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Abstract: By developing new wave structure function of a beam waves, we derive the transmitting
probability of signal vortex modes in oceanic turbulence based on Rytov approximation theory.
Applying this transmitting probability of signal vortex modes, we study the influence of oceanic
turbulence on the transmittance of the vortex modes carried by Mathieu-Gaussian beam. This model
shows the transmitting probability of Mathieu-Gaussian beam with narrow initial beam width,
long wavelength, and small ellipticity parameter is higher than the transmitting probability of the
signal vortex modes in case of the beam with wide initial beam width, short wavelength, and great
ellipticity parameter. Furthermore, when Mathieu-Gaussian beam has a suitable semi-cone angle,
the effect of weak-turbulence channel on the transmitting probability of signal vortex modes with
different topological charge can be ignored. Mathieu-Gaussian beam is a more suitable carrier for high
information channel of underwater wireless optical communication than Laguerre-Gaussian beam.

Keywords: oceanic turbulence; Mathieu-Gaussian beam; quasi-diffracting free finite energy beam;
vortex topological charge; transmitting probability

1. Introduction

In recent years, underwater wireless optical communication have attracted a lot of attention due
to the demands of underwater sensor networks, underwater unmanned devices, offshore exploration
vessels and submarines [1–5]. However, turbulence in the seawater channel is an inevitable obstacle in
the underwater wireless communication process, so it is necessary to reduce the signal attenuation and
transmission capacity loss of the communication system caused by turbulence (diffraction) broadening
of the beam [6–8]. To reduce the beam broadening caused by the beam edge diffraction and oceanic
turbulence, quasi-diffracting free finite energy vortex beam become a new carrier of underwater
wireless optical communication system. Because quasi-diffracting free finite energy vortex beam
can be realized in experiments [9–14]. Because for that reason, there have been many reports on
the performance of quasi-diffracting free finite energy vortex beam resist the beam expansion and
channel capacity loss caused by oceanic turbulence [15–23]. Such as, the crosstalk probability of vortex
modes of Lommel-Gaussian beam in anisotropic oceanic turbulence [15] and the beam wander of
Lommel Gaussian-Schell beam in unstable stratification weak ocean-turbulence [16] were investigated.
The capacity of a free space optical communication link with vortex modes carrier that is owned by
Bessel-Gaussian beam in weak turbulent ocean [17] was explored, and the transmitting probability of
vortex modes carried by Bessel-Gaussian localized wave in anisotropic turbulent ocean was derived
by developing the spectrum average mutual coherence function of the Bessel-Gaussian localized wave
and the spectrum average coherence length of spherical wave [18]. The results in [17] show that
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Bessel-Gaussian beam has significant advantages over Laguerre-Gaussian beam in mitigating the
effects of turbulence and enhancing the performance of the free-space optical communication link,
as well as [18] show that Bessel-Gaussian localized wave is a more suitable beam for the vortex modes
communication than conventional vortex beams. [19] indicates that the frozen wave has an optimal
wavelength window in “seawater transmission window”. The transmitting probability of vortex modes
of finite energy Airy vortex beam in anisotropic weak oceanic turbulence was analyzed [20]. The model
shows that finite energy Airy beam having vortex topological charge larger than 5 is more resistant to
turbulent disturbance than Laguerre-Gaussian beam [20]. Beam wander model of a partially coherent
and finite energy Airy beam in weak to strong oceanic turbulence was derived [21]. The self-healing
property of Bessel-Gaussian beam in an underwater environment was verified experimentally [22].
Besides, the performance of underwater optical communications based on optical vortices in the
presence of water flow, stagnant water, air bubbles, and temperature difference was evaluated [23].

The non-diffracting beams have an infinite energy, thus they are difficult to realize in experiment.
It is worth noting that the quasi-diffracting free beams of Lommel-Gaussian, Lommel Gaussian-Schell,
Bessel-Gaussian, localized Bessel-Gaussian, and finite energy Airy solve the experimental generation
dilemma of non-diffracting beams. However, due to the introduction of Gaussian truncation
function [24], the ability of the Gaussian truncation non-diffracted beam to resist diffraction is greatly
reduced. The Mathieu beam, which was introduced by Gutiérrez-Vega et al. [25], is a family of
non-diffracting beams. Mathieu-Gaussian (MG) beam can be generated experimentally and is a very
good approximation of non-diffracting Mathieu beam [26]. Therefore, this kind of beam should be
the preferred one for underwater optical communication. That is, it is particularly necessary to study
the anti-turbulence propagation performance of MG beam. However, to the best of our knowledge,
the research for the propagation of MG beam in ocean turbulence was few reports.

In this paper, we investigated the propagation properties of signal vortex modes carried by MG
beam in weak oceanic turbulence. To accurately describe the effect of ocean turbulence on this beam,
in the study, we first studied and established the wave structure function of the beam wave. Then,
we derived the expression of transmitting probability of the signal vortex modes for MG beam. By the
transmitting probability of the signal vortex modes for MG beam, we discussed the influences of beam
structure parameters and oceanic turbulence parameters on the transmitting probability of signal
vortex modes in numerical calculation.

2. Wave Structure Function of Beam Waves

MG beam can be divided into four classes according to their even or odd modes [24,26,27], and the
analytical expressions of four MG classes are similar in form. In this paper, for the sake of convenience,
we consider 2l0th-order even MG beam. By utilizing research conclusions in [27], the complex
amplitude of the 2l0th-order even MG beam propagation in turbulence-free communication link
is expressed as

E2l0 (r, ϕ, z) = 1√
1+z2

ξ

exp[ikz + i r2

w2
0zξ
− i arctan

(
zξ

)
]exp

(
− k2

r w2
0zξ

4(zξ−i)
− r2

w2
0zξ (zξ−i)

)
×

∞
∑

p=0
A(2l0)

2p (q)(−1)pRe
(
ei2pϕ

)
J2p

(
i krr

zξ−i

) , (1)

where (r, ϕ, z) is the polar coordinates, Re (·) indicates the real part, i =
√
−1, zξ = 2z/kw2

0 is
the non-dimensional coordinate, z is the propagation distance, k = 2π/λ is the wavenumber with
wavelength λ, w0 is the initial beam width, kr = k sin β is the transverse wavenumbers, β is the
semi-angle of the conical wave that forms the MG beam, 2l0 is the vortex topological charge, p denote
the number of sub-beams, q is the ellipticity parameter (q = h2k2

r /4 and h is the interfocal parameter),
J2p (·) is the Bessel function of the first kind, A(2l0)

2p (q) is an expansion coefficient of Mathieu functions,

and the A(2l0)
2p (q) can be obtained by using the recurrence equations between the expansion coefficient
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of Mathieu functions (details are found in Ref. [28]). Particularly, when 2l0 = 0 and q = 0, MG beam
degenerates into the zeroth-order Bessel-Gaussian beam.

Figure 1 depicts the transverse intensity distribution of a MG beam at z = 0 plane for different
values of q and 2l0. Obviously, the MG beam morphology are determined by both q and 2l0. Similar to
the zero-order Bessel Gaussian beam, zeroth-order MG beam present a circular symmetry when the
parameter q tends to zero. And the MG beam morphology that is more complex and abundant than
that of the Bessel-Gaussian beam.

Figure 1. The transverse intensity pattern of Mathieu-Gaussian beam for (a) 2l0 = 0, q = 0, (b) 2l0 = 0,
q = 0.2, (c) 2l0 = 0, q = 5, (d) 2l0 = 2, q = 0, (e) 2l0 = 2, q = 0.2, (f) 2l0 = 2, q = 5. The other beam
parameters are w0 = 0.01 m, λ = 532 nm, β = 0.001.

Rytov approximation is a good approximation to describe the law of light transmission in weakly
turbulent media [29,30]. So, using the Rytov approximation, the complex amplitude E2l0 (r, ϕ, z) of
MG beam propagating through weak oceanic turbulence at the receiver plane can be approximated as

E (r, ϕ, z) ≈ E2l0 (r, ϕ, z) exp [ψ (r, ϕ, z)] , (2)

where ψ (r, ϕ, z) is the random complex phase distortion caused by oceanic turbulence and ψ (r, ϕ, z)
satisfies [29]

〈
exp

[
ψ (r, ϕ, z) + ψ∗

(
r′, ϕ′, z

)]〉
= exp

[
−Dψ

(
r, r′, z

)
/2
]
= exp

(
−|r− r′|2

ρ2
oc

)
, (3)

where 〈·〉 denotes the ensemble average of oceanic turbulence, Dψ (r, r′, z) is the wave structure
function, and ρoc is the spatial coherence radius of beam waves propagating in oceanic turbulence.

Mathematically, MG beam is an infinite sum of Bessel-Gaussian beam of various orders, and the
Bessel-Gaussian beam is a kind of beam formed by truncating plane waves with Gaussian aperture.
Therefore, to accurately describe the effect of ocean turbulence on MG beam, the Dψ (r, r′, z) in
Equation (3) should be calculated by the wave structure function of the beam wave.
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Suppose that light propagates in oceanic turbulence along horizontal path, so that the wave
structure function is expressed in the form [29]

Dψ (r,r′, z) = 8π2k2z
∫ 1

0

∫ ∞
0 κΦ (κ) exp

(
−Λzκ2ξ2/k

)
×
{

1− J0
[
κ
∣∣(1− Θ̄ξ) (r− r′)− iΛξ (r + r′)

∣∣]}dkdξ
, (4)

here Λ = 2z
kw2(z) , w (z) = w0

√
(1− z/F0)

2 + 4z2

k2w4
0
, and Θ̄ = 1− (F0−z)kw2

0
F0kw2(z) , Φ (κ) and κ represent the

power spectrum of refractive-index fluctuations and the spatial frequency respectively.
In general, the integral of Equation (4) cannot be calculated. But, in the case of the forward

scattering approximation (or the near-axial transmission approximation), the zeroth-order Bessel
function can be approximated as the first two terms of the expanded series
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[
κ
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When |r| = |r′| = r, make use of the relation |r− r′|2 = 2r2 (1− cos (ϕ− ϕ′)), |r + r′|2 =

2r2 (1 + cos (ϕ− ϕ′)), r2 − r′2 = 0. The Equation (5) is simplified as follows:

Dψ (r, r, z) = 2π2k2z
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Now we have the definite integral relations [31]
∫ 1

0 ξm exp (−βξn)dξ = −
Γ
(m+1

n ,β
)

(
nβ

m+1
n

) +
Γ
(m+1

n ,0
)

(
nβ

m+1
n

)
and

∫ 1
0 e−βξ2

dξ = 1
2

√
π/βe

√
β − 1

2

√
π/β. Equation (6) therefore reduces to

Dψ (r, r, z) = 2π2k2z
∫ ∞

0 κ3Φ (κ)

{
1

2κ

√
πk
Λz

(
eκ
√

Λz/k − 1
) [

2r2 (1− cos (ϕ− ϕ′))
]

−Θ̄
Γ(1,0)−Γ(1,Λzκ2/k)

Λzκ2/k

[
2r2 (1− cos (ϕ− ϕ′))

]
+ Θ̄2 Γ(3/2,0)−Γ(3/2,Λzκ2/k)

2(Λzκ2/k)3/2

×
[
2r2 (1− cos (ϕ− ϕ′))

]
−Λ2 [2r2 (1 + cos (ϕ− ϕ′))

] Γ(3/2,0)−Γ(3/2,Λzκ2/k)
2(Λzκ2/k)3/2

}
dκ

. (7)

Consider Gaussian beams (F0 = ∞) and 300 m long underwater optical communication link, we
have following approximations Λ ≈ 2z

kw2
0
, Λ2 ≈ 0, eκ

√
Λz/k − 1 ≈ κ

√
Λz/k, Θ̄ ≈ 0.

Now, Equation (7) simplifies as

Dψ (r, r, z) = 2
√

ππ2zk2r2 [1− cos
(

ϕ− ϕ′
)] ∫ ∞

0
κ3Φ (κ)dκ. (8)

On substituting Equation (8) into Equation (3), the spatial coherence radius of beam waves ρoc

can be expressed as

ρoc =

[(√
π/2

)
π2k2z

∫ ∞

0
κ3Φ (κ)dκ

]−1/2
. (9)

As for an-isotropic oceanic turbulence, the power spectrum of refractive-index fluctuations is
given by [32–34]

Φ (κ) = 0.388× 10−8χtε
−1/3ζ2κ−11/3

[
1 + 2.35(κη)2/3

]
f (κ, v) , (10)

where κ =
√

κ2
z + ζ2κ2

ρ is the spatial frequency of the refractive index fluctuations, κρ =
√

κ2
x + κ2

y,
under the Markov approximation, κ can be further simplified as κ = ζκρ, ζ is the an-isotropic
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factor of turbulence, v is the contribution ratio of temperature and salinity fluctuations for
turbulent ocean, ε is the dissipation rate of kinetic energy per unit mass of fluid, χt is the
dissipation rate of the mean-squared temperature, η is the inner scale of turbulence, f (κ, v) =[
exp (−ATδ) + v−2 exp (−ASδ)− 2 v−1 exp (−ATSδ)

]
, AT = 1.863× 10−2, AS = 1.9× 10−4, ATS =

9.41× 10−3, δ = 8.284(κη)4/3 + 12.978(κη)2.
On substituting Equation (10) into Equation (9), after a long but straightforward calculation [35],

the spatial coherence radius of beam waves in oceanic turbulence is given by

ρoc =
[
3× 10−8k2π2 (√π/2

)
zχtζ

−2v−2(εη)−1/3 (0.876v2 − 2.247v + 6.128
)]−1/2

. (11)

3. Transmitting Probability of Signal Vortex Modes

As discussed in literature [36,37], the complex amplitude E (r , ϕ, z) of MG beam can be
decomposed into a superposition of several vortex modes

E (r , ϕ, z) =
1√
2π

∞

∑
l=−∞

βl exp (ilϕ), (12)

where βl is expansion coefficient, the ensemble average
〈
|βl |2

〉
represents the probability density of

vortex modes in oceanic turbulence, which has the form of
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=
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By combining Equation (1) with Equation (2) and Equation (13), probability density
〈
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〉
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vortex modes of the MG beam is calculated as
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With the help of the integral expression [31]
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where Im (·) denotes the symbol of the modified Bessel function of the first kind, the probability density〈
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〉
of vortex modes of the MG beam is given by
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Considering a receiver with an aperture diameter of D, we obtain the energy for each received
vortex modes of the MG beam

Ml =
2π

1+z2
ξ

exp

[
−

k2
r w2

0z2
ξ

2
(

z2
ξ+1

)
]

∞
∑

p=0

[
A(2l0)

2p (q)
]2 D/2∫

0
dr

× exp

[
−2

(
1

w2
0

(
z2

ξ+1
) + 1

ρ2
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)
r2

] ∣∣∣J2p

(
i krr

zξ−i

)∣∣∣2Re
[
Il−2p

(
2r2

ρ2
oc

)]
r

. (17)

Then we define the normalized energy for each received vortex modes of the MG beam as follows:

Pl = Ml

/
∞

∑
l′=−∞

Ml′ (18)

where Pl can be regarded as the normalized transmitting probability of signal vortex modes of the MG
beam when l − 2l0 = 0. Pl can be regarded as the normalized crosstalk probability of vortex modes of

the MG beam when l − 2l0 6= 0,
∞
∑

l′=−∞
Ml′ denotes the total received energy.

4. Effects of the Parameters of Oceanic Turbulence and Mathieu-Gaussian Beam

To explore the influence of beam structure parameters and oceanic turbulence parameters on the
transmission of vortex modes, in this section, we numerically study the transmitting probability of
signal vortex modes for a MG beam propagating in an anisotropic oceanic turbulence. In the following
analysis, we set the calculation parameters as: q = 0.2, 2l0 = 2, l = 2, w0 = 0.05 m, D = 0.1 m,
β = 0.0001, z = 150 m, λ = 561 nm, χt = 10−8 K2/s, ε = 10−5 m2/s3, η = 1 mm, v = −4.5, and ζ = 2,
unless other variable parameters are specified in calculation. In this section, we first analyze the
influence of system parameters on the transmission of signal vortex modes, and then analyze the
influence of oceanic turbulence on them.

4.1. Influence of System Parameters

Figure 2 reveals that the energy of the emitted vortex modes spreads into the adjacent
vortex modes for different values of the vortex topological charge 2l0 and the semi-cone angle
β. Comparatively speaking, the transmitting probability of signal vortex modes of the MG beam
decreases and modes crosstalk becomes more significant as β increases. When β = 0.0002 and
β = 0.0003, the effect of weak-turbulence channel on the transmitting probability of signal vortex
mode with different vortex topological charge can be ignored. When β = 0.0001, the magnitude of
the transmitting probability of signal vortex modes decreases with increase of the vortex topological
charge 2l0. Theoretically, we can improve the information capacity of the communication channel
by selecting a suitable semi-cone angle and using the high-order vortex modes of the beam as the
information carrier.

Figure 3 shows the dependence of the transmitting probability of signal vortex modes of the
MG beam on initial beam width w0, received diameter D and propagation distance z. As would
be expected, the magnitude of the transmitting probability of signal vortex modes decreases with
increase of the propagation distance z. In Figure 3a, the value of the transmitting probability of signal
vortex modes decreases with increase of the w0. The reason for this result is that as the increase of
the beam diameter, the number of turbulent eddies that have different refractive indexes in the beam
also increases, which increases the wavefront aberration of the beam. As a consequence, a larger w0

leads to lower transmitting probability of signal vortex modes. As shown as in Figure 3b, when D
increases, the value of the transmitting probability of signal vortex modes decreases first and then
reaches a steady state. The phenomenon could be explained that the wave front aberration increases as
increase of the D, which cause larger inter-mode crosstalk of vortex modes [18]. As a consequence,
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the aperture receiver with larger D leads to the transmitting probability decreases. When the receiver
aperture diameter is large enough, the whole beam spot is fully received, the transmitting probability
of signal vortex modes is no longer dependent on D.

Figure 2. The normalized energy for each received vortex modes carried by Mathieu-Gaussian beam
propagating in oceanic turbulence for different values of vortex topological charge 2l0 and semi-cone
angle β (∆l = l − 2l0).

(a) (b)

Figure 3. The normalized transmitting probability of the signal vortex modes versus (a) initial beam
width w0 and (b) received diameter D with w0 = 0.05 m for different values of propagation distance z.

Figure 4 illustrates the impact of the wavelength λ on the transmitting probability of signal vortex
modes of the MG beam with different values of ellipticity parameter q. We find that the value of
the transmitting probability of signal vortex modes decreases as q increases. It means that the MG
beam with small ellipticity parameter is more suitable for underwater wireless optical communication.
Like any other type of beam, the transmitting probability of signal vortex modes decreases with
decreasing λ. This is because the long-wavelength beam has lower scintillation [29].
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Figure 4. The normalized transmitting probability of the signal vortex modes versus wavelength λ for
different values of ellipticity parameter q.

4.2. Influence of Oceanic Turbulence

To comprehend the effects of turbulence parameters on the transmitting probability of signal
vortex modes of the MG beam, we investigate the effects of the dissipation rate of kinetic energy per
unit mass of fluid ε and the inner scale of turbulence η on the transmitting probability of signal vortex
modes of the MG beam. From Figure 5, one can see that the value of the transmitting probability of
signal vortex modes increases with increase of the ε and η, as expected [5,8,34]. The former is because
the strength of oceanic turbulence decreases with the increasing of ε. The latter is because a larger η

corresponding to a weaker scattering.

Figure 5. The normalized transmitting probability of the signal vortex modes versus dissipation rate of
kinetic energy per unit mass of fluid ε and inner scale of turbulence η.
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In Figure 6, we investigate the effects of the temperature-salinity contribution ratios v, dissipation
rate of the mean-squared temperature χt and an-isotropic factor of turbulence ζ on the transmitting
probability of signal vortex modes of the MG beam. When ζ equals 1, the an-isotropic oceanic
turbulence can degrade into the isotropic oceanic turbulence. It is clear from the Figure 6 that the
magnitude of the transmitting probability of signal vortex modes decreases with increasing v, and χt,
as well as, decreasing ζ. This result also is consistent with the result in Ref. [5,8,34].

Figure 6. The normalized transmitting probability of the signal OAM modes versus temperature-salinity
contribution ratios v, dissipation rate of the mean-squared temperature χt and an-isotropic factor of
turbulence ζ.

5. Summary

In summary, we focused on the propagation properties of vortex modes carried by the MG beam
in an-isotropic oceanic turbulence and developed the wave structure function of beam waves, as well
as, we derived the transmitting probability of signal vortex modes of the MG beam. The MG beam
with small initial beam width, long wavelength, and small ellipticity parameter has larger ability
to obstruct turbulence disturbance. Also, our results reveal that, theoretically, we can improve the
information capacity of the communication channel by selecting a suitable semi-cone angle and using
the high-order vortex modes of the beam as the information carrier. This result indicates that the
MG beam is a beam that is more suitable as the source of the optical communication system than the
Laguerre-Gaussian beam [7,8,38], because the higher topological charge of the vortex modes carried
by the Laguerre-Gaussian beam, the lower the transmittance. In addition, the effect of turbulence on
the transmission pattern of vortex carried by MG beam is consistent with that of vortex modes carried
by conventional beam, namely: the signal vortex modes carried by MG beam suffers less turbulence
disturbance in oceanic turbulence with lower dissipation rate of the mean-squared temperature, larger
an-isotropic factor, smaller temperature-salinity contribution ratios, larger inner scale, and higher
dissipation rate of kinetic energy per unit mass of fluid. Furthermore, a small-aperture receiver is
beneficial to enhancing transmitting probability of the signal vortex modes.
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