
J. Sens. Actuator Netw. 2014, 3, 181-206; doi:10.3390/jsan3030181
OPEN ACCESS

Journal of Sensor
and Actuator Networks

ISSN 2224-2708
www.mdpi.com/journal/jsan

Article

An Authenticated Key Agreement Scheme for Wireless Sensor
Networks
Mee Loong Yang 1,*, Adnan Al-Anbuky 2 and William Liu 1

1 School of Computer and Mathematical Sciences, Auckland University of Technology,
Auckland 1142, New Zealand; E-Mail: bobby.yang@aut.ac.nz

2 School of Engineering, Auckland University of Technology, Auckland 1142, New Zealand;
E-Mail: aalanbuk@aut.ac.nz

* Author to whom correspondence should be addressed; E-Mail: bobby.yang@aut.ac.nz;
Tel.: +64-9-921-9999; Fax: +64-9-921-9944.

Received: 6 May 2014; in revised form: 17 June 2014 / Accepted: 17 June 2014 /
Published: 1 July 2014

Abstract: We propose a new authenticated key agreement scheme based on Blom’s scheme,
but using multiple master keys and public keys in permutations to compute the private keys
in each node. The computations are over a small prime field, and by storing them in a random
order in the node, the private-public-master-key associations (PPMka) of the private keys are
lost. If a node is captured, the PPMka of the private keys cannot be determined with certainty,
making it difficult to begin to attack the scheme. We obtained analytical results to show that,
using suitable keying parameters, the probability of discovering the correct PPMka can be
made so small, that a very powerful adversary needs to capture the entire network of tens
of thousands of nodes or expend an infeasible amount of effort to try all of the possible
solutions. We verified our results using computer-simulated attacks on the scheme. The
unknown PPMka enables our scheme to break free from the capture threshold of the original
Blom’s scheme, so that it can be used in large networks of low-resource devices, such as
sensor nodes.

Keywords: key agreement; Blom; security; authentication; ad hoc; mobile; sensors;
wireless sensor networks

J. Sens. Actuator Netw. 2014, 3 182

1. Introduction

Wireless sensor devices are physically small electronic devices equipped with the appropriate sensors,
a micro-controller, a limited amount of memory and a radio transceiver for communicating with other
devices. They are designed to be inexpensive, so that they can be deployed in large numbers. A small
battery provides the necessary power. They communicate using radio and messages may be relayed over
several nodes to the final destination. They can be deployed for monitoring in all kinds of applications,
such as building structures, seismic activities, soil condition, etc. Their wireless communication also
makes them useful for mobile applications, such as for wild-life monitoring, vehicular networks, bodily
health monitoring and in difficult to access areas. They may be installed in fixed, mobile or ad hoc
applications.

One consequence of their open wireless communications is that an adversary can easily eavesdrop
on messages and also transmit malicious messages into the network. This vulnerability may be a
setback to their widespread acceptance, especially in sensitive applications. It is therefore necessary
to be able to protect the communications using proven cryptographic techniques. To do this requires the
communicating nodes to share secret keys.

The physical deployment environment allows the adversary to physically take control of nodes and
extract secret keys from the node’s memory. Due to cost, sensor nodes do not have tamper proof
mechanisms. To minimise the impact of compromised nodes, the keys should be shared with as few
nodes as possible, preferably between pairs only. In large ad hoc mobile networks, there are a large
number of pairwise keys, and nodes would need a large amount of memory to store them. A better
solution is to use a key agreement scheme where pairs of nodes would compute their pairwise keys after
exchanging some information over the insecure channel. Such schemes, such as those by Diffie-Hellman
(DH), by Rivest, Shamir and Adleman (RSA) and by El-Gamal, are already widely used in computer
networks. These use public key cryptographic (PKC) algorithms involving complex mathematical
operations on large integers and require substantial computational, memory and energy resources that
are not readily available in sensor nodes.

Symmetric cryptographic key agreement schemes are more efficient, but they generally have
limitations, such as large memory requirements, limited key sizes and scalability. This paper, an
extension of our previous works in [1–3], presents a symmetric key scheme, which retains the advantages
of the symmetric key scheme and also is able to overcome these limitations.

1.1. This Contribution

Blom’s key agreement scheme [4,5] is fast, efficient and has mutual authentication features, making
it attractive for low-resource sensor devices in ad hoc mobile networks. Unfortunately, as nodes can be
captured and have their keys stolen, Blom’s scheme can be completely broken once a certain number
of nodes are compromised. Our scheme is able to break free of this limitation. The main idea is to
use multiple master keys and public keys in permutations to obtain multiple private keys for each node.
The computations are over a small prime field, and the private keys are stored in a random order. As
a result, the private-public-master-key association (PPMka) information is lost. Without the PPMka,
captured private keys are unusable for breaking the scheme. We obtained analytical results to compute

J. Sens. Actuator Netw. 2014, 3 183

the probabilities of retrieving the PPMka and showed that, with suitable keying parameters, the adversary
will need to capture a very large number of nodes or expend an infeasible amount of resources to obtain
the PPMka. This makes our scheme useful as the cryptographic primitive for large sensor networks.

1.2. Structure of Paper

The paper is structured as follows: In Section 2, we describe some related works using Blom’s key
agreement scheme. In Section 3, we describe the basic concepts and features of our scheme. In Section 4,
we define our security and adversary models and analyse possible attacks on the scheme. We show that
without the PPMka information, the scheme cannot be attacked. In Section 5, we analyse how the
PPMka information may be discovered and compute the probabilities of successful attacks. These are
compared to those obtained using computer simulated attacks on the scheme. In Section 6, we discuss
the performance of the scheme in terms of memory requirements, computation times and scalability.
Some keying and performance parameters are given for practical implementations. In Section 7, we
discuss the strengths and limitations of the scheme, and we give our conclusion in Section 8.

Notations and Terms Used

ID the public key ID, an integer
K private key, a secret (1×m) row vector unique to the node
M master key, an (m×m) secret symmetric matrix belonging to the trusted authority (TA)
N the number of master keys
R pairwise key set, the set of integers used to form the pairwise key
S private key set, the set of Nη private keys
V public key, an (m×1) column vector unique to the node and available to everyone
m the size of the master key matrix
nc the number of captured or compromised nodes
η the number of public keys assigned to each node
p the prime modulus for all operations, except public keys
q the prime modulus for public key operations only
s the public key seed, an integer ∈ [0, q − 1]

2. Related Works

Blom’s scheme [5] is unconditionally secure in that, if not more than a certain number of nodes are
compromised, the scheme cannot be broken, as there is simply insufficient information [6]. On the other
hand, if enough nodes are compromised, the attacker would be able derive the master key and completely
break the scheme. Blundo’s polynomial conference key distribution scheme [7] with bivariate symmetric
polynomials is equivalent to Blom’s scheme. For sufficiently large pairwise keys and application in a
large networks, each node would require a substantial amount of memory to store its private key.

A number of attempts have been made on either Blom’s or Blundo’s scheme to enhance node capture
resilience by using multiple key spaces, so that the attacker has less chance of obtaining all of the nodes
in the same key space. For example, the scheme in [8] used multiple key spaces and incorporated a

J. Sens. Actuator Netw. 2014, 3 184

probabilistic method similar to Eschenauer and Gilgor’s [9], such that pairs of nodes must discover their
shared key space to compute their pairwise key. To achieve full connectivity, if a pair of nodes do not
share a key space, secured intermediary nodes are used to establish their pairwise key. An equivalent
scheme in [10] was independently discovered at the same time. The pairwise key sizes were 64 bits.
In these schemes, resilience against node capture is enhanced since the probability of capturing enough
nodes in the same key space is reduced. A similar idea using multiple key spaces was proposed in [11],
but in this case, the nodes are connected in a complete bipartite graph. In [12], only the cluster heads
implemented Blom’s scheme, thus allowing the overall network size to be larger than the number of
cluster heads, which must be within the capture threshold to be secure.

A different idea in [13] based on the bivariate polynomial with multiple-key spaces added random
perturbations to the polynomials, so that captured nodes cannot be used to break the scheme. They were
able to compute 80-bit pairwise keys in about 0.13 s, requiring about 15 KB ROM and 0.33 KB RAM. In
a similar approach, the work in [14] used random perturbations, which are hashed with the pairwise key
obtained using Blom’s scheme. After establishing the pairwise key, the private keys are erased to prevent
the adversary from obtaining them. A newly deployed node would not be able to implement Blom’s
scheme to connect to an already secured node. Instead, it is deployed with an ID and a secret key shared
with the base station. To authenticate a new node, the secured node would contact the BSto obtain the
secret key shared with the node. Another implementation in [15] also uses random perturbations. Here,
small random perturbations are added to the private keys to break the direct connection to the master key,
making it more difficult to break. The pairwise keys computed are identical after the effect of the small
random perturbations are removed.

A scheme in which the private vectors of the nodes can be updated was proposed in [16]. In this
scheme, the modified Blom’s scheme used hashed values of the prime seeds, and similarly, nodes have
private vectors, which are hashes of the original private vectors. Their scheme limits the node capture to
less than the capture threshold.

3. The BYka Scheme

3.1. Blom’s Scheme

Blom’s scheme [5], on which our scheme is based, is briefly described as follows. An entity, called
the trusted authority (TA) generates for itself a master key M, which is a random (m × m) symmetric
matrix over the prime field Fp. It assigns a node a public key V, which is an (m×1) column vector in Fp.
The TA computes and stores in the node its private key K = VT ·M (mod p). To obtain their pairwise
key, a pair of nodes, e.g., nodes A and B exchange their public keys and compute (mod p),

Node A: KAB = KA · VB = (VT
A ·M) · VB

Node B: KBA = KB · VA = (VT
B ·M) · VA

The quantity (Vx · M · Vy) is a (1 × 1) scalar, and transposing KBA = VT
AMT · VB. Since M is

symmetric, the two keys KAB and KBA are identical.

J. Sens. Actuator Netw. 2014, 3 185

3.2. The BYka Scheme

Our multiple-key Blom’s scheme [1,2], now called the Blom–Yang key agreement (BYka) scheme,
uses the Blom’s scheme as the cryptographic primitive, but with multiple master keys and public keys
used in permutations in a single key space.

3.3. Setup

The TA selects the keying parameters: the number of secret master keys N , the size m, the number of
public keys in each node η, the prime modulus for key computations p and the prime modulus for public
key computations q. For example, N = 7,m = 16, η = 6, p = 31 and q = 65521, to obtain pairwise
keys of 128 bits for a network of about 10,000 nodes.

The TA generates N master keys M1,M2, · · · ,MN , over the prime field Fp. These are (m × m)

symmetric matrices.

3.3.1. Public Key Set and IDs

The TA assigns to each node η unique public keys, called the public key set, each one an (m × 1)

column vector of the Vandermonde matrix over the field Fq. As the elements of a column in the
Vandermonde matrix are si−1 for i = 1, · · · ,m, where s is called the “seed”, the node needs only
be assigned η seeds {s, · · · , s+ η − 1}. The seeds are consecutive, and the smallest seed s is a multiple
of η. In this way, no two nodes share a common seed. The node’s public key set can be succinctly
represented by the smallest seed s, which also serves as its public key ID, e.g., using η = 6, a node A
with public key IDA = 240 has public key seeds {240, 241, · · · , 245}. Given a node’s public key ID,
anyone knowing q can generate its public key set as follows,

VT
i

= [1 s
i
s2
i
· · · sm−1

i
] (mod q) (1)

where s
i

= ID + i− 1, for i = 1, · · · , η

When pairs of nodes exchange their public keys, they only need to transmit their IDs consisting of a
few bits, e.g., 16 bits. This is an important feature, saving time and energy for radio transmissions.

3.3.2. Private Key Set, S

The TA computes the private keys for each node using all the permutations of their η public keys with
its N master keys to obtain the node’s “private key set” S = {K11, · · · ,KηN}, where Kij , called the
private key, is a (1×m) row vector, computed as follows,

K
ij

= VT
i

Mj (mod p) (2)

for i = 1, · · · , η and j = 1, · · · , N

J. Sens. Actuator Netw. 2014, 3 186

PPMka

The private key Kij is computed from the i − th public key Vi and the j − th master key Mj .
We call the relationship of a private key with the public key and master key used to compute it the
“private-public-master-key association” (PPMka). The TA transfers the private key set to the node using
a secure connection and stores them in random order. Alternatively, the private key set can be first
shuffled before transferring to the node. If a node is compromised and the private keys obtained, the
adversary cannot tell from the storage location which public key and master key was used to compute it.

3.3.3. Key Aliasing

The number of public key seeds must be large enough to accommodate the network size. To do this,
the public key operations are over a large field Fq, for example, q = 65521 catering to about 10,000
nodes, but it can be much larger. As the private key operations are over a small field Fp, it is possible for
multiple public keys to map to the same private key, a phenomenon we call “key aliasing”, described as
follows. Consider the private key Kk = VT

snMy, where sn is the seed for Vn. Denoting the elements of
My as Myij and using Equation (1), the u− th element of Kk is,

Kku =
m∑
i=1

si−1
n Myiu (mod p)

= My1u + s1
nMy2u + · · ·+ sm−1

n Mymu (3)

For two nodes, say A and B, if any of their public key seeds are congruent, e.g., sA ≡ sB (mod p),
and for all i = 0, · · · ,m − 1, the elements si−1

A and si−1
B are smaller than q (the elements in the public

key vectors do not “wrap round” q), then we have si−1
A ≡ si−1

B (mod p) for all i. As a result, their private
keys associated with the same master key are identical since,

KAu = My1u + s1
AMy2u + · · ·+ sm−1

A Mymu (mod p)

and KBu = My1u + s1
BMy2u + · · ·+ sm−1

B Mymu (mod p) = KAu

To prevent key aliasing, a seed sn is chosen, such that at least one vector element exceeds q, and the
residue r (mod q) is different from sn (mod p) and is not zero. The requirements of a seed sn are then,

for some w 6 m, sw−1
n > q

i.e., sw−1
n ≡ rn (mod q)

and rn 6≡

{
0 (mod p), and
sn (mod p)

 (4)

The TA installs into each node their “keying material” comprising the global keying parameters
{m,N, η, p, q}, the node’s individual public key ID and private key set S. All of these are static and
can be stored in the ROM or flash memory.

J. Sens. Actuator Netw. 2014, 3 187

3.4. Pairwise Key Computation

After deployment, any pair of nodes can compute their pairwise key after exchanging their IDs. For
example, nodes A and B have obtained each other’s IDs. Each node generates their counterpart’s public
keys using Equation (1) and, then, using all of the permutations with its own private key set, computes
(mod p) the set R, called the “pairwise key set”, as follows,

Node A: RA =
{

KAijVBk

}
=
{

(VT
Ai

Mj)VBk

}
(mod p)

Node B: RB =
{

KBijVAk

}
=
{

(VT
Bi

Mj)VAk

}
(mod p)

for i, k = 1, · · · , η, and j = 1, · · · , N

 (5)

Transposing each element in RB, we have,

RB =
{

((VT
Bi

Mj)VAk)
T
}

=
{

(VT
Ak

MT
j)VBi

}
Since Mj is symmetric and i, j, k are merely independent counters, the sets RA and RB each contain

Nη2 identical numbers ∈ [0, p−1], though not in the same order. These numbers are used by both nodes
to form their pairwise key Kpair.

Pairwise Key

The pairwise key can be constructed from the pairwise key set R using several methods. In one
method, the number of occurrences of the integers in R are counted and used as the input to a hash
function to output the pairwise key. In another method, the numbers in R are sorted and concatenated
into a large key. It is also possible to increment all elements in R by one to make them all non-zero
and then multiply them together (mod Sk) to obtain the pairwise key, where Sk is a large prime number
of the desired key size. Once the nodes have obtained their identical pairwise key, they can use it for
encrypting messages or to transport a randomly generated session key for subsequent communications.

4. Security of the BYka Scheme

4.1. Security Model

This section defines the components of the system, the adversary and its capabilities and the meaning
of system breakdown.

4.1.1. System

The system comprises nodes belonging to one administrative unit under the same TA. It is assumed
that TA has access to a cryptographically secure random number generator. The master keys are assumed
secure and cannot be stolen. If need be, they can be deleted after generating all of the possible public
and private key sets. The nodes have access to secure cryptographic algorithms, such as AESencryption
and hash algorithms.

J. Sens. Actuator Netw. 2014, 3 188

4.1.2. Adversary

The adversary is a very powerful agent with powerful computing resources. It is able to move about
freely in the deployment space to monitor transmissions, replay messages and insert its own fabricated
messages. It is also able to physically capture nodes and extract all the keying material, including the
public key IDs, the private key sets S and the keying parameters from ROM and RAM memory.

4.1.3. System Breakdown

The scheme is considered broken if the adversary is able to, by monitoring transmissions or using the
keys from captured nodes,

(1) obtain the pairwise keys of any other pairs of uncompromised nodes, or
(2) fabricate new valid public and private keys, or
(3) compute the master keys of the TA.

Identity theft attacks, where the adversary clones a node by fabricating a new node with the identical
keys from the captured node, though a very serious threat, is beyond the scope of this paper.

4.1.4. Vulnerabilities

The vulnerabilities of the BYka scheme are broken down and analysed in the three main parts:

(1) Strength of the keys against brute force attacks
(2) Security of the underlying Blom’s scheme, as it applies to the BYka scheme
(3) Resilience against node capture

4.2. Strength of Keys against Brute Force Attacks

The master keys and private keys are random and large. For example, with values of N = 7,
m = 16, η = 6 and p = 31, there are 2634 possible master keys and 2208 private keys. A brute force
attack is not feasible.

Pairwise Key

One limitation in the original Blom’s scheme is that the pairwise key is only the same size as the data
size of the master key elements. In our BYka scheme, the pairwise key size can be up to pNη2 integers
∈ [0, p− 1].

The BYka scheme can be viewed as a mechanism for two nodes to derive a common secret pairwise
key set R consisting of Nη2 integers from which to construct their pairwise key. The number of possible
keys, the “key space”, is limited by the number of possible combinations of the Nη2 integers. To
determine the key space size, we consider the following partitioning problem.

Given a row of Nη2 items, we wish to partition them into p groups. This is illustrated in Figure 1 for
the case of partitioning eight items into four groups. To create the partitions, we first insert (p− 1) items
into the row, so that there are now (Nη2 + p− 1) items. If any (p− 1) items are now removed, (p− 1)

J. Sens. Actuator Netw. 2014, 3 189

gaps would be created, separating the remaining items into p groups as desired. Let group g0 contain
the integer zero, g1 contain one, g2 contain two, etc. The total number of integers is always Nη2. The
number of ways to remove (p− 1) items from (Nη2 + p− 1) gives the key space size as follows,

Ksp =

(
Nη2 + p− 1

p− 1

)
(6)

= log2

[(
Nη2 + p− 1

p− 1

)]
bits

Table 1 shows the key space sizes for various keying parameters in bits. It can be seen that the key
spaces of 64 bits and larger are possible.

Figure 1. Partitioning eight items into four groups.

Table 1. Key space in bits.

η N
Values of p

13 17 19 23 31

6
6 64 80 88 102 127
7 67 84 92 106 134
8 69 87 95 111 139

7
6 69 87 95 111 140
7 72 91 99 116 146
8 74 94 103 120 152

8
6 74 93 102 119 151
7 77 97 106 124 157
8 79 100 109 128 163

Legend: Key space 64 bits, 80 bits, 96 bits, 128 bits

4.3. Security of the Underlying Blom’s Scheme

Blom’s scheme is vulnerable to the Sybil attack, and the master key can be derived if enough nodes
are captured. We now examine how this can be done and then analyse how our BYka scheme would
fare.

4.3.1. Sybil Attacks

In this attack, the attacker would fabricate new public and private keys by combining captured keys
and use them to masquerade legitimate nodes. Consider that n nodes and their public and private keys

J. Sens. Actuator Netw. 2014, 3 190

have been obtained. The attacker can fabricate a new public key VX by linear combination of captured
public keys as follow:

VX = α1V1 + · · ·+ αnVn (mod p) (7)

The corresponding private key KX would also be a similar linear combination of the captured private
keys,

KX = VT
XM = (α1VT

1 + · · ·+ αnVT
n)M

= α1VT
1 M + · · ·+ αnVT

nM

= α1K1 + · · ·+ αnKn (mod p) (8)

By choosing various combinations of α1, · · · , αn, the attacker is able to fabricate any public key and
the corresponding private key at will.

Mitigation

To defeat this attack, three conditions must be met:

(1) the public keys must conform to a prescribed structure,
(2) the public keys are linearly independent, and
(3) no more than (m− 1) nodes are captured, i.e., n < m.

The first condition ensures that a key formed from arbitrary linear combinations of captured keys
would not be accepted. If all of the public keys are of a prescribed structure, such as those of the column
of the Vandermonde matrix, arbitrary public keys would simply be discarded.

If all of the public key vectors are linearly independent and n < m, then by definition, the solution of
Equation (7) is trivial, i.e., α1, · · · , αn = 0. On the other hand, if n > m, then, as there are at most m
linearly independent (m×1) vectors, anym public keys can be combined to obtain a non-trivial solution
in Equation (7) and obtain the corresponding private key using Equation (8).

4.3.2. Attacking the Master Key

Consider that m nodes have been captured and all of the public keys are linearly independent. The
attacker would be able to construct a system of m linear equations from each private key using the
relationship, Ki = VT

i M, which, after transposing, can be written as MTVi = KT
i where MT = M.

Combining these from the m captured nodes, we have,

M
[

V1 V2 · · · Vm

]
=

[
KT

1 KT
2 · · · KT

m

]
i.e., MV = K

If V is invertible, then M = KV−1 (9)

From linear algebra, the matrix (m × m) V is invertible if, and only if, the determinant |V| 6= 0.
Since the column vectors in V are linearly independent (for example, the Vandermonde matrix), then

J. Sens. Actuator Netw. 2014, 3 191

V is non-singular with a non-zero determinant. The elements of the master key can be obtained, for
example using the Gaussian elimination method.

Capture Threshold λ

The above shows the main limitation of Blom’s scheme. If the number of captured nodes reaches m,
called the “capture threshold”, the entire scheme can be broken. Bloms’s scheme is said to be (m − 1)

secure if the number of nodes deployed is <m. Then, even if all of the nodes are captured, there is no
determinate solution for M, and it is unconditionally secure.

To implement a Blom’s scheme that is (m−1) secure, a largem would be required and, together with
the requirement for large pairwise key sizes, the nodes would require a large memory to store the private
keys. This places a limit on Blom’s scheme.

4.3.3. Immunity to MITM Attacks and Mutual Authentication

In the man-in-the-middle (MITM) attack, an adversary node E interposes itself between two nodes
A and B. It posses as A to B and, similarly, as B to A. If this is successful, it acts as an intermediary
between A and B, reading and modifying messages before forwarding them. In Blom’s scheme, if the
attacker E forwards its own IDE to node A to impersonate node B, node A would compute the pairwise
key KAE . Node E cannot compute KEA, as it does not have the private key for IDE . If E forwards IDB

to node A and IDA to node B, both nodes A and B can compute their pairwise key KAB, which cannot
be obtained by node E. Messages encrypted between nodes A and B cannot be read by E. Blom’s
scheme is immune to MITM attacks, as both nodes must use keying material from the TA to compute
their pairwise key. In this way, the scheme is mutually authenticating.

4.3.4. Implications for the BYka Scheme

The BYka scheme inherits the mutual authentication and immunity to the MITM attacks as in Blom’s
scheme. In addition, it would also appear to inherit the capture threshold limitation. In fact, the BYka
scheme’s capture threshold is lower at λ = dm

η
e, since each node carries ηN private keys. However, the

capture threshold is not applicable, since, to use the captured private keys, the attacker needs to associate
each private key with the public key and master key used to compute it, i.e., discover the PPMka. In the
original Blom’s scheme with only one key, the PPMka is obvious.

4.4. Resilience against Sybil Attacks

The Sybil attack cannot be mounted as in Blom’s scheme. Consider that m private keys
KC1M1

, · · · ,KCmM1
and the corresponding public keys VC1 , · · · ,VCm associated with one of the master

keys M1 have been obtained. The attacker chooses a public key IDX seed sX1 and constructs the public
key VX1 as a Vandermonde column vector, such that,

VX1 = α11VC1 + · · ·+ α1mVCm (mod q) (10)

J. Sens. Actuator Netw. 2014, 3 192

The coefficients α11 , · · · , α1m can be obtained and used to construct the private key associated with
M1 and VX1 ,

KX1M1
= VT

X1
M1 = (α11VT

C1
+ · · ·+ α1mVT

Cm)M1

= α11KC1M1
+ · · ·+ α1mKCmM1

(mod p) (11)

Here, KC1M1
is the private key associated with the master key M1 and public key VC1 . The difficulty is

identifying which of the Nη private keys in the node is this particular one, and similarly for KC2M1
, etc.

Each private key is a row vector with elements, which are sums and products of random numbers, and
is indistinguishable from the others. The order of storage in memory is also random and unrelated
to the order in which they were computed. An adversary cannot derive any information about the
private-public-master-key associations (PPMka) from examining the keys or its storage location.

If the PPMka information is not available, the adversary will need to try all of the possible PPMka as
follows. From each node, there are (Nη)!

(Nη−η)!
ways to select the η private keys associated with M1 and the

public keys VC1 , · · · ,VCη . To select all of the private keys in the m
η

captured nodes associated with M1

and the corresponding public keys for use in Equation (11), we have Φ1 possible ways, given by,

Φ1 =

[
(Nη)!

(Nη − η)!

]m
η

To complete the Sybil attack, all of the public and private keys are similarly constructed for each of
the master keys and used together. The total number of possible solutions for all of the PPMka’s is,

Φ =
N−1∑
i=0

[
(Nη − iη)!

(Nη − iη − η)!

]m
η

(12)

Table 2. Number of Solutions Φ.

η N
Master Key Size m

12 16 24 32

6

6 2.16×1018 2.84×1027 3.90×1036 7.61×1054

7 1.64×1019 5.67×1028 2.07×1038 2.91×1057

8 9.45×1019 7.46×1028 6.30×1039 4.79×1059

7

6 1.97×1022 2.55×1033 3.43×1044 4.65×1055

7 2.07×1023 8.37×1034 3.55×1046 1.53×1058

8 1.57×1024 1.68×1036 1.90×1048 2.20×1060

8

6 2.41×1026 2.41×1026 3.55×1039 5.37×1052

7 3.52×1027 3.52×1027 1.91×1041 1.08×1055

8 3.54×1028 3.54×1028 5.88×1042 1.03×1057

J. Sens. Actuator Netw. 2014, 3 193

As an example, with N = 7, η = 6 and m = 16, Φ = 5.67× 1028 possible solutions. Hence, without
knowing the PPMka, the Sybil attack requires an unfeasibly large number of trials. Table 2 gives the
possible number of solutions for various keying parameters.

4.5. Brute Force Attack on the Master Keys

Similarly, to solve for all of the master keys using the captured private keys without knowing
the PPMka information, the number of possible sets of m × m linear equations is also given in
Equation (12). Each attempt involves constructing the (m × m) system of linear equations, solving
them using, say, the Gaussian elimination method and testing each solution to see if it can successfully
compute a captured node’s private key using one of its public keys. The possible number of solutions is
also given in Table 2.

Hence, due to the unknown PPMka in the BYka scheme, there is only a probabilistic chance of
breaking the scheme, even if sufficient captured keys are available. With suitable keying parameters, the
chance can be made so small, that the scheme cannot be feasibly broken. However, the scheme can be
broken if the PPMka can be discovered. We show next how discovering the PPMka can be made very
difficult by using key operations over a small prime field Fp.

5. Attacks to Discover the PPMka

5.1. Pairing Attack

If the keys from a pair of captured nodes are used to compute their pairwise key set, the identical
numbers in the key set can expose the related public and master keys. This is called the “pairing attack”.
For example, using nodes A and B, their pairwise key sets RA and RB will contain Nη2 identical
numbers. This is illustrated in Figure 2 showing only one of the matching numbers in RA and RB. The
identical numbers KA1VB2 = KB3VA2 reveal that private keys KA1 and KB3 are both associated with
the same master key, say Mx, and also reveal the PPMka: KA1 = VT

A2Mx and KB3 = VT
B2Mx. If all of

the Nη2 numbers are unique, then it is easy to discover all of the PPMka. However, since there are Nη2

numbers in R ∈ [0, p − 1] and p is a small prime, there will be ambiguities. For example, with p = 31,
N = 7 and η = 6, there are 252 numbers, each one ∈ [0, 30].

Figure 2. Pairing attack showing one of the matching numbers.

A more efficient pairing attack is to use only one of the public keys to compute the partial key sets
Rr. The number of elements in the partial key set is now reduced to Nη. This is illustrated in Figure 3

J. Sens. Actuator Netw. 2014, 3 194

for the simple case where N = 2, η = 2. Here, as KA1VB2 = KB3VA1 , both must be associated with
the same master key say, M1. Hence, KA1 = VT

A1
M1 and KB2 = VT

B2
M1.

If all of the numbers in the partial key sets Rr are unique, the above attack would be successful.
However, if they are not all unique, we say that there are “collisions” that give rise to ambiguities, since
more than one PPMka is possible for the affected private key.

Figure 3. Pairing attack having unique couplers, for the case N = 2, η = 2.

5.1.1. Couplers and Couplings

Each pairing attack, e.g., Figure 3, should produce exactly N identical numbers in sets RrA and RrB

if all of the numbers are unique. The set C contains the distinct identical numbers called “couplers”.
The links connecting the couplers to the numbers in RrA and RrB are called “couplings”. The number
of couplings, denoted as Nc, is ≥ number of couplers.

In the ideal case where there is no collision, there would be exactly Nc = N couplings on each side
of C, each one linking the private key to the associated master key and public key, exposing the PPMka.
In this way, by successively pairing an exposed node with other nodes, all of the PPMka can be obtained.
However, if the couplers are not unique, then the associated master key is ambiguous for the affected
private key.

The probability of having only unique numbers in Rr, hence exactly N couplers in a set of Nη
numbers, is Pu = p

p
p−1
p
· · · p−Nη−1

p
. To make this attack more difficult, Pu can be made very small by

choosing a small value of p and somewhat larger values of N and η. For example, with p = 31, N = 5,
η = 6, Pu = 1.49 × 10−11. For N = 7, η = 6, then Pu = 0, since Nη > p.

5.1.2. Pairing Attack Strategies

We consider two extreme approaches to discovering the PPMka information to show the difficulty
and effort required. First, we consider the “unlimited capture” case where the attacker is able to pick
and choose any of the nodes for pairing, and second, the “limited capture” case, where the attacker has
obtained only a sufficient number of captured nodes.

J. Sens. Actuator Netw. 2014, 3 195

5.2. Unlimited Capture

5.2.1. Traitor Node

The attack would be easier if it is possible to find one node in which all of the N private keys
associated with one public key, say V1, is known. This set of private keys can be used to reveal the
PPMka of other private keys. We call this the “traitor node”. For example, in Figure 4, the traitor node T
is available, whose keys KT1 and KT2 are known to be associated with Mx and My, respectively. If the
node B is paired with it and if the number of couplings in RrB is N , they distinctly link the connected
private keys in B to the exposed private keys in T revealing the PPMka, i.e., KB1 and KB2 must be
associated with My and Mx, respectively, and both associated with VB2.

Figure 4. The traitor node can be used to attack private-public-master-key associations
(PPMka).

This is not so straightforward if the number of couplers in RrB is Nc 6= N , as in Figure 5. In
Figure 5a, the partial key set RrB obtained using public key VB2 has less couplers than N , i.e., only
one coupler instead of two. While the private keys KB1 and KB2 can be associated with VB2, their
associations with the master keys are ambiguous. Furthermore, in Figure 5b, RrB has more than N

couplers, i.e., three instead of two. Now, it is not clear whether KB2 or KB3 is associated with VB2

and My. Hence, when a node is paired with the traitor and has exactly N couplers, the PPMka of the
connected private keys will be revealed. Finding a traitor node is thus the first step to discovering the
PPMka information.

Figure 5. The traitor node cannot be used to attack the PPMka.

J. Sens. Actuator Netw. 2014, 3 196

5.2.2. Probability of Finding a Traitor Node

A traitor node T is found if, in a pairing, the number of couplings it has is Nc 6 N ; for example, in
Figure 3, both nodes can be used as the traitor node. If Nc > N , there are ambiguities, since there are
>1 possible associations between the Nc private keys and the N master keys.

To calculate the probability of finding a traitor node, we consider the following problem. In Figure 6a,
the pairing attack produces partial key sets RrA and RrB. We remove the couplers from RrA, to form
the set, Rc, leaving the reduced partial key set R′rA; see Figure 6b. A traitor node is found if the reduced
set R′rA is disjoint with (R′rB ∪ Rc) or R′rB is disjoint with (R′rA ∪ Rc). Additionally, sets R′rA, R′rB
and Rc can all be disjoint. The probability of these occurrences can be found by counting the number of
arrangements for the above cases. Let Na, Nb and Nc be the number of elements in sets R′rA, R′rB and
Rc, respectively. Here, Nc = N , Na = Nb = Nη −N .

Figure 6. Finding the traitor node.

Two Disjoint Sets

Consider the case where the two sets R′rA and (R′rB ∪ Rc) are disjoint. The set R′rA can have
one number repeated Na times, e.g., {1, 1, 1, · · · , 1},{2, 2, 2, · · · , 2}, etc., or two different numbers
in various arrangements, e.g., {1, 1, · · · , 1, 2}, {1, 1, · · · , 2, 2}, etc., or three different numbers, e.g.,
{1, 1, · · · , 2, 3}, {1, 2, · · · , 2, 3}, and so on. For each case, the remaining numbers can be used in the set
(R′rB ∪Rc).

Before proceeding, first consider the number of ways QNar of arranging Na numbers, such that each
arrangement uses all of the given r numbers. For example, in arranging four numbers using all three
numbers {6, 7, 8}, arrangements like {6, 6, 7, 8} and {6, 7, 7, 8} would be included, but excluded those
arrangements using only one or two of the numbers, such as {6, 6, 6, 6} and {6, 6, 7, 6}, etc. Let the
number of arrangements be QNar. It can be shown that,

QNar = rNa −
r−1∑
i=1

(
r

i

)
QNai and QNa1 = 1 (13)

J. Sens. Actuator Netw. 2014, 3 197

The total number of arrangements where R′rA is disjoint with (R′rB ∪Rc) is then,

θu =
Na∑
r=1

(
p

r

)
QNar(p− r)Nη (14)

All Disjoints Sets

It is also possible that the sets R′rA, R′rB and Rc are all disjoint. The number of possible arrangements
θd can be similarly shown to be given by;

θd =
Nc∑
r=1

[(
p

r

)
QNcr

Na∑
k=1

(
p− r
k

)
QNak(p− r − k)Nb

]
(15)

where QNcr and QNak are obtained as in Equation (13). The set (R′rB ∪ Rc) also includes the cases
where R′rB and Rc are disjoint. Overall, the total number of arrangements of either R′rA being disjoint
with (R′rB ∪Rc), or R′rB being disjoint with (R′rA ∪Rc), or all three sets R′rA, R′rB and Rc disjoint is,

θt = 2θu − θd (16)

The probability of finding a traitor node is then,

Pt =
θt

p2Nη−N =
2θu − θd
p2Nη−N (17)

With suitable keying parameters, the probability of finding a traitor node can be made very small. For
example, with N = 7, η = 6 and p = 31, the probability is only 5.04× 10−15.

5.2.3. Expected Node Capture nc to Find a Traitor Node

We assume the attacker is able to capture any number of nodes, and as each new node is captured, it
is paired with each of the previous ones to find a traitor. Since the probability of finding a traitor node is
Pt, the expected number of attempts to find one is 1

Pt
.

Each node has η public keys to try, so each pair of nodes allows η2 attempts. If the number of nodes
captured is nc, the number of pairs that can be formed is

(
nc
2

)
, giving a total of η2

(
nc
2

)
pairing attempts.

To find a traitor node, we have,

η2 nc!

2!(nc − 2)!
>

1

Pt

i.e., nc >
1

2

(
1 +

√
1 +

8

η2Pt

)
(18)

The expected number of captured nodes nc required to find a traitor node is shown in Table 3 for some
keying parameters. It can be seen that for these cases, thousands of nodes need to be captured, just to
find one traitor node.

J. Sens. Actuator Netw. 2014, 3 198

Table 3. Capture sizes nc to find a traitor node.

η N
Prime Modulus, p

13 17 19 23 31

6

6 2.28×107 5.74×106 2.98×106 8.66×105 9.96×104

7 1.03×109 2.52×108 1.28×108 3.48×107 3.32×106

8 4.68×1010 1.13×1010 5.63×109 1.47×109 1.22×108

7

6 1.29×109 3.17×108 1.60×108 4.34×107 4.07×106

7 1.19×1011 2.85×1010 1.42×1010 3.66×109 2.95×108

8 1.09×1013 2.58×1012 1.27×1012 3.20×1011 2.33×1010

8

6 7.56×1010 1.82×1010 9.04×109 2.33×109 1.90×108

7 1.39×1013 3.30×1012 1.63×1012 4.07×1011 2.94×1010

8 2.55×1015 6.03×1014 2.96×1014 7.26×1013 4.86×1012

Legend: Key sizes 64 bits, 80 bits, 96 bits, 128 bits

Finding a traitor node does not break the scheme, but only slightly improves the chances of finding
the PPMka in subsequent pairings.

5.3. Limited Capture Pairing Attack

In this case, the attacker, having obtained m
n

(sufficient) nodes, would try to obtain the master keys by
solving the system of equations formed from the captured keys. By pairing the nodes using only one of
each other’s public keys, the set of reduced key sets of Nη numbers are obtained.

In the ideal case, the pairing would produce exactly N couplings in each node, one for each master
key and all related to the same public key. However, if the number of couplings is Nc > N , then there
are Nc possible ways to associate the related private keys to the public key and one of the master keys,
say M1. Using all of the η public keys one at a time, the number of possible associations, hence the
number of sets of equations, obtained from one node is [Nc]

η related to the public keys and the master
key M1. Using all of the m

η
captured nodes, the m×m equations required are obtained and solved for the

master M1. The number of sets of equations possible to solve for M1 is [Nc]
ηm
η = [Nc]

m.
After obtaining the first master key, the exposed private key is removed, leavingNc−1 keys to choose

from to solve for the next master key. In total, to solve for all of the master keys, the possible number of
sets of equations, i.e., the number of iterations required, is:

Φ =
N−1∑
i=0

[Nc − i]m

J. Sens. Actuator Netw. 2014, 3 199

Binomial Distribution Approximation

Figure 7 shows the distribution of the number of couplings in the pairing attacks for the case p = 31,
N = 6, η = 6. Other cases exhibit the same distribution, and they suggest that the distribution of the
number of couplings x can be approximated by the binomial distribution,

P (X = x) =

(
Nη

x

)
pxr (1− pr)(Nη−x) (19)

where the mean is µ = Nηpr

Figure 7. Distribution of the number of couplings for p = 31, N = 6, η = 6.

Table 4. Values of log(Φ). Probable number of master key solutions, Φ.

η N
m = 12 m = 16 m = 24

13 17 31 13 17 31 13 17 31

6
6 17.55 17.37 16.98 23.40 23.15 22.64 35.10 34.73 33.96
7 18.38 18.22 17.90 24.50 24.30 23.86 36.76 36.44 35.79
8 19.09 19.09 18.68 25.46 25.46 24.90 38.19 38.19 37.35

7
6 18.22 18.22 17.73 24.30 24.30 23.63 36.44 36.44 35.45
7 19.09 19.09 18.68 25.46 25.46 24.90 38.19 38.19 37.35
8 19.95 19.84 19.48 26.60 26.45 25.97 39.91 39.68 38.96

8
6 18.96 18.82 18.53 25.28 25.09 24.71 37.91 37.64 37.06
7 19.84 19.82 19.48 26.45 26.30 25.97 39.68 39.44 38.96
8 20.59 20.49 20.28 27.46 27.32 27.04 41.18 40.98 40.56

Legend: Key sizes 64 bits, 80 bits, 96 bits, 128 bits

J. Sens. Actuator Netw. 2014, 3 200

From Equation (17), we can compute the probability of N couplings, i.e., P (X = N). After solving
for pr, we obtain the mean µ = (Nη)pr. Then, using the expected number of couplings in a pairing as
Nc = µ, the number of iterations required is,

Φ =
N−1∑
i=0

[Nc − i]m =
N−1∑
i=0

[µ− i]m (20)

Table 4 gives the probable number of master keys solutions 10Φ for various keying parameters.

5.4. Experimental Results of Pairing Attacks

A computer programme was used to implement the pairing attacks to determine the traitor capture
sizes nc and the number of possible master key solutions Φ. The programme first generates the master
keys. It then randomly creates new nodes with unique IDs to simulate captured nodes. As each node is
created, it is paired with each of the previously “captured” nodes until a traitor node is found. At the
same time, the number of couplings is accumulated for the first m

η
nodes. This is the probable number

of couplings in the limited captured case. When a traitor node is found, a new implementation is made
using a new set of master keys and this is repeated for 1000 runs.

These are real attacks on real systems as the public and private keys can be implemented in real sensor
nodes. They are “simulated” attacks in the sense that capturing the nodes and extracting the keys are done
in the computer programme. This greatly accelerates the attacks. Real-life attacks would require much
more effort and time.

Due to the large traitor capture sizes, only cases that give results within a reasonable time is given in
Table 5. These results are the mean values for 1000 runs for each case, except for the case η,N = 5,
where the results were for 600 runs, due to the long execution times for each run.

Figure 8 show the typical distribution of the results of pairing attacks over 1000 runs for the simple
case m = 24, p = 31, η = 4, N = 5. The experimental results were quite closely comparable with our
analytical results (see Table 5), even though the capture sizes are slightly smaller. This may be due to
the random number generator used in the computer programme.

Figure 8. Result of pairing attacks on the scheme using m = 24, p = 31, η = 4, N = 5.

(a) Traitor capture sizes (b) Number of solution sets

J. Sens. Actuator Netw. 2014, 3 201

Table 5. Comparison: analytical and experimental results for 1000 runs using p = 31.

η N
Traitor Capture nc Number of Solutions, Φ

Equation (18) Expt. Equation (20) Expt.

4

4 5.59 5.23 7.97×1022 1.06×1024

5 23.23 21.48 5.43×1026 8.46×1026

6 128.05 113.53 7.92×1028 1.10×1029

5
4 24.45 21.37 7.95×1026 8.16×1026

5 237.99 ∗209.22 7.93×1028 ∗9.96×1029

6
3 10.76 9.62 1.00×1024 1.17×1025

4 155.91 135.88 1.68×1028 1.42×1029

7 3 37.57 33.04 7.95×1025 7.17×1026

* 600 runs only, due to long execution times.

6. Performance and Implementation

6.1. Performance

6.1.1. Implicit Authentication

The BYka scheme implicitly authenticates itself, since success in obtaining the common pairwise key
is only possible if both nodes obtained their private key sets from the TA or its subsidiary. There is no
need to authenticate the ID, since an illegitimate node providing a false ID cannot compute a common
pairwise key with a legitimate node.

6.1.2. Communication Overheads

The initial public key exchange requires the public ID to be transmitted. These are integers∈ [0, q−1].
Using q = 65521, the number of bits is 16 bits. This saves time and, more importantly, energy for
transmission.

6.1.3. Compact Code

The pairwise key computation code is very simple and requires only a few steps. The pseudo code is
given in Listing 1.

6.1.4. Memory Requirements

During execution, RAM is required for some counters, the pairwise key, some temporary data, the
Nη2 numbers in the pairwise key set and the counterpart’s public keys. While the mη elements of the
public keys need to be computed, it is possible to write the code such that only one element is used at
a time, requiring only one memory space in RAM. Overall, the largest amount of RAM required is for
the pairwise key, QR = Nη2×b bits, where b is the data size in bits. Since our typical prime modulus is
p 6 31, i.e., b 6 5 bits, we can simplify coding if we use one byte for the data size. The private key set

J. Sens. Actuator Netw. 2014, 3 202

requires the largest storage, Qo = ηNm×b bits, or Qo = ηNm bytes if one byte is used to store each b
bit integer. As it is static, it can be stored in ROM.

Input: Neighbour node’s public ID
Output: The pairwise key Kpair

Generate all the public key seeds
for each public key seed do

generate public key vector (mod q)
for each private key do

multiply with the public key vector (mod p)
save result in key set R

end
end
for each Ri do

Kpair = Kpair · (Ri + 1) (mod Sk)
end

Listing 1: BYka pairwise key computation pseudo code.

6.1.5. Computation Time

The main parts of the computation include generating the public key vectors involving (m − 2)η

modulo multiplications and computing the numbers in the pairwise key set involving mNη2 modulo
multiplications and (m− 1)Nη2 modulo additions. The modulo operations are on small integers, except
for the final pairwise key computation. The experimental results to obtain the computation times for the
BYka scheme in the MICAzmote [17], which has an eight-bit ATmega128 processor running at 8 MHz
with 4 KB RAM, 4 KB EEPROMand 128 KB flash memory, implemented using TinyOS [18], gave the
following linearised result,

Tcomp = 0.0428[mNη2 + (m− 2)η] + 23.72 ms

6.1.6. Scalability

The scalability of the BYka scheme is limited by the key space sizes of the pairwise keys, private
keys and the public keys. Except for the public keys, these key spaces are very large. The public key is
limited by the number of the number of sets of public key seeds, ≈ q

η
. Using q = 65521, there are about

10,000 possible nodes, while using a 32-bit prime for q, it is possible to have about 600 × 106 nodes.

6.2. Implementation

The parameters need to be selected for system performance and the desired level of resilience. In
general, larger values of m,N and η increase the resilience, but also increase the memory requirements
and the computation times. Smaller values of p reduce the chance of discovering the PPMka information,
but also reduce the pairwise key space. A good choice is p = 31, and being a Mersenne prime, the

J. Sens. Actuator Netw. 2014, 3 203

modulo operation can be done very efficiently. Table 6 can be used as a guide to select the keying
parameters for the case using master key matrix size m = 16.

Table 6. Security and performance features usingm = 16. Sk is the pairwise key size, traitor
node capture size nc, number of possible master key solutions Φ. ∗Computation times are
for the MICAz mote with an eight-bit CPU at 8 MHz with 4 KB ROM 4 KB RAM 128 KB
flash.

p = 13 p = 17 p = 31

η N
Sk > 64 bits Sk > 80 bits Sk > 128 bits Qo T ∗comp

log(nc) log(Φ) log(nc) log(Φ) log(nc) log(Φ) (bytes) (ms)

6

6 7.36 23.40 6.76 23.16 5.00 22.64 576 175

7 9.01 24.50 8.40 24.30 6.52 23.86 672 200

8 10.67 25.46 10.05 25.46 8.09 24.90 768 225

7

6 9.11 24.30 8.50 24.30 6.61 23.63 672 229

7 11.08 25.46 10.46 25.46 8.47 24.90 784 263

8 13.04 26.60 12.41 26.45 10.37 25.97 896 296

8

6 10.88 25.28 10.26 25.09 8.28 24.71 768 292

7 13.14 26.45 12.52 26.30 10.47 25.97 896 335

8 15.41 27.46 14.78 27.32 12.69 27.04 1024 379

Legend: Key sizes 64 bits, 80 bits, 96 bits, 128 bits

7. Discussions

7.1. Exclusive Communications

Our scheme only enable pairs of nodes belonging to the same TA to establish pairwise keys with each
other. There is no possibility for pairwise key establishment with non-member nodes, which can be a
desirable feature for sensor networks.

7.2. Key Escrow

The trusted authority is the key escrow entity and must be well protected. The TA is able to obtain all
of the keys and decipher all previously recorded messages. This may be a desirable feature within some
organisations. In the BYka scheme, the master keys generation and storage can be dispersed among a
committee of TA’s. In this way, protection against some rouge TA’s is possible, since they must all work
together to generate the full set of keys.

7.3. Compromised Key

If the private keys of a node are obtained, the adversary is able to obtain all previous keys and decrypt
all previously recorded messages. There is no perfect forward secrecy. In addition, the BYka scheme
is vulnerable to the compromised-key impersonation attack where, if a node C is compromised, an

J. Sens. Actuator Netw. 2014, 3 204

adversary E cannot only impersonate node C, it can also use the stolen keys to impersonate any other
nodes to communicate with C. For example, node E has obtained node C’s keys. It impersonates node
B and sends IDB to node C, which uses it to compute the pairwise key KCB. Unknown to C, node E
also uses IDB with C’s private keys to compute the same pairwise key KCB.

8. Conclusion

We proposed a new authenticated key agreement scheme where pairs of nodes, having obtained each
other’s public key IDs, can compute large common pairwise keys using their private keys obtained from
the same trusted authority. The initial public key exchange is only a few bits, the size of the public
key ID, a 16 bit integer, saving on time and energy. The computations use simple modulo arithmetic
operations on small integers, making it fast, efficient and requiring few resources. These features make it
very attractive for use as the cryptographic primitive for secure communications in low-resource devices,
such as wireless sensor nodes, especially in ad hoc and mobile network applications.

We analysed the security of the scheme against a powerful attacker who is able to capture any number
of nodes and extract all of the keying material. Our analysis showed that the captured keys cannot be
used directly to break the scheme. The attacker must first discover for each private key the public key
and master key used to compute it, i.e., the private-public-master-key associations (PPMka).

We showed how an attacker may use captured nodes to discover the PPMka information. We
obtained analytical results to calculate the probabilities of successfully breaking the scheme using these
compromised nodes. These results were verified using computer simulated attacks. We showed that
using suitable keying parameters, the attacker would need to capture tens of thousands of nodes or,
alternatively, try an unfeasibly large number of solutions. The probability of breaking the scheme would
be so small, that it is virtually unconditionally secure.

Finally, we presented some implementation parameters to achieve the desired performance in terms
of computation time, key size and memory requirements for the MICAz mote.

Author Contributions

This paper is part of Mee Loong’s PhD research and both Adnan and William contributed to the
supervision.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Yang, M.L.; Al-Anbuky, A.; Liu, W. A Fast and Efficient Key Agreement Scheme for
Wireless Sensor Networks. In Proceedings of International Conference on Wireless and Mobile
Communications, Venice, Italy, 24–29 June 2012; pp. 231–237.

J. Sens. Actuator Netw. 2014, 3 205

2. Yang, M.L.; Al-Anbuky, A.; Liu, W. The Multiple-Key Blom’s Scheme for Key Establishment
in Mobile Ad Hoc Sensor Networks. In Proceedings of the 19th Asia-Pacific Conference on
Communications, Bali, Indonesia, 29–31 August 2013; pp. 422–427.

3. Yang, M.L.; Al-Anbuky, A.; Liu, W. Security of the Multiple-Key Blom’s Key Agreement Scheme
for Sensor Networks. In ICT Systems Security and Privacy Protection; Cuppens-Boulahia, N.;
Jajodia, S.; Cuppens, F., Eds.; Springer: Berlin/Heideberg, Germany, 2014; pp. 66–79.

4. Blom, R. Non-Public Key Distribution. Advances in Cryptology; Springer: Berlin/Heideberg,
Germany, 1983; pp. 231–236.

5. Blom, R. An Optimal Class of Symmetric Key Generation Systems; Technical Report; Linkopping
University, Linkopping, Sweden, 1984.

6. Menezes, A.J.; Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC: Boca
Raton, FL, USA, 2001.

7. Blundo, C.; De Santis, A.; Herzberg, A.; Kutten, S.; Vaccaro, U.; Yung, M. Perfectly-Secure Key
Distribution for Dynamic Conferences; Technical Report; Universita di Salerno, Baronissi, Italy,
1995.

8. Liu, D.; Ning, P. Establishing Pairwise Keys in Distributed Sensor Networks. In Proceedings of the
10th ACM Conference on Computer and Communications Security, Washington, DC, USA, 27–30
October 2003.

9. Eschenauer, L.; Gligor, V.D. A key-management scheme for distributed sensor networks. In
Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington,
DC, USA, 18–22 November 2002; pp. 41–47.

10. Du, W.; Han, S.Y.; Deng, J.; Varshney, P.K. A Pairwise Key Pre-distribution Scheme for Wireless
Sensor Networks. In Proceedings of the Conference on Computer and Communications Security,
Washington, DC, USA, 27–30 October 2003.

11. Lee, J.; Stinson, D.R. Deterministic Key Predistribution Schemes for Distributed Sensor Networks.
In Selected Areas in Cryptography; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; Volume
3357, pp. 294–307.

12. Chen, N.; Yao, J.B.; Wen, G.J. An Improved Matrix Key Pre-distribution Scheme for Wireless
Sensor Networks. In Proceedings of International Conference on Embedded Software Systems,
Chengdu, China, 29–31 July 2008; pp. 40–45.

13. Zhang, W.; Zhu, S.; Cao, G. A Random Perturbation-Based Scheme for Pairwise Key
Establishment in Sensor Networks. In Proceedings of MobiHoc’07, Montrï£¡ï£¡al, QC, Canada,
9–14 September 2007.

14. Chien, H.Y.; Chen, R.C.; Shen, A. Efficient Key Pre-distribution for Sensor Nodes with Strong
Connectivity and Low Storage Space. In Poceedings of the 22nd International Conference on
Advanced Information Networking and Applications (AINA’08), Okinawa, Japan, 25–28 March
2008; pp. 327–333.

15. Yu, C.M.; Lu, C.S.; Kuo, S.Y. Noninteractive Pairwise Key Establishment for Sensor Networks.
IEEE Trans. Inf. Forensics Secur. 2010, 5, 556–569.

16. Zhou, J.; He, M. An Improved Distributed Key Mangement Scheme in Wireless Sensor Networks.
In Information Security Applications; Springer: Berlin/Heideberg, Germany, 2009; pp. 305–319.

J. Sens. Actuator Netw. 2014, 3 206

17. Memsic Corp. MICAz Datasheet. Available online: http://www.docstoc.com/docs/20049970/
MICAz-Datasheet (accessed on 17 June 2014).

18. Levis, P.; Gay, D. TinyOS Programming; Cambridge University Press: Cambridge, UK, 2006.
Available online: http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf (accessed on 17 June
2014)

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

http://www.docstoc.com/docs/20049970/MICAz-Datasheet
http://www.docstoc.com/docs/20049970/MICAz-Datasheet
http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf

	Introduction
	This Contribution
	Structure of Paper
	Notations and Terms Used

	Related Works
	The BYka Scheme
	Blom's Scheme
	The BYka Scheme
	Setup
	Public Key Set and IDs
	Private Key Set, S

	PPMka
	Key Aliasing

	Pairwise Key Computation
	Pairwise Key

	Security of the BYka Scheme
	Security Model
	System
	Adversary
	System Breakdown
	Vulnerabilities

	Strength of Keys against Brute Force Attacks
	Pairwise Key
	Security of the Underlying Blom's Scheme
	Sybil Attacks

	Mitigation
	Attacking the Master Key

	Capture Threshold
	Immunity to MITM Attacks and Mutual Authentication
	Implications for the BYka Scheme

	Resilience against Sybil Attacks
	Brute Force Attack on the Master Keys

	Attacks to Discover the PPMka
	Pairing Attack
	Couplers and Couplings
	Pairing Attack Strategies

	Unlimited Capture
	Traitor Node
	Probability of Finding a Traitor Node

	Two Disjoint Sets
	All Disjoints Sets
	Expected Node Capture nc to Find a Traitor Node

	Limited Capture Pairing Attack
	Binomial Distribution Approximation
	Experimental Results of Pairing Attacks

	Performance and Implementation
	Performance
	Implicit Authentication
	Communication Overheads
	Compact Code
	Memory Requirements
	Computation Time
	Scalability

	Implementation

	Discussions
	Exclusive Communications
	Key Escrow
	Compromised Key

	Conclusion
	Author Contributions
	Conflict of Interest

