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Abstract: A long-lasting phytoplankton bloom, characterized by high chlorophyll-a (Chl-a) concentrations
in an eddy-like feature, was detected in MODIS satellite imagery of the northwestern Pacific following the
passage of Typhoon Krosa in August 2019. Satellite datasets, Argo measurements, and regional ocean
models were analyzed to determine the occurrence and abundance of high-Chl-a concentrations and
the upper-ocean conditions associated with them before and after the passage of the typhoon. Remote
sensing data revealed that the typhoon triggered sharp increases in surface Chl-a concentrations more
than five times the pre-typhoon average, which lasted for two weeks. The elevated post-typhoon
concentrations coincided with a pre-existing oceanic cyclone that was detected as an altimetry-based
sea surface height anomaly. The typhoon looped around the oceanic cyclone and lingered for two days
at slow speeds (less than 2 m/s), producing an unusual sea-surface cooling of up to approximately
9 ◦C in the cyclonic eddy region. Our model successfully captured the typhoon-induced cold-core
cyclonic circulation, which corresponded to the region of high Chl-a concentration. Model–data
comparisons revealed that the looping motion of the slow-moving typhoon enhanced the pre-existing
cyclonic circulation, resulting in strong vertical mixing and upwelling, consequently initiating a
phytoplankton bloom due to increased nutrient supply to the euphotic zone.

Keywords: phytoplankton bloom; typhoon; cyclonic eddy; vertical mixing and upwelling;
MODIS satellite

1. Introduction

Chlorophyll-a (Chl-a) concentration is an index of phytoplankton bloom on the ocean surface that
plays a crucial role in the air–sea carbon cycle, a major climate-regulating factor [1,2]. Chl-a concentration
is also an important environmental monitoring tool in ecological and fishery management [3,4], making
it an important parameter in a number of fields of research, including the study of oceanic ecosystems
and biogeochemical cycles.

The strong winds associated with typhoons cause vertical mixing and upwelling in the tropical
and subtropical regions, which in turn cool the sea surface and deepen the ocean mixed layer along
the storm track [5,6]. Typhoon-induced upwelling and/or vertical mixing (entrainment) can raise
nutrient-rich waters from the subsurface below the mixed layer up to the euphotic layer, fueling
photosynthesis and inducing the large-scale growth of phytoplankton that can be observed using
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remote-sensed Chl-a products [7–9]. The MODIS satellite data are widely used to produce higher
resolution images of phytoplankton concentration [7–10].

A large number of typhoons pass over the subtropical northwestern Pacific region, which spawn
approximately 30% of the world’s tropical cyclones [10]. In the subtropical regions, Chl-a concentration
is low in the near-surface layer and gradually increases with depth, reaching a maximum near the
bottom of the euphotic layer (100–120 m). The upper-ocean layer is well stratified and the mixed layer
depth is shallower than the euphotic layer throughout the year. For these reasons, strong phytoplankton
blooms are rarely detected in the subtropical regions despite the relatively more frequent cooling of
sea surface temperature (SST) following typhoon passage [11]. Strong blooms of phytoplankton are
occasionally detected when slow-moving typhoons linger over a region [12].

An eddy-like phytoplankton bloom with high concentrations of Chl-a was observed in remote
sensing images of the northwestern Pacific following the passage of Typhoon Krosa in August 2019
(Figure 1). The strong bloom began in the looping area of the typhoon on 12 August 2019 and lasted
for approximately two weeks following the typhoon’s passage. Similar rare blooms in the subtropical
region were observed during the passages of Typhoon Keith in November 1997 and Typhoon Ketsana
in October 2003. Shibano et al. [11] reported that a patch-like phytoplankton bloom occurred around
one of the recurvature points of Typhoon Keith, reflecting the role of typhoon-induced upwelling and
biogeochemical processes in determining phytoplankton growth following typhoon passage. Using
satellite observations and ocean model simulation, Yin et al. [13] determined that the cyclonic circulation
associated with Typhoon Ketsana pumped cold, nutrient-rich subsurface waters up to the sea surface,
producing SST cooling and high concentrations of Chl-a at the surface. Due to observational difficulties,
in-situ measurements of the water column were not possible during Typhoons Keith and Ketsana.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 3 of 12 
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algorithm in the MODIS product. To carry out the analysis, we used the three-day average sea surface 
Chl-a concentration data with a spatial resolution of 4 km, which were merged using the MODIS 
Aqua and MODIS Terra Level 3 products (http://oceancolor.gsfc.nasa.gov). The sea surface response 
to the typhoon was identified by analyzing the optimally interpolated (OI) cloud-free satellite SST 
products, which were provided by remote sensing systems (REMSS, http://www.remss.com). The 
REMSS SST data were produced using satellite measurements from the Tropical Rainfall Measuring 
Mission Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometers of the Earth 
Observing System satellites (AMSR-E and AMSR2). The data were interpolated to fill in gaps arising 
from orbit transition and other environmental factors to achieve a 0.1° resolution (~10 km). The AMSR 
SST measurements were used to supplement the OI REMSS product in validating and calibrating the 
OI SST product. To detect the oceanic mesoscale circulation during typhoon passage, we used the 
multi-mission altimeter daily sea surface height anomaly (SSHA) data obtained from the Copernicus 
Marine and Environment Monitoring Service (https://resources.marine.copernicus.eu). The data 
were processed on a grid with a spatial resolution of 0.25° × 0.25°. 

Argo is an array of active profiling floats that measure the temperature and salinity profiles in 
the upper 2000 m of the ocean. The target spatial coverage of Argo is one float per 3° latitude and 
longitude grid cell over the global ocean. The Argo floats have a 10-day overall cycle and temperature 
and salinity accuracies of 0.002 °C and 0.005 psu (practical salinity unit), respectively. Argo float data 
have been widely used in many studies describing ocean warming [14] and the response to tropical 

Figure 1. Distributions of surface Chl-a concentrations before and after passage of Typhoon Krosa in
August 2019: (a) 2 August, (b) 12 August, (c) 15 August, and (d) 24 August 2019.

In this study, we identified the surface phytoplankton bloom initiated by Typhoon Krosa in 2019
and determined the associated upper-ocean conditions before and after passage of the typhoon based
on an analysis of satellite datasets, Argo data, and the output of a regional ocean circulation model.
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Argo measurement, which is not limited by severe weather conditions, can provide observational
evidence for detailed ocean state structures during typhoon passage. In particular, we demonstrate
that the two independent observational sets (i.e., remote sensing and Argo data) and the ocean model
simulation results provide a consistent explanation of the upper-ocean responses to Typhoon Krosa
and the associated eddy-like phytoplankton bloom at the sea surface.

2. Data and Model

2.1. Data

2.1.1. Remote Sensing and Argo Profiles Data

The Chl-a data derived from the MODIS sensors aboard the Aqua and Terra satellites were used
to investigate the spatial and temporal changes in surface Chl-a concentration before and after the
passage of Typhoon Krosa. The Chl-a concentration is calculated using the OC3 chlorophyll algorithm
in the MODIS product. To carry out the analysis, we used the three-day average sea surface Chl-a
concentration data with a spatial resolution of 4 km, which were merged using the MODIS Aqua
and MODIS Terra Level 3 products (http://oceancolor.gsfc.nasa.gov). The sea surface response to the
typhoon was identified by analyzing the optimally interpolated (OI) cloud-free satellite SST products,
which were provided by remote sensing systems (REMSS, http://www.remss.com). The REMSS SST
data were produced using satellite measurements from the Tropical Rainfall Measuring Mission
Microwave Imager (TMI) and the Advanced Microwave Scanning Radiometers of the Earth Observing
System satellites (AMSR-E and AMSR2). The data were interpolated to fill in gaps arising from orbit
transition and other environmental factors to achieve a 0.1◦ resolution (~10 km). The AMSR SST
measurements were used to supplement the OI REMSS product in validating and calibrating the
OI SST product. To detect the oceanic mesoscale circulation during typhoon passage, we used the
multi-mission altimeter daily sea surface height anomaly (SSHA) data obtained from the Copernicus
Marine and Environment Monitoring Service (https://resources.marine.copernicus.eu). The data were
processed on a grid with a spatial resolution of 0.25◦ × 0.25◦.

Argo is an array of active profiling floats that measure the temperature and salinity profiles in the
upper 2000 m of the ocean. The target spatial coverage of Argo is one float per 3◦ latitude and longitude
grid cell over the global ocean. The Argo floats have a 10-day overall cycle and temperature and salinity
accuracies of 0.002 ◦C and 0.005 psu (practical salinity unit), respectively. Argo float data have been
widely used in many studies describing ocean warming [14] and the response to tropical cyclones [15].
To explore the ocean response to the typhoon, in this study we used the temperature and salinity profile
of Argo float 2903334, the closest float to the looping area of Typhoon Krosa. On 23 June 2019, this float
was located at 144.85E, 24.19N; further information for the float can be found on the Jamstec website
(http://www.jamstec.go.jp/ARGORC/float_inf/meta_inf.php?wmo=2903334). The track of Argo during
passage of the typhoon is shown in Figure 2b.

2.1.2. Typhoon Data

The best track data for Typhoon Krosa were obtained from the typhoon center of the Korea
Meteorology Administration (https://www.weather.go.kr/weather/typoon/report.jsp). These data were
used to identify the translation and intensity of Typhoon Krosa and included the maximum sustained
wind speed at sea surface and the location of the typhoon center at 6-hr intervals. The translation speed
of the typhoon could be calculated by dividing the distance between each typhoon center location
by this time interval. Typhoon Krosa developed from a tropical depression into a tropical storm near
the Mariana Islands on 5–6 August 2019 (Figure 2a). The tropical storm soon became a typhoon and
rapidly intensified to Category 3 (on the Saffir-Simpson tropical cyclone scale) near the region of
22.0◦ N and 140.5◦ E on 8–9 August. During this period, the typhoon made an anticlockwise looping
track and lingered for two days with a maximum wind speed of ~43 m/s (Figure 2b,c). As it looped
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over the course of these two days, the typhoon produced a minimum translation speed of less than
~2 m/s on 8 August. Krosa then continued moving toward Japan with little change in intensity and on
16 August transitioned into an extratropical low after passing over Japan.
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2.2. Model

The ocean model used in this study was based on the Regional Ocean Modeling System (ROMS),
a typical three-dimensional, free-surface, stretched terrain-following coordinate model that solves
Reynolds-averaged Navier–Stokes equations [16,17]. The model domain covered the northwestern
Pacific from 15◦ N to 49◦ N and 110◦ E to 157◦ E (Figure 2a). The horizontal resolution of the model
was approximately 8 km, and a depth of 36 vertical layers was used in our application. The bathymetry
was extracted from a combination of two topographic data sets: the General Bathymetric Chart of the
Ocean and Korea Bathymetry 30 [18]. A quadratic bottom friction law with a drag coefficient of 0.0025
was applied in the modeling [19].

The model was one-way nested within the global Hybrid Coordinate Ocean Model (HYCOM)
with nominal horizontal and vertical resolutions of 12 km and 40 layers, respectively. The initial
states were obtained from the daily mean HYCOM velocity, SSH, temperature, and salinity data on
31 July 2019. Using these initial condition variables, the lateral boundary condition was obtained
from the daily mean values of the HYCOM solution from July to August 2019. In ROMS, the surface
boundary conditions were calculated using bulk formulas [20] with surface forcing obtained from
the National Center for Environmental Prediction (NCEP) FiNal anaLysis (FNL) data, which have
a horizontal resolution of 0.125◦ × 0.125◦ and a 1-h time interval. The Generic Length Scale mixing
scheme, which applies the k-kl method, was used as a vertical mixing parameterization [21]. A total of
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10 tidal components (M2, S2, N2, K2, K1, O1, P1, Q1, Mf, and Mm) provided by the TOPEX/POSEIDON
(TPXO) 7-atlas were imposed to produce real-time tidal currents and sea level heights [22].

3. Distribution of Surface Chl-a Concentration and SST

Remote sensing data were used to obtain the spatial and temporal evolution of surface Chl-a
concentrations during the passage of Typhoon Krosa. One week before typhoon passage (on 2 August
2019, Figure 1a), the surface Chl-a concentration was generally low over the northwestern Pacific,
including in the study area. This low concentration is fairly consistent with values commonly observed
in subtropical regions [11]. Following typhoon passage, a high concentration of Chl-a appeared in the
study area as an eddy-like feature and is assumed to represent a phytoplankton bloom.

The concentration of Chl-a significantly increased in the looping area of the typhoon, achieving a
maximum value of >0.3 mg/m3 one day after the typhoon passed over the area (Figure 1b). This surface
Chl-a feature lasted for approximately two weeks thereafter, although at a reduced concentration
(Figure 1d). The changes in surface Chl-a concentration before and after typhoon passage are clearly
visible in Figure 3, which shows the temporal evolution of Chl-a concentration spatially averaged
over the patch region (140–142◦ E, 20–21.5◦ N). The relatively low Chl-a concentration of ~0.05 mg/m3

observed prior to typhoon passage (2–6 August) increased substantially to an area-averaged value
of ~0.28 mg/m3 just after the typhoon (on 12 August), an increase by a factor of more than five.
The enhanced Chl-a concentration decreased gradually, reaching its normal level two weeks after
the typhoon.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 12 
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Two satellite-based SST products revealed a strong SST cooling during typhoon passage that
was accompanied by an increase in sea surface Chl-a concentration. Prior to the typhoon, the water
temperature at the surface in the study area was approximately 28–29 ◦C. As the typhoon approached
the study area, the SST rapidly decreased before returning gradually to the pre-typhoon level two
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weeks after passage. The REMSS and AMSR products measured maximum post-passage changes in
SST of approximately 6 and 9 ◦C, respectively. This abrupt SST drop provides evidence for entrainment
into the warm surface of cold subsurface water from below the thermocline by typhoon-induced strong
vertical mixing and upwelling.

4. Upper-Ocean Conditions before and after Typhoon Krosa

4.1. Pre-Existing Cyclonic Circulation

The spatial patterns of remote-sensed SST and altimetry-based SSHA in the study area were
analyzed to determine the sea surface conditions before and after typhoon passage (Figure 4). Because
the AMSR SST product had a substantial amount of missing data during the passage of Krosa, we
used the REMSS SST alone to examine the spatial SST evolution over time. As Typhoon Krosa passed
through the Northwest Pacific it induced strong sea surface cooling which appeared in satellite imagery
as an eddy. Prior to the typhoon, the SST was high (>28 ◦C) over most of the study area owing to strong
summer heating (Figure 4a). During passage, the SST decreased significantly within the looping area of
the typhoon, corresponding to the region in which there were robust Chl-a concentrations (Figure 4b).
The patch continued to rapidly expand between August 10–13. Following typhoon passage, the SST
gradually increased to pre-typhoon values (Figure 4d–f), with the surface Chl-a concentration following
the same trend.
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Figure 4. Spatial distributions of observed SST (color) and SSHA (contour) before and after passage of
Typhoon Krosa from (a) 7 August to (f) 22 August 2019 with 3-day interval. The contour interval is
0.05 m. Typhoon track is also displayed shown by a thin line with white circle.

Of particular interest is the presence of a mesoscale cyclonic circulation in the study area before
the typhoon approached, as detected by the altimetry-based SSHA (contour lines in Figure 4). This
pre-existing cyclonic circulation (i.e., negative SSHA) was located slightly to the west of the looping
area of the typhoon on 7 August 2019 (Figure 4a). As the typhoon looped in the region (10–13 August),
the cyclonic circulation began to enhance in line with the growth of the cold patch (Figure 4b,c) and
continued to do so even two weeks after typhoon passage (Figure 4d–f). Thus, the altimetry-derived
SSHA data indicate that the typhoon enhanced the pre-existing cyclonic circulation in the study area
during looping.

To further examine the typhoon-enhanced cyclonic circulation, simulated SST, SSHA, and surface
current patterns were analyzed (Figure 5). Overall, the simulated typhoon-induced sea surface
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cooling was overestimated relative to the SST obtained from the REMSS merged product. Note that,
as mentioned previously, the AMSR SST product SST was in closer agreement with the cold SST
obtained from the model (not shown here because some data around the study area are missing).
Despite the overestimation of SST cooling, the SST and SSHA spatial patterns and temporal evolutions
closely match those obtained from satellite-based observations. Our model reproduced the pre-existing
cyclonic circulation on the western side of the looping area prior to typhoon approach (7 August, Figure 5a).
The cyclonic circulation became more vigorous and grew in size with SST cooling as the typhoon lingered
and looped over the study area (7–13 August, Figure 5b,c). A typhoon that moves in this manner can
cause cyclonic circulation as a result of the inducement of strong cyclonic winds, which produce surface
water divergence at their center accompanied by an upwelling of subsurface cold water. By looping
and lingering, Typhoon Krosa further enhanced the pre-existing cyclonic circulation, causing an abrupt
reduction in SST as a result of intense vertical mixing and upwelling. The typhoon-enhanced cyclonic
circulation persisted up to two weeks after typhoon passage (Figure 5d–f), with the resulting enhanced
upwelling bringing nutrient-rich water from the deep layer up to the surface layer and fueling a sea
surface phytoplankton bloom in the study area.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 8 of 12 
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Figure 5. Spatial distributions of model-simulated SST (color), SSHA (contour), and velocities (vector)
before and after passage of Typhoon Krosa from (a) 7 August to (f) 22 August 2019 with 3-day interval.
The contour interval is 0.05 m. Typhoon track is also displayed shown by a thin line with white circle.

Our model–data comparisons suggest that a slow-moving typhoon with a looping motion can
intensify a pre-existing oceanic cyclone, thereby producing an enhanced upwelling and vertical mixing,
a result that is fairly consistent with the results of previous studies [23,24]. This typhoon-enhanced
upwelling and vertical mixing can trigger a phytoplankton bloom through an increase in nutrient
supply to the surface layer. These results highlight the importance of pre-existing oceanic circulation
and the role of typhoon motion in the enhancement of Chl-a concentrations in the subtropical regions.

4.2. Vertical Mixing and Upwelling

Figure 6a shows a time-depth diagram of temperature observed by the Argo float as it drifted
around the northern side of the looping area (140–141◦ E, 24–25◦ N) of the typhoon. It should be noted
that, although the Argo float confirmed the SST cooling shown in the remote-sensed images, it did
not measure a surface Chl-a feature. During the tracking period of 29 July–28 August 2019, the float
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sampled the upper 2000 m of the water column near the cooling area. The data collected along the
Argo float track clearly reveal a distinct change in temperature over the upper water column during
the period before and after typhoon passage. From early August and prior to the typhoon’s approach,
the surface temperature started to gradually decline from 29 ◦C before sharply decreasing to 26 ◦C
during typhoon passage. The water temperature reached a minimum value from 11–13 August as
a result of typhoon-induced vertical mixing in which the mixed layer of the upper ocean deepened
to ~60 m, or approximately twice its pre-typhoon depth. Following typhoon passage, the water
temperature in the mixed layer became continuously stratified over time as a result of strong surface
heating in summer. The presence of well-mixed water in the upper layer during typhoon passage is
evident in the Argo-measured density structure shown in Figure 6b. Despite the high degree of mixing
in the upper ocean layers, however, the water temperature below the thermocline remained very close
to 22 ◦C during typhoon passage, indicating that the subsurface cold water upwelling was not intense
over the Argo track area, in which there was no surface Chl-a surface feature.
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Figure 6. Time–depth diagram of ARGO (2903334) (a) temperature and (b) density measurements from
29 July to 28 August 2019.

To better understand the role of these physical processes on the surface Chl-a feature, we used
model simulation results (Figure 7) to analyze the dynamical responses of the upper ocean to Typhoon
Krosa over the sections of the looping area in which surface Chl-a bloom occurred. The modeled
temporal changes in the average area temperatures confirmed the presence of strong vertical mixing in
the upper layer and intense upwelling over the water column below the thermocline during typhoon
passage (Figure 7a). Prior to the typhoon, high temperatures of above 29 ◦C were distributed over the
surface layer; these decreased sharply to 24 ◦C during typhoon passage (9–12 August), deepening the
mixed layer in the upper ocean. These changes in the upper ocean are quite similar to those observed
over the Argo track area; unlike in the Argo track area data, however, the water temperature below
the thermocline varied largely with time owing to the intense upwelling of subsurface cold water.
These differing characteristics of the two layers can be readily obtained from the following temperature
diagnostic equation terms:
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where T is the model temperature, t is time, (u, v, w) are the ocean current components, and kh and kz are
the horizontal and vertical diffusivity coefficients, respectively. The first two terms on the right-hand
side of the equation represents the horizontal advection of T, while the third term represents the vertical
advection and the fourth and fifth terms represent the horizontal and vertical diffusions, respectively.
As expected, the largest change in temperature rate was found to occur while the typhoon looped
and lingered (9–11 August), during which there was a significant degree of cooling over the entire
water column (Figure 7b). In this case, the dominant components in Equation (1) were the horizontal
and vertical advection terms, whose values were one order of magnitude higher than the other terms
(Figure 7c,d). However, these two dominant terms mostly cancelled each other except in the lower
layer (Figure 7e), in which there were strong negative values during typhoon passage (9–11 August)
corresponding to the temperature change below the thermocline (approximately ~50 m), shown in
Figure 7b. Thus, the temperature change in the lower layer could be attributed to the typhoon-induced
vertical advection cooling—i.e., upwelling of the cold water. On the other hand, as shown in Figure 7f,
the vertical diffusion caused cooling in the mixed layer over the looping area of the typhoon. The results
of this diagnostic analysis of the rate of temperature change indicate that the typhoon-induced strong
winds caused strong vertical mixing in the mixed layer and intense upwelling below the mixed layer
at the center of the typhoon, resulting in a deepening of the mixed layer and mixing between the
upwelled cold water and the warm surface water. Through these dynamics, the typhoon presumably
upwelled cold, nutrient-rich waters from below the mixed layer up to the mixed layer, which in turn
pumped sufficient nutrient fuels for photosynthetic activity via vertical mixing in the euphotic zone,
thereby causing a phytoplankton bloom at the sea surface.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 10 of 12 
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5. Conclusions

Remote-sensed SST and Chl-a data reveal the occurrence of a surface phytoplankton bloom
with high Chl-a concentrations in a cold eddy in the northwestern Pacific following the passage
of Typhoon Krosa in August 2019. In this paper, we discussed the mechanisms producing high
surface Chl-a concentrations during typhoon passage and explained the role of physical processes
associated with ocean circulation. To investigate the enhancement of Chl-a concentration and the
associated upper-ocean conditions before and after typhoon passage, we characterized the surface
Chl-a concentration and pre-existing ocean conditions using multiple satellite datasets and Argo
measurements and then compared these with the output of a regional ocean circulation model.

Because of the typhoon, the surface Chl-a concentrations in the region increased sharply to more
than five times their pre-typhoon values and persisted for approximately two weeks following passage.
The elevated post-typhoon concentrations of Chl-a coincided with a pre-existing oceanic cyclone that
was detected as an altimetry-based SSHA. The typhoon looped around the oceanic cyclone for one
day at speeds of less than 4 m/s, producing an unusual sea surface cooling of up to ~8 ◦C in the
cyclonic eddy region. Our model successfully captured the typhoon-enhanced cold-core cyclonic
circulation corresponding to the region of high Chl-a concentration. The model–data comparisons
demonstrated that the looping motion of the slow-moving typhoon enhanced a pre-existing cyclonic
circulation, resulting in strong vertical mixing and upwelling. A diagnostic analysis of the temperature
rate equation confirmed that the typhoon-induced strong winds caused strong vertical mixing in the
mixed layer and intense upwelling below the mixed layer at the center of the typhoon, resulting in a
deepening of the mixed layer and mixing between the upwelled cold water with the warm surface
water. This upwelling of nutrient-rich waters to the mixed layer fueled the photosynthetic activities in
the well-mixed euphotic zone and triggered a phytoplankton bloom. The importance of upwelling on
the phytoplankton blooms has been well established by several studies, particularly on Karenia brevis,
a toxic dinoflagellate that blooms regularly in the Gulf of Mexico [25–28]. Using satellite and ocean
observations and/or numerical model results, they showed that the blooms of Karenia brevis along
the coasts are closely related with interaction between wind-induced upwelling and concentration of
Karenia cells at nearshore frontal boundaries.

These results have significant implications regarding the impact of typhoons on ecosystems in the
northwestern Pacific and the importance of typhoons to the carbon fixation process in the oceans [29].
As typhoons increase in strength as a result of global warming, their impacts on the ecosystem and
on carbon fixation in the subtropical regions will be increased in the future. Although not a focus of
this study, biogeochemical processes can also play an important role in determining the biomass and
productivity of the subtropical ocean [13]. Thus, further studies are clearly needed to obtain a better
understanding of the physical and biogeochemical processes that potentially influence the oceanic
ecosystem on longer time scales.
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