 B

In Table 14, the difference in the arrivals and departures are presented, with the Incheon bridge
showing a higher B (breadth) compared to arrival during the 2-way traffic, with differences between the
arrival and departure increasing as the confidence interval increases. For the 1-way traffic, the arrival
is higher than the departure and the difference is relatively constant, despite the higher confidence
intervals. For the Busan harbor bridge, the arrival is 1.3 B higher than the departure (Figure 15).

Table 14. Data for the distance difference divided by the ship’s maximum breadth for two bridges
across waterways.

Classification

|Arrival–Departure|

Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

80% CI 0.07 B 0.42 B 1.32 B

85% CI 0.13 B 0.43 B 1.33 B

90% CI 0.20 B 0.43 B 1.33 B

95% CI 0.31 B 0.43 B 1.35 B

99% CI 0.51 B 0.45 B 1.38 B
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2-way, (c,d) 1-way, and (e,f) Busan harbor bridge 2-way.

The variation in distances is depicted in Figure 16. For the 2-way traffic at the Incheon bridge,
the variation is higher than for other cases as the confidence interval increases from 95% to 99%. For the
1-way traffic, almost no variation exists, but it also increases significantly from 95% to 99% ranges.
For the Busan harbor bridge, a little variation exists at 90%, but most variations are from 95% to 99%.
From the analysis of the distances differences according to the confidence interval, it was inferred that
the lower the difference between the arrival and departure, the more regular the passage pattern of the
vessel from the traffic distribution (Table 15).
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5. Discussion

The analysis of maritime accidents between ships and bridges from the Korean Maritime Safety
Tribunal (KMST) [42] for 2010–2019 is presented in Table 16, showing an average of 1.2 cases annually,
with these attributed mostly to human error. Nevertheless, there is currently no distance standard
between ships and bridges across waterways.

This study is basic research to propose a safety standard design for the main span and fairway
layout of bridges across waterways to ensure the safety of port facilities and ships. The proposed safety
standard design will provide quantitative safety standards to ship operators and ensure sufficient
main span width for bridge design. In addition, in real-time active monitoring of Vessel Traffic Service
(VTS), this will provide a safe range of passage for ship operators to prevent accidents in advance.

In this study, the traffic distributions at the Incheon bridge and the Busan harbor bridge, which are
bridges across navigable waterways in Korea with different characteristics, were analyzed to obtain
criteria for the safety distance for the bridge pier and ship. The AIS data were collected over a month
in June 2019.

Normality tests according to the traffic distribution from the AIS data were performed using the
Kolmogorov–Smirnov test, Normal Q–Q plot, skewness, and excess kurtosis. All results are confirmed
to satisfy the normality test except for the 2-way traffic at the Incheon bridge. The 2-way traffic
distribution at the Incheon bridge is, however, similar to a normal distribution, and samples collected
through the sample size power calculation are sufficient to indicate statistical verification. We assumed
that all traffic distributions for the target bridges follow normal distribution. The distance according to
the 80–99% confidence interval, considering the wide bridge pier, ship impact protection size, and ship
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breadth is based on the Z-score. Results for confidence interval analysis of the traffic distributions are
also based on Z-scores. For the Incheon bridge, all but one ship for the 2-way departure navigated
within the 95% confidence intervals, and for the Busan harbor bridge, most of the ships, except for six
arrivals and two ships of departure, are in the 95% range.

Table 16. Maritime accidents in Korea associated with bridges for 2010–2019.

Accident Date Bridge Name Target Ship (G/T) Cause

25 September 2010 Geoje bridge Towing (166G/T)
Barge (1968 G/T) Officer’s carelessness

4 April 2011 Geoje bridge Towing (55G/T)
Barge (932 G/T)

Inadequate
passage plan

8 August 2011 Jangja bridge Towing (17G/T)
Barge (530 G/T)

Excessive navigation
during bad weather

25 August 2011 Incheon bridge Fishing (10G/T) Neglect of watch

24 August 2012 Naro 2 bridge Passenger (228G/T) Neglect of watch

29 August 2013 Chunsa bridge Cargo (1673G/T) Drunken drowsiness

27 July 2013 Shinan 1 bridge Passenger (307G/T) Excessive navigation
during restricted visibility

13 April 2016 Jido bridge Passenger (228G/T) Speeding
during restricted visibility

27 September 2016 Chunsa bridge Tanker (864G/T) Neglect of watch

2 March 2018 Geoje bridge Towing (55G/T)
Barge (932 G/T) Excessive navigation

28 February 2019 Gwangan bridge Cargo (1673G/T) Drunken negligence

14 October 2019 Geoje bridge Towing (55G/T)
Barge (932 G/T) Inadequate navigation

For 1-way traffic, the mean value is at the centerline of the waterway, whereas for 2-way traffic,
it is on the right side of the centerline by 0.1 times the waterway; standard deviation depends on the
width of the waterway and traffic volume. Therefore, at the Incheon bridge, the passage is relatively
free because its navigable waterway is larger than that at the Busan harbor bridge. Additionally,
the 1-way traffic involves a lower arrival and departure distance difference than the 2-way traffic as it
exhibits the characteristics of navigating to the centerline of the waterway. Analysis of the variation
of the resistance shift for arrival and departure shows the highest increase in the 95% to 99% ranges.
Following analysis of the distance difference according to the confidence interval, it is inferred that the
lower the difference between the arrival and departure, the more regular the passage pattern of the
vessel from the traffic distribution.

According to the results of this study, the 95% confidence interval provides the optimal ship
safety distance. A comparison of the 95% confidence interval distance divided by the maximum ship
breadth with 3.0 B is presented in Table 17. The differences between −0.84 B to +0.91 B are analyzed,
especially for the Busan harbor bridge with over 3.0 B for arrival. This is because the fairway exhibits
an asymmetrical arrangement (moved to the right).
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Table 17. Variation of distance difference divided by the ship maximum breadth.

95% CI

Incheon Bridge Busan Harbor Bridge

2-Way 1-Way 2-Way

Arrival Departure Arrival Departure Arrival Departure

Target pier E1 W1 E1 W1 MP3 MP2

Distance (m) 90 101 156 129 149 97

Distance/Breadth 2.43 B 2.74 B 2.59 B 2.16 B 3.91 B 2.56 B

Difference from 3.0 B −0.57 B −0.26 B −0.41 B −0.84 B +0.91 B −0.44 B

The safety zone according to distribution corresponding to 95% of the confidence interval for
2-way traffic for the Incheon bridge proposed in this study is 529 m, and it is within the 73.5% ranged
based on the navigable waterway (720 m). The distance from the outer 95% confidence interval to
the end of the fairway is set as the Precautionary zone. The Safety zone and Precautionary zone are
set to the As Low As Reasonably Practicable Traffic zone. The Precautionary zone for 2-way traffic
for the Incheon bridge is analyzed to be in the 13.4% range. The end of the fairway to the edge of the
bridge pier is classified as the Risk zone, which represents 13.1% of the navigable waterway (Figure 17).
Furthermore, for the Incheon bridge 1-way traffic, the data are over 14.7 times compared to the 2-way
traffic, and so, the results were excluded from further consideration by adding additional sample data.
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For the Busan harbor bridge, the Safety zone according to traffic distribution corresponding to the
95% confidence interval is 244 m, and it is within the 49.8% range based on the navigable waterway
(490 m). The Precautionary zone is in the 21.6% range based on the navigable waterway, whereas the
Risk zone is within the 28.6% range (Figure 18).
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6. Conclusions

For ship passage safety, a bridge across a waterway constitutes an accident risk factor. However,
no safe distance standard between a bridge across a waterway and ships currently exists under the
laws and regulations of Korea. In this study, according to traffic distribution, the Incheon and Busan
harbor bridges in Korea were quantitatively assessed for a safe distance between the bridge piers edges
and ships.

The traffic distributions of the Incheon and Busan harbor bridges were tested for normality.
The distances were analyzed by confidence intervals according to Z-scores, considering the bridge pier
width, ship impact protection size, and ship breadth. From comprehensive analysis of the distances
according to confidence intervals, the 95% confidence interval emerged as the most suitable ship safety
distance range. Therefore, the Safety zone was proposed as the 95% confidence interval range, whereas
the Precautionary zone involved the range outside the 95% confidence interval to the fairway end,
and the Risk zone comprised the distance between the fairway end and the bridge pier edge.

Through the quantitative safety distance based on port characteristics proposed to ship operators
in this study, the accident rate due to a bridge across a navigable waterway can be reduced. Moreover,
the design criteria for bridges across navigable waterways considering the safe distance and ships can
be incorporated in the design based on the traffic characteristics of each port.

Future research, for the safety distance, will be to conduct a study that indicates sailing directions
in various cases for the safety distance of the ship in consideration of the ship’s maneuverability
and weather conditions. It will be expected that the safety of port facilities and ships can be
further strengthened.
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