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Abstract: The Y-shaped elbow is used as a connecting pipe between the buffer and the lift pipe in the
deep-sea mining system. After being mixed with seawater in the Y-shaped elbow, nodule particles
are lifted to the sea surface mining ship via the lift pump. In this paper, we employ a computational
fluid dynamics and discrete element coupled method (CFD-DEM) to study the characteristics of
particle transport in the Y-shaped elbow. Considering a large diameter of the particles, we discuss
the behavior of particles and fluid under different conveying velocities. In addition, the simulation
was verified based on the experiment. The results show that the simulation agrees well with the
experiment. On this basis, the distribution and motion characteristics of the particles in the Y-shaped
elbow were obtained. The interaction between fluid and particles is also discussed. These findings
suggest that the particles can be successfully transported when the pump runs at medium to high
frequencies. The particles are basically moving along the pipe wall and slower than the fluid flow.
Moreover, it was found that the particle motions are more complex with the increasing of conveying
velocities, and it is closely related to the secondary flow of fluid. Some suggestions on the actual
particle transportation can be put forward based on the research in this paper.

Keywords: Y-shaped elbow; deep-sea mining; particle-liquid flow; CFD-DEM coupled calculation

1. Introduction

With the development of deep-sea mining, the conveying system is becoming increasingly
important. As shown in Figure 1, the currently used deep-sea mining model mainly includes: tracked
mining vehicle, flexible hose, buffer, rigid lift pipe, lift pump, and sea surface mining vessel. During the
process, the nodules collected by the vehicle are transported by seawater through the hose into the
buffer, which is a frame structure constructed of angle iron. As can be seen from inside the buffer,
the collected mixture of nodules and seawater is put into the Y-shaped elbow through the feeding
machine under the silo, seawater is pumped into the pipe through the other inlet of the Y-shaped elbow
by the lift pump. The mixture of nodule particles and seawater is conveyed to a surface mining vessel
via the lift pipe. Different motion states of nodule particles can be caused due to different conveying
velocities. If particle leakage or even accumulation or blockage occurs, not only the efficiency of
nodule transport is reduced, but also the safety of the entire pipeline system is threatened. Therefore,
it is important to study the transport characteristics of large particles in the Y-shaped elbows under
different working conditions.

J. Mar. Sci. Eng. 2020, 8, 675; doi:10.3390/jmse8090675 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
http://www.mdpi.com/2077-1312/8/9/675?type=check_update&version=1
http://dx.doi.org/10.3390/jmse8090675
http://www.mdpi.com/journal/jmse


J. Mar. Sci. Eng. 2020, 8, 675 2 of 16

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 2 of 17 

 

efficiency of nodule transport is reduced, but also the safety of the entire pipeline system is 
threatened. Therefore, it is important to study the transport characteristics of large particles in the Y-
shaped elbows under different working conditions. 

 
Figure 1. Schematic diagram of deep-sea mining system and Y-shaped elbow. 

In recent years, the Euler–Euler and Euler–Lagrange methods have been used as important 
numerical simulation methods to investigate the particle-liquid flow in pipelines. The main idea of 
the Euler–Euler two-fluid model is to treat the particles in the mixed fluid as a continuous medium, 
so that both the particles and fluid maintain interpenetrating continua. Compared with the Euler–
Lagrange method, the Euler–Euler method requires much less computational resources and some 
characteristics of discrete particle phase are omitted. This model is mainly used in applications where 
the concentration of discrete phases is relatively high. Therefore, it can be used for the study of small 
particles (below 1 mm) or slurry transport [1–5]. However, when the particle concentration is low so 
that the interactions between particles and particles, particles and fluid cannot be ignored, the Euler–
Lagrange method is more in line with the computational requirements, in which particles are solved 
by Newton’s law of motion in the Lagrange coordinate system as the discrete phase while fluid is 
solved as the continuous phase in the Euler coordinates. The method takes the characteristics of the 
discrete particle phase into account. Therefore, the results agree better with the real state of the 
particle motion in the fluid. The Euler–Lagrange method is gradually applied to the analysis of 
particle motion behaviors, particle transportation, pipe wear, etc. [6–9]. 

With the increasing requirement of calculation, in order to combine with the advantages of the 
Euler–Lagrange method and fully consider the movement behavior of particles in the process of 
solid–liquid two-phase flow transportation, more and more researchers choose the coupling 
simulation method of discrete element method (DEM) and computational fluid dynamics (CFD). In 
1979, the discrete element method (DEM) was proposed by American scholars Cundall and Strack 
[10], and gradually applied to study slurries transportation, mixture flow in dam break, particle 
behavior in medical research and so on [11–13]. 

The particle solid–liquid two-phase flow in the sludge discharge pipe was simulated by the 
discrete element software EDEM [14]. The distribution rule of particle groups at the connection of the 
pipe and the flange was studied. The CFD-DEM coupling method based on the open source software 
package OpenFOAM and LIGGGHTS was analyzed and described. The simulation of solid–liquid 
two-phase flow of fluidized bed, hydrocyclone and other test cases was carried out to verify the 
applicability of the method, which provided a new method for the future research direction [15]. The 
solid–liquid mixing process under the action of turbine based on CFD-EDM was simulated. The 
concentration distribution of suspended particles of the experiments proved the accuracy of the 
method [16]. The distribution and movement state change of coarse particles in the horizontal 
pipeline under different transportation conditions was analyzed by the CFD-DEM coupling method. 
The influence mechanism of transportation conditions on the solid–liquid flow of coarse particles 

Figure 1. Schematic diagram of deep-sea mining system and Y-shaped elbow.

In recent years, the Euler–Euler and Euler–Lagrange methods have been used as important
numerical simulation methods to investigate the particle-liquid flow in pipelines. The main idea
of the Euler–Euler two-fluid model is to treat the particles in the mixed fluid as a continuous
medium, so that both the particles and fluid maintain interpenetrating continua. Compared with the
Euler–Lagrange method, the Euler–Euler method requires much less computational resources and
some characteristics of discrete particle phase are omitted. This model is mainly used in applications
where the concentration of discrete phases is relatively high. Therefore, it can be used for the study
of small particles (below 1 mm) or slurry transport [1–5]. However, when the particle concentration
is low so that the interactions between particles and particles, particles and fluid cannot be ignored,
the Euler–Lagrange method is more in line with the computational requirements, in which particles are
solved by Newton’s law of motion in the Lagrange coordinate system as the discrete phase while fluid
is solved as the continuous phase in the Euler coordinates. The method takes the characteristics of the
discrete particle phase into account. Therefore, the results agree better with the real state of the particle
motion in the fluid. The Euler–Lagrange method is gradually applied to the analysis of particle motion
behaviors, particle transportation, pipe wear, etc. [6–9].

With the increasing requirement of calculation, in order to combine with the advantages of
the Euler–Lagrange method and fully consider the movement behavior of particles in the process
of solid–liquid two-phase flow transportation, more and more researchers choose the coupling
simulation method of discrete element method (DEM) and computational fluid dynamics (CFD).
In 1979, the discrete element method (DEM) was proposed by American scholars Cundall and
Strack [10], and gradually applied to study slurries transportation, mixture flow in dam break, particle
behavior in medical research and so on [11–13].

The particle solid–liquid two-phase flow in the sludge discharge pipe was simulated by the discrete
element software EDEM [14]. The distribution rule of particle groups at the connection of the pipe and
the flange was studied. The CFD-DEM coupling method based on the open source software package
OpenFOAM and LIGGGHTS was analyzed and described. The simulation of solid–liquid two-phase
flow of fluidized bed, hydrocyclone and other test cases was carried out to verify the applicability of
the method, which provided a new method for the future research direction [15]. The solid–liquid
mixing process under the action of turbine based on CFD-EDM was simulated. The concentration
distribution of suspended particles of the experiments proved the accuracy of the method [16].
The distribution and movement state change of coarse particles in the horizontal pipeline under
different transportation conditions was analyzed by the CFD-DEM coupling method. The influence
mechanism of transportation conditions on the solid–liquid flow of coarse particles was found. At the
same time, the interaction between particles had the most important impacts on the suspension of
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particles. It is obvious that CFD-DEM coupling calculation could get more comprehensive flow field
information and particle motion law, which has great application prospects [17].

In addition to the simulation methods, many achievements about characteristics of particle
transportation in kinds of pipe forms have been made. To reveal the regularity of movement of nodule
particles in vertical lifting pipelines, the trajectory, lifting and settlement characteristics of the particles
were studied experimentally, and the effect of vertical swinging on the particle transport in the pipeline
was also investigated [18–22]. In the horizontal pipelines, the researchers have undertaken significant
investigations on slurry transport [17,23–27]. As for elbows, inclined and tee pipes, the researchers
have undertaken significant investigations on slurry transport [28,29] and the wear of the key parts of
the pipeline caused by microsized particles and solid–liquid movement analysis [30–34]. However,
the transport characteristics of large particles in the Y-shaped elbow of the deep-sea mining system
remain unclear. To the author’s knowledge, little research has been devoted to the Y-shaped elbow
with two inlets and in which the particles are mixed with the fluid and transported.

Based on the research trends and the improvement of current deep-sea mining system,
we implemented a coupled CFD-DEM simulation of particle-fluid mixture flow in Y-shaped elbow
using the commercial software Ansys Fluent and EDEM in this paper. The experiment of particle
transportation was also carried out to verify this method. The purpose of this study was to investigate
the motion characteristics of the fluid and particles in the Y-shaped elbows under different working
conditions. Furthermore, the conditions for the safe transportation of the particles will be put forward.
The CFD-DEM simulation verified in this paper will be applied to the study of various pipe forms of
the subsequent conveying system.

2. Experimental Platform

To verify the simulation model, an experimental platform was built as shown in Figure 2.
The experiment system aims to form a particle-transporting loop. At the beginning, nodule particles
are put into the feeding pipe through the hopper and mixed with the water from the regulated tank.
Then the mixture flows into the Y-shaped elbow in the pressure-bearing tank. After that, the mixture
flow is lifted through the lifting pipe by the centrifugal pump and finally returns to the hopper
inlet. The purpose of the regulated water tank is to regulate the pressure of the pipeline and the
pressure-bearing tank. After the system pressure remains stable, the water-supply valve will be
closed. During the experiment, the transporting characteristics of particles and water in the Y-shaped
elbow can be recorded through the observation window. Some experimental parameters will provide
reference for the simulation.
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The measurement and control subsystem mainly includes two parts: flow measurement and
pump speed regulation. Due to the difference of the flow rate between the feeding pipe and the lifting
pipe, it is necessary to install the electromagnetic flowmeter in the feeding pipe and the lifting pipe.
The frequency converter can control the speed of the centrifugal pump motor to realize different
conveying velocity in the pipeline. During the test, the particle running state in the pipeline was
captured by a high-speed camera. The detailed information of the main instruments and equipment
used in the test is shown in Table 1.

Table 1. Detailed information of the main instruments and equipment.

Name Model Parameters

Centrifugal pump ISG 50-160 (I) A
The rated power is 3 kW, the rated flow is 29 m3/h, the lift is
16 m, the rotational speed is 2900 r/min and the
corrosion-resistant mechanical seal is adopted.

Electromagnetic
flowmeter ZJLDG-50

The nominal diameter is 50 mm, the working range is
0.7–106 m3/h, the working pressure is 1.6 MPa, the working
temperature is under 80 ◦C, the electrode is made of 316 L
stainless steel and the lining is polyurethane.

Frequency
converter

Emerson-Enydrive
TD3000

The suitable motor power is below 7.5 kW, the rated voltage is
380 V, the output frequency is 0–400 Hz, four digit digital
display, with Chinese and English LCD display, the
installation mode is wall mounted.

High speed
camera Phantom VEO 410 L

The full frame resolution is 1280 × 800. The full frame
shooting rate is 5200 frames/S. In this state, 9.6 s can be
recorded. The minimum exposure time is 1 µs, the maximum
shooting speed is 600,000 frames/s, the number of pixels is
1,024,000, and the pixel size is 20 µm.

3. Numerical Morphology

3.1. Fluid and Particle Equations

The Reynolds-averaged Navier–Stokes equation is applied to the fluid solved in Fluent,
which consists of two parts:

(1) Continuity equation
∂(ui)

∂xi
= 0 (1)

(2) Momentum equation

∂ρui

∂t
+
∂
(
ρuiu j

)
∂x j

= −
∂P
∂xi

+
∂
(
τi j

)
∂x j

+ ρg + Fp f (2)

where ρ is the fluid density, ui and uj are the velocity components in Cartesian coordinates i, j,
respectively, P is the static pressure of fluid, τij is the fluid viscous tensor component, g is the
acceleration of gravity and Fpf is the interaction forces between continuous and discrete phases.

Fp f =

kc∑
i=1

f f p,i

∆Vc
(3)

where ffp,i stands for the interaction force between the particle i and fluid and kc is the number of
particles in a CFD cell of volume ∆Vc.
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There are two movements of particles in the fluid: sliding and rolling. Momentum exchange
occurs due to the interactions with surrounding particles, pipe wall and fluid. When the particle
is calculated in the Lagrange coordinate system, the particle motion obeys Newton’s second law.
The governing equations for particle i are:

mi
dvi
dt

=

ki∑
j=1

(fn,i j + ft,i j) + f f p,i + mig (4)

Ii
dωi
dt

=

ki∑
j=1

(
Mt,i j + Mr,i j

)
(5)

Here, mi is the particle mass. vi and ωi are the particle translational and rotational velocities. ki is
the number of particles interacting with particle i. fn,ij is the normal contact force between particles i
and j, ft,ij is the tangential contact force, ffp,i is the interaction force between the particle i and fluid,
which includes pressure gradient force fpg,i and fluid drag force ffd,i. mig is the gravitational force.
Ii is the moment of inertia, Mt,ij and Mr,ij are the tangential and rolling frictional torques acting
on the particle i and j, respectively. Figure 3 shows the forces and torques of particles during the
collision. The Hertz–Mindlin (no slip) model was adopted in this research. In the particle discrete
element method, the Hertz contact theory is generally used to calculate the normal force generated by
particle contact, while Mindlin–Deresiewicz contact theory was used to calculate the tangential force.
The formula about the forces corresponding to the model are listed in Table 2 [16,35,36].
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Table 2. Components of forces and torques acting on particle i.

Forces and Torques Type Formula

Normal forces
Contact fcn,i j =

4
3 E∗(R∗)

1
2 α

3
2

Damping fdn,i j = −2
√

5
3

ln e√
ln2 e+π2

√
E∗m∗(R∗α)

1
2 vn

rel

Tangential forces
Contact fct,i j = −8G∗δ

√
R∗α

Damping fdt,i j = −2
√

5
6

ln e√
ln2 e+π2

√
G∗m∗(R∗α)

1
2 vrel

t
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Table 2. Cont.

Particle-fluid forces
Pressure gradient force fpg,i = −

1
6πd3

i
∂P
∂x

Fluid drag force f f d,i =
1
8πCDρ f d2

i

∣∣∣u f − vp
∣∣∣(u f − vp

)
Torques

Tangential Mt,i j = Ri ×
(
fct,i j + fdt,i j

)
Rolling Mr,i j = −µrfcn,i jRiωi

Where: 1
E∗ =

1−v2
i

Ei
+

1−v2
j

E j
, R∗ =

Ri+R j
RiR j

, G∗ =
2−v2

i
Gi

+
2−v2

j

G j
, m∗ =

mim j
mi+m j

,vrel
n =

(
vi − v j

)
·

ri−r j

|ri−r j|

vrel
t =

(
vi − v j

)
×

ri−r j

|ri−r j|
, CD =

 24
Rep

(
1 + 0.15Re0.687

p

)
, Rep ≤ 103

0.44 , Rep > 103 , Rep =
ρ|ui−vi |di

µ f
.

3.2. CFD-DEM Coupling Method

As mentioned in Section 1, the Euler–Lagrange method is applied to CFD-DEM coupled calculations.
The essence is that the particles are calculated and tracked in the interacting flow field of the continuous
phase and the discrete phase. A schematic diagram of coupling between Fluent and EDEM is shown in
Figure 4. During the calculation, Fluent calculates the fluid firstly, after solving the Reynolds-averaged
Navier–Stokes equations, it converges the flow field information to the EDEM. The DEM module in the
EDEM calculates the particle forces under the flow field and obtains the particle trajectory. The results
are then fed back to Fluent for further iterations until a convergent solution is obtained. In the Eulerian
coupling method, considering the volume effect, particles and fluid do not overlap, and each occupies a
unique physical space.
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3.3. Y-Shaped Elbow Model and Mesh Generation

The Y-shaped elbow with 120◦ was designed in combination with the design requirements of
deep-sea mining pipelines. The specific parameters are shown in Figure 5a. The fluid domain of the
pipe was divided into a block-structured grid for making the calculation more accurate and easier to
converge. The same trial simulations using grids with different qualities were calculated to select the
optimum grid distribution, as shown in Table 3. Comparing the fluid velocity at the outlet, we found
that the differences among the results were less than 0.02 m/s. The results tended to be a fixed value
with the grid quantity increasing. Therefore, when the grid quantity reached 130,000, a satisfactory
solution can be guaranteed. One of the meshes is shown in Figure 5. The non-dimensional distance
between the first layer of grid nodes and the wall y+ considered in this work was about 70, which was
consistent with the k-epsilon turbulence model.
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Table 3. Grid-independence simulation test.

Trial Simulation Conditions Mesh Quality Grid Quantity Average Fluid Velocity at Outlet (m/s)

Particle-inlet 0.5 m/s, Particle Coarse 50,778 2.4826
diameter 5 mm Medium 83,488 2.4953

Generation rate 0.5 kg/s Fine 133,952 2.4999
Water-inlet 2.0 m/s, Pressure outlet Finest 277,966 2.5001

3.4. Simulation Parameters Setup

3.4.1. CFD Settings

Transient analysis was used for the coupling process. The realizable k-epsilon turbulence model and
the standard wall functions were selected for its wide application in industrial flows. The gravitational
acceleration was 9.81 m/s2. The fluid was incompressible in the Y-shaped elbow and water in the Fluent
material library was used. The particle inlet and the water inlet were set as the velocity ones and the
outlet was set as the pressure outlet. All the inlets and outlet were set constant and mean values to
simplify the simulation. The default operating pressure was 1 atmosphere.

As shown in Figure 6, the relationship about the flow rate between particle inlet and outlet
was carried out under different pump-running frequencies. The following parameters were selected
to simulate the particle transport status of the Y-shaped elbow at low, medium and high velocities,
shown in Table 4. vp and vf represent the velocities of particle inlet and water inlet converted from the
flowrate under different pump running frequencies.
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Table 4. Input parameters in Fluent at different cases.

Case Working Conditions vp (m/s) vf (m/s)

1 Low (20 Hz) 0.76 0.55
2 Medium (30 Hz) 1.28 1.27
3 High (40 Hz) 1.83 2.00

3.4.2. EDEM Settings

The particle shape was chosen to be spherical. The diameter of the particle was 5 mm and particle
generation rate was set at 0.4 kg/s based on the experiment. Particle velocities kept consistent with the
boundary conditions of the particle inlet in Fluent to simplify the simulation. Material properties and
related interaction coefficients are shown in Table 5.

Table 5. Material properties of elbow and particle.

Poisson’s Ratio Shear Modulus (Pa) Density (kg/m3)

Y-shaped elbow 0.40 9.89 × 108 7800
Particle 0.22 2.13 × 107 2000

The time step needs to be matched for the coupling calculation. Generally, the time step of Fluent
was 10–100 times that of EDEM. Rayleigh time was used to evaluate the particles. When particles
collide, 70% of the energy was consumed by the Rayleigh wave; therefore, the critical time step was
determined by the velocity of the Rayleigh wave propagating through a solid particle. It is mainly
affected by particle size, density and shear modulus of particles. The formula is:

TR =
πR

( ρ
G

)
(0.1631µ+ 0.8766)

(6)

where R, ρ, G and µ represent the radius, density, shear modulus and Poisson’s ratio of the particles,
respectively. Of the TR 36% was set as the time step in EDEM and was 3 × 10−5 s and fluent was
3 × 10−4 s.

4. Results and Discussion

The outlet flow rates of the simulation and experiment were compared to verify the validity of the
model. From the Figure 7, the flow rates of the outlet obtained by the experiment was slightly less than
the simulation, we believe the only reason is that the particle flow interferes with the measurement of
the flow rate, thus resulting in an error. However, the difference can be negligible for the research in
this paper.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 9 of 17 
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4.1. Particle Analysis

4.1.1. Particle Distribution

Particle distribution in the Y-shaped elbow obtained by simulation and experiment is shown in
Table 6. Comparing the simulation and experimental results, it can be seen that the distribution and
behavior of the particles in the mixing zone were basically the same. The simulation images show the
results at 2.4 s, because the distribution had reached a relatively stable state.

Table 6. Particle distribution in the Y-shaped elbow obtained by simulation and experiment.

Case Simulation Experiment

Case 1 (20 HZ)
vp > vf

vp = 0.76 m/s
vf = 0.55 m/s
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tendency of particle stacking and leakage. As the pump running frequency increased, the increasing
velocity in both inlets in case 2 and 3 eliminated the accumulation of particles. Meanwhile, the greater
the fluid velocity at water inlet, the greater impact force on the particles; therefore, the location where
particles collided with the pipe wall in case 3 was farther away from the lower end of the pipe.
After particles entered the vertical lift pipe, they began to diffuse toward the pipe center.

Most of the particles in the above simulation conditions moved along the pipe wall basically.
We believe that this phenomenon is caused by the gravity of large particles, the conveying velocity is
not large to provide enough force to counteract the gravity component of the particles perpendicular
to the inclined pipe. Additional simulations were implemented as follows in Figure 8 to make a
comparison with case 1–3. The flow rate of particle inlet was doubled and the water inlet was 1, 2 and
4 times that of case 3, respectively. With the increasing of conveying velocity, most of the particles no
longer moved along the pipe wall. Meanwhile, particles entering the vertical pipe will diffuse to the
pipe center more quickly. More particles were accumulated in the mixing chamber due to the impact
of the high-speed water flow. Comparing the simulations under these three conditions, it can be found
the particles in the inclined pipe become sparse as the flow rate of the water inlet increased. The main
reason is that the impact of water on the particles increased as the water flow rate increased, more and
more particles were pushed back into the mixing cavity; therefore, the flow rate of the water inlet
cannot be too large, otherwise the efficiency of particle transportation will also be reduced. The particle
motions will be discussed in detail later.
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4.1.2. Particle Motions

Comparing the post-simulation animations and the experiments under three cases, we found that
the movement state of the particles underwent a progressive change, shown in Figure 9. The particle
motions became more complicated with the lifting speed increases. The sampling data analysis was
performed on the particle groups. The particles with the same motion mode (50 particles) were selected.
The following five main particle flow patterns were obtained: smooth delivery, postponed delivery,
detention, stacked and leaked, which were defined as particle 1–5, respectively. The curves of particle
velocity versus time in different patterns are shown in Figure 10. Note that the velocity value “0” in
the curve means that the particle is not in the calculation domain (not entering or having left). What is
in common in Figure 10a is that particle 1 and 2 could be successfully transported. When particles
were mixed with the fluid flow at the initial stage, the direction of particle flow changed. After a
brief increase in velocity, it decayed due to collision with the inner wall of the pipe. It was found that
the velocity of particle 1 underwent a secondary decay at the point where it entered the pipe elbow,
after which it accelerated briefly and entered the vertical part of the Y-shaped elbow. As for particle 2,
it took more time to entering the lifting pipe, because it was “trapped” in the mixing cavity due to the
impact of fluid flow and other particles, but it finally entered the lifting pipe after an arc motion in the
mixing cavity. The particle 1 and 2 mainly occurred in the cases of medium and high lifting velocities,
while particle 3–5 mainly occurred in the cases of medium and low lifting velocities. As is shown in
Figure 10b, the commonality among particle 3, 4 and 5 was that they could not make it to the outlet.
Particle 3 was “trapped” in the mixing cavity and maintained a dynamic motion with a very small
velocity, while particle 4 was stuck because of particle stacking in the pipe; therefore, the velocity of
particle 4 was very close to zero. As for particle 5, it finally leaked out of the water inlet (the velocity
peaked briefly at 1.8 s in the figure).J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 12 of 17 
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In general, the suggestions on the particle application based on the results above can be put
forward. When the lift pump is soft-started (the conveying velocity is small), the particles will
accumulate or leak, but the problems will be solved as soon as the pump speed increases. Adjusting
the pump to the medium speed before start the feeding machine in the actual mining process will also
help reduce the accumulation and leakage. At the same time, the relationship of the flow rate between
particle inlet and water inlet should be balanced. For the simulation and experiment in this paper, it is
proper that the flow rate of water inlet should be kept approximately 1–2 times that of the particle inlet.
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4.2. Flow Field

Due to the small conveying velocity, the particles are prone to accumulation and leakage; therefore,
it should be avoided in practical engineering applications. More attention should be paid on the
working condition that particles can be smoothly transported. The detailed flow field information
about case 3 are mainly shown and analyzed in this section.

4.2.1. Contour of Velocity

Figure 11 shows that the velocity distributions of fluid and particles in the Y-shaped elbows under
case 3 were in the same state; that is, the distribution of the particles was substantially consistent with
the high velocity region of the fluid in the pipe, except at the bend. The reason can be explained that
the fluid near the intrados of the bend accelerated while near the extrados of the bend slowed down
because of the effect of centrifugal force. As for particles, the gravity plays a major role in this situation.
Most of particles move alone the pipe wall. When entering the bend, the particles continued to move
along the pipe due to the centrifugal force. After the particles flowed into the vertical lifting pipe,
they gradually diffused toward the pipe axis with the velocity increases. The fluid streamline in the
mixing cavity was also made for a more detailed explanation in Figure 12. A vortex was formed due to
the fluid interaction between particle and water inlets, which is why some of the particles will do an
arc motion in the cavity.
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Additionally, average velocities of fluid and particles in the Y-shaped elbow were calculated,
shown in Figure 13. The average velocities of fluid in case 2 and 3 were greater than that of particles.
Analysis from the perspective of particle forces was performed. Large particles were mainly subjected
to gravity, drag forces exerted by the fluid, and interaction forces with other particles in the fluid
domain, particles keep sliding along the pipe for the fluid cannot provide enough lifting force to
balance the gravity component of the particle parallel to the pipe wall. Consequently, the particle
cannot fully accelerate; therefore, the fluid was faster than particles.
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4.2.2. Secondary Flow

The secondary flow of fluid plays an important role in particle motion and elbow erosion [32,37,38].
Here, the secondary flow paths and vectors of four red-cross sectional planes of the 120◦ Y-shaped
elbow in case 3 are observed in Figure 14. Due to the influence of fluid from the particle inlet, the flow
direction of section a was towards the lower pipe wall, the fluid pushed the particles downward.
Along the inclined pipe, the flow direction of section b was the same as section a and the secondary
flow also played a part in the movement of particles moving along the wall currently. The difference is
that the bigger vortex moved to the center of the pipe. At section c, the vortex disappeared and the
vectors flow from the extrados towards intrados of the elbow influenced by the centrifugal force. At the
vertical part of the pipe, the flow direction of section d changed back to the outside of the pipe wall.
Still, particles that have just entered the vertical pipe were maintaining a state of moving along the wall
while not diffusing instantly. On the one hand, they were mainly affected by the inertia, the influence
by the secondary flow could not be ignored on the other hand. Based on the analysis and other papers,
it could be inferred that large wear will occur on the extrados of the pipe, more attention will be paid
on the effect of secondary flow and different working conditions on particle transport and pipeline
wear in the future study.
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5. Conclusions

Simulation analysis based on CFD-DEM coupled calculations of the particle-liquid flow in the
Y-shaped elbow was performed. Various results under different working conditions were compared
with the experimental results. The main conclusions can be drawn as follows:

The conveying velocity played a leading role in transporting particles. When the pump ran at
low frequencies, the flow rates of both inlets was small, most of the particles would stack and leak
out of the water inlet. However, increasing the velocity applied by the lift pump would improve the
transmission efficiency. However, the extra simulations at a larger flow rate also demonstrated that
the flow rate of water inlet could not be too large, because more particles would be “trapped” in the
mixing cavity for the impact of water. Therefore, it is recommended that water velocity applied by the
lifting pump be 1–2 times that of particles applied by the feeding machine in engineering applications.
The velocity of particles in the flow field was generally less than the fluid velocity. Large particles kept
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