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Abstract: Aerodynamic bearings have received considerable attention in recent decades and are
increasingly being used in applications where high speed, low loads and high precision are required.
Aerodynamic applications mainly concern auxiliary power units (APU) and air-conditioning machines
(ACM). From the industrial point of view, the static and dynamic characteristics of these bearings
rotating at very high speed must be determined. According to the literature, studies carried out on
this type of bearing consider the elastic deformations of the foils due to the pressure generated in the
air film. The linear approach is from time to time adopted for the prediction of the dynamic behavior
of these bearings, which is not always justified. This paper aims to present a step towards a better
mastery of the non-linear dynamic behavior of a flexible rotor-air bearing system. We will focus on
finite element modeling (FEM) of the non-linear isothermal elasto-aerodynamic lubrication problem
in the case of a radial bearing operating in a dynamic regime. We will present the effects of rotational
speed, unbalance eccentricity, and rotor mass on the non-linear response of rigid and compliant
bearings. We use a partitioned approach which treats fluid and structure as two computation domains
solved separately; reducing the development time needed for a monolithic code which is difficult to
manage when the geometries or the physical properties of the problem to be treated become complex.

Keywords: foil bearing; non-linear analysis; Jeffcott rotor

1. Introduction

The development of foil bearings began in the early 1970s to provide rotational guidance of
gas turbine shafts. One of the objectives was to validate their thermomechanical behavior at high
temperatures [1,2]. Currently, the fields of application are more extensive but still concern the guidance
of shafts rotating at very high speed, withstanding moderate loads and subjected to sometimes severe
thermal stresses [3–8]. Some of them [3,5,9] consider the coupling between the bearing and the rotor
with deformation of the sheets and friction between the sheets and the support using complex and
numerically time-consuming approaches. Our aims in this paper are to present a first approach for this
complex problem with a straightforward treatment of the non-linear dynamic behavior of a flexible
rotor-air bearing system. For this purpose, we use finite element modeling (FEM) of the non-linear
isothermal elasto-aerodynamic lubrication problem in a dynamic regime.

There are two families of foil bearing: Garett-type bearings and MITI-type bearings (Mohawk
Innovative Technology Incorporated).
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1.1. Garett’s Technology

The bearing consists of a sheath on which are hinged 8 to 12 sheets wound on each other.
The assembly constitutes a deformable strap. Anchoring of these sheets is provided by means of a bar
welded to the end of each sheet and housed in a notch on the sleeve, Figure 1.
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Figure 1. Garett foil bearing [10].

The calculation of the clamping forces exerted by the sheets makes possible the starting torque
evaluation. This step is used to initialize the iterative calculation process leading to the static
characteristics determination. The proposed models are not simple because they must consider the
friction forces between sheet–sheet, sheet–shaft and sheet–housing which are far from negligible.
Although this technology is applied industrially in aerospace turbomachinery, it is now more often
ruled out in favor of MITI technology that is more efficient and “simpler” to analyze.

1.2. Mohawk Innovative Technology Incorporated (MITI) Technology

The deformable structure of the bearing consists of a stack of smooth and corrugated sheets
(stiffeners), Figure 2a [11,12]. The theoretical study of this type of foil bearing is much more complex
than that of the spring bearings (Figure 2b). It must consider a solid mechanics analysis necessary to
determine the deformation of the bearing when operating. However, structural models for solving the
structural problem are generally simpler than those used for Garett technology. Indeed, the comparisons
of the results obtained from the models with experimental work, on the load capacity, show that we can
get rid of, as a first approximation, the friction sheets–stiffeners and stiffeners–sheath in the resolution
of the elasto-aerodynamic problem [1].

Bearings using MITI-type technology have had several variations. Indeed, the number of lobes,
upper leaves and stiffener sheets can be adapted according to the desired performance [2,11,12].
The first stage developed according to this technology (1st generation) consisted of a rigid sleeve
on which are welded a corrugated sheet (stiffeners) and an upper sheet extending over the entire
circumference of the bearing. This assembly of sheets provides both the profile of the bearing and
its deformability, Figure 3. The proper implementation of the fixation of the deformable structure
of the bearing (strip) imposes variation of its structural stiffness with the angular position of the
considered point. Subsequently, lobed bearings appeared, generally in three sectors. As for single-lobed
bearings, the deformable structure has a stiffness that varies along the circumference. This type of
bearing has good dynamic characteristics. Experimental studies, and in particular the analysis of rotor
displacements at the level of the bearings, highlight a privileged direction of rotation [1]. The best
stability is obtained by choosing a direction of rotation of the free part towards the fixed part of the
deformable structure.
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Figure 2. (a) Mohawk Innovative Technology Incorporated (MITI) foil bearing, (b) schematic of a
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Figure 3. Schematic of a MITI foil bearing.

The level of stability of these lobed bearings is generally high even for moderate loads. Among the
technologies used successfully, one of them stands out with particularly interesting results and simple
modeling: the technology of MITI-type stacking bearings [13]. Numerous numerical and experimental
studies are interested in the static and dynamic characteristics of this type of bearings [4–8,14].
These papers focused on two areas:

• In-depth research on the tribological phenomena related to stopping and starting [15]; dry friction
that occurs during these phases is the main cause of deterioration of the bearings. The state of the
surfaces and the materials in contact have a decisive influence in the phenomena involved;

• The development of a theoretical model allowing a precise simulation of the elasto-aerodynamic
or even thermo-elasto aerodynamic performance of the bearing [2,16–19]
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We will focus here mainly on the second line of research based on the following assumptions:

- Isothermal operating regime;
- The fluid, which is air, is thermodynamically assimilated to a perfect gas;
- Coulomb friction between the different solid parts is neglected.

2. The Basic Equations

2.1. Reynolds Equation

The general equations of aerodynamic lubrication allow us, in view of the geometrical and
kinematic conditions, to determine the characteristics of the flow of thin film air and particularly its
aerodynamic lift [20]. Under thin-film assumptions, one can obtain a generalized Reynolds equation
governing the flow inside the contact. In a bearing where the shaft is rotated in a fixed bore (Figure 4),
the radial clearance C is very small compared to the radius R of the bearing (or the shaft). We can
neglect the curvature of the film and develop the bearing in its circumferential direction. Under these
conditions, the surface of the housing is merged with the plane (O, x, z) of the reference frame. If the
axes of the shaft and the bearing are parallel, the surface of the shaft is presented such that y = h(x, z, t).
In this case, the Reynolds equation takes the following form:

∂
∂x

(
ρh3

µ

∂p
∂x

)
+
∂
∂z

(
ρh3

µ

∂p
∂z

)
= 6U2

∂(ρh)
∂x

+ 12
∂(ρh)
∂t

in (D) (1)

By replacing x by Rθ, we obtain the following form written in cylindrical coordinates:

1
R2

∂
∂θ

(
ρh3

µ

∂p
∂θ

)
+
∂
∂z

(
ρh3

µ

∂p
∂z

)
= 6ω

∂(ρh)
∂θ

+ 12
∂(ρh)
∂t

(2)

ω is the angular velocity of the shaft and θ the circumferential coordinate of the bearing.
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The air is considered as a perfect gas with the following equation of state:

p = ρ<T (3)

where< is the perfect gas constant.
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Given the equation of state (3) and assuming that< and T are constant, the compressible Reynolds
equation is written for an iso-viscous fluid as follows:

1
R2

∂
∂θ

(
ph3 ∂p

∂θ

)
+
∂
∂z

(
ph3 ∂p

∂z

)
= 6µω

∂(ph)
∂θ

+ 12µ
∂(ph)
∂t

(4)

The boundary conditions required are:{
p(θ = 0, z) = pa

p(θ = 2π, z) = pa

{
p(θ, z = −L/2) = pa

p(θ, z = +L/2) = pa
(5)

where pa is the atmospheric pressure.
In the form (4), the Reynolds equation is strongly non-linear, and its resolution cannot be

performed analytically.
In dimensionless form, Equations (4) and (5) become:

∂
∂θ

(
p̃̃h3 ∂p̃

∂θ

)
+ λ

∂

∂̃z

(
p̃ȟ3 ∂p̃

∂̃z

)
= Λ

∂
∂θ

(
p̃̃h

)
+ 2Λ

∂

∂̃t

(
p̃̃h

)
(6)

and {
p̃ (θ = 0, z̃) = 1
p̃(θ = 2π, z̃) = 1

p̃(θ, z̃ = ±1/2) = 1 (7)

With p̃ = p/pa, h̃ = h/C, z̃ = z/L, t̃ = ωt et λ = (R/L)2

Λ =
6µω(R/C)2

Pa
Representing the compressibility number.

2.2. Equation of the Film Geometry in the Case of a Foil Bearing

Figure 5 shows schematically a compliant aerodynamic bearing. The representation of the rigid
bearing is defined by the circle of radius (R + C). The origin of the X, Y and Z frame is located at the
center of the rigid (non-deformable) bearing Ob.
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The circumferential coordinate θ is measured from the ObX axis. The shaft is considered rigid
and is subjected to a constant angular rotation speed ω along the Z axis. The instantaneous position of
the geometric center of the bearing e(t) = Cε(t) is defined by the running eccentricity and the static
attitude angle ϕ(t) with respect to the Cartesian coordinates X(t), Y(t).

The radial clearance of the bearing when the shaft and the bearing are coaxial in the case of a rigid
bearing is defined by C, and the thickness of the film in the case of radial deformation U(θ, z, t) of the
top sheet is represented by h with:

h(t) = C(1 + ε(t) cos(θ−ϕ(t)) + U(θ, z, t) (8)

or
h(θ, z, t) = C + X(t) cosθ+ Y(t) sinθ+ U(θ, z, t) (9)

2.3. Expression of the Radial Deformation U

As a first approximation, the compliance of corrugated sheets can be calculated using the
simplified model from Heshmat [11,12], Figure 6. A more complete FE-type approach gives more
realistic results when non-linearities are important. These non-linearities come essentially from the
specific characteristics of the sheets [1] but as a first approximation to obtain information on the bearing
behavior an approach of this kind is enough [21]. Heshmat’s approach is used because of its simplicity.
A more complete and complex approach exists (beam and shell by FE, see [1,21]). We want here to
focus on the comparison between rigid and deformable structure in dynamic regime without spending
too much time for computer calculations. We have:

h = C + e cos(θ−φ) + K(p− pa) (10)

with:

K =
2s
E

(
1
tb

)3(
1− v2

)
(11)

where E and v are respectively the Young’s modulus and the Poisson’s ratio of the material constituting
the sheets and with:

e: is the eccentricity such as e = |
→

ObO j|.
C: bearing radial clearance, C = R−Rs.
θ: the circumferential coordinate measured from the axis OX.

In dimensionless form, Equation (10) becomes,

h = C + e cos(θ−φ) + K(p− pa) (12)

h̃ =
h
C

= 1 + ε cos(θ−φ) + α(p̃− 1 ) (13)

where ε = e/C the relative eccentricity, and α being the dimensionless compliance number defined by
the following relation:

α =
2Pa . s

EC

(
`
tb

)3(
1− v2

)
(14)
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3. Resolution of Compressible Reynolds Equation under Transient Conditions

For an instantaneous position of the bearing shaft center defined by the Cartesian coordinates X(t)
and Y(t), the transient compressible Reynolds equation is written taking into account the transient
term appearing in the right-hand side of the equation:

∂
∂θ

(
p̃̃h3 ∂p̃

∂θ

)
+ λ

∂

∂̃z

(
p̃̃h3 ∂p̃

∂̃z

)
= Λ

∂
∂θ

(
p̃̃h

)
+ 2Λ

∂

∂̃t

(
p̃̃h

)
(15)

This equation has to be solved in D̃ = (0, 2π) × (−1/2, 1/2).
with

h̃
(
θ̃,̃z, t̃

)
= 1 + X̃(t)cosθ+ Ỹ(t)sinθ+ α

(
p̃
(
θ̃,̃z, t̃

)
− 1

)
(16)

and
(
X̃, Ỹ

)
= (X, Y)/C.

Using the Galerkin variational approach the integral form associated with Equation (21) is [22,23]:

W̃(p̃) =
x

D̃

δp̃
[
∂
∂θ

(
p̃̃h3 ∂p̃

∂θ

)
+ λ

∂

∂̃z

(
p̃̃h3 ∂p̃

∂̃z

)
−Λ

∂
∂θ

(
p̃̃h

)
− 2Λ

∂

∂̃t

(
p̃̃h

)]
dD̃ = 0 (17)

Either after integration by parts taking into account the boundary conditions (p̃
(
θ, z̃, t̃

)
= 1 at the

frontier of the domain D̃):

W̃(p̃) =
x

D̃

[
p̃̃h3

(
∂δp̃
∂θ

∂p̃
∂θ

+ λ
∂δp̃
∂̃z

∂p̃
∂̃z

)
−Λp̃ȟ

∂δp̃
∂θ

+ 2Λδp̃
∂

∂̃t

(
p̃̃h

)]
dD̃ = 0 (18)

or: ∫ 1/2

−1/2

∫ 2π

0

p̃̃h3
(
∂δp̃
∂θ

∂p̃
∂θ

+ λ
∂δp̃
∂̃z

∂p̃
∂̃z

)
−Λp̃̃h

∂δp̃
∂θ

+ 2Λδp̃ p̃
∂̃h

∂̃t
+ 2Λδp̃̃h

∂p̃

∂̃t

dD̃ = 0 (19)
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with:
∂̃h

∂̃t
= h̃′ = X̃′cosθ+ Ỹ′sinθ+ αp̃′

p̃′ =
∂p̃

∂̃t
, X̃′ =

dX̃

d̃t
et Ỹ′ =

dỸ

d̃t

(20)

Given Equation (20), Equation (19) becomes:∫ 1/2

−1/2

∫ 2π

0
p̃̃h3

(
∂δp̃
∂θ

∂p̃
∂θ

+ λ
∂δp̃
∂̃z

dp̃
∂̃z

)
dθ d̃z +

∫ 1/2

−1/2

∫ 2π

0
2Λδp̃

(̃
h + αp̃

)
p̃′dθd̃z

=

∫ 1/2

−1/2

∫ 2π

0
Λ p̃̃h

∂δp̃
∂θ

dθd̃z−

1/2∫
−1/2

2π∫
0

2Λδp̃p̃
(
X̃′cos + Ỹ′sinθ

)
dθd̃z

(21)

which leads after discretization [18,24] to the following first order differential system:[
{

(
Pn, t̃

)]{
P′n

(̃
t
)}
+

[
K

(
Pn, t̃

)]{
Pn

(̃
t
)}
=

{
F
(
Pn, t̃)

)}
(22)

The transient Reynolds equation is then solved by using the implicit Euler method. The implicit
Euler method is well known and is unconditionally stable. We wanted to be sure of not having a
diverging process from the deformations of the structure.

4. Equations of Rotor Motion

The rotor of a rotating machine is a very important element with a role to transmit or transform
power [24]. In many applications, it is supported by bearings that should not be considered as passive
elements but as elements that play a significant role in the dynamic behavior of the shaft line on its
critical speeds and stability.

Balance of External Forces

The external forces acting on the rotor are:

• weight of the rotor;
• external dynamic forces;
• aerodynamic forces generated in the air film.

The shaft line can be represented by a flexible rotor (Jeffcott rotor system) of mass 2m, stiffness
2Kr and damping 2Cr supported symmetrically by 2 identical foil bearings Figure 7. Each bearing is

assigned a mass M of the rotor, a stiffness Kr and a damping Cr of the rotor, a static load
→

W0 = W0
→

X, a

dynamic load
→

W(t) and a synchronous excitation due to an unbalance characterized by its eccentricity
eb with Mebω

2 magnitude. When balancing is perfect, the center of inertia G of the shaft is the same as
its geometric center.
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For a non-linear analysis we must apply the fundamental principle of dynamics to the rotor-bearing
system which gives: M

..
X + Cr

.
X + KrX = W0 + WX(t) + Mebω

2 cosωt + FX
(
X, Y,

.
X,

.
Y
)

M
..
Y + Cr

.
Y + KrY = WY(t) + Mebω

2 sinωt + FY
(
X, Y,

.
X,

.
Y
) (23)

where X(t) et Y(t) represent the instantaneous coordinates of the shaft center, i.e.,

→

OOs =

{
X(t)
Y(t)

}
=

{
Cε(t) cosφ(t)
Cε(t) sinφ(t)

}

and
{

Fx(t)
Fy(t)

}
=

∫ 1/2
−1/2 p(θ, z, t)

{
cosθ
sinθ

}
R dθ dz are the components of the aerodynamic action

calculated from the pressure field obtained by integrating the compressible Reynolds Equation (15).
For numerical processing, it is better to write Equations (23) in the following dimensionless form:[

M 0
0 M

]{
U′′

}
+

 C̃r 0
0 C̃r

{U′}+  K̃r 0
0 K̃r

{U} =
 W̃0 + W̃X

(̃
t
)
+ Mεb cos

(̃
t
)
+ F̃X

(
X̃, Ỹ, X̃′, Ỹ′

)
W̃Y

(̃
t
)
+ Mεb sin

(̃
t
)
+ F̃Y

(
X̃, Ỹ, X̃′, Ỹ′

)  (24)

with:
M = mCω2

paRL , C̃r =
CrCω
paRL , K̃r =

KrC
paRL , εb =

eb
C , t̃ = ωt

(
W̃0, W̃X, W̃Y, F̃X, F̃Y

)
=

(W0,WX ,WY,FX ,FY)
paRL

with:

(·)′ = d
d̃t
(·) =

d(·)
d̃t

dt
d̃t

= 1
ω

d
dt (·) {U} =

 X̃
Ỹ

, {U′} =
 X̃′

Ỹ′

 et {U′′} =
 X̃′′

Ỹ′′


With a small displacements hypothesis in the neighborhood of the equilibrium position, we

cannot predict correctly the behavior of a rotor beyond the stability threshold or under high dynamic
loads [26]. It is then necessary to couple the non-linear motion equations of the rotor (24) to the
transient Reynolds Equation (15). The coupling between the rotor motion equations and the Reynolds
equation is undertaken through the components of the aerodynamic forces FX and FY. The Newmark
method is well known for its robustness. We prefer to develop our own models rather than using black
boxes whose involvement is difficult to assess when the numerical process is not working. To solve
Equation (24), we use the Newmark numerical scheme [18]:

X̃′
(̃
t + ∆̃t

)
= X̃′

(̃
t
)
+ ∆̃t

[
(1− a)X̃′′

(̃
t
)
+ a.X̃′′

(̃
t + ∆̃t

)]
Numerical approaches to solve this fluid–structure interaction problem can be classified into

two methods, monolithic and partitioned. The monolithic approach treats the dynamics of fluids
and structures in the same mathematical model to form a single equation for the whole problem [27].
The equations of the fluid and the structure are solved simultaneously with a single calculation code.
The conditions at the interface between the fluid and the solid are implicitly solved, which guarantees
unconditional stability. In general, monolithic schemes are precise and stable, but very expensive in
terms of calculation. In addition, a monolithic approach is neither easy to implement, nor to implement
and evolve. When the geometries or the physical properties of the problem to be treated become
complex, this type of method is no longer possible since each medium requires numerical computation
procedures specific approach that the monolithic approach does not exploit. The partitioned approach
treats fluid and structure as two computation domains that can be solved separately, with their own
discretization and numerical algorithm. The conditions at the interface are explicitly solved to share
information between fluid and structural solutions. A strong reason for using this approach is the
possibility to integrate the algorithms already available for the resolution of the fluid and the structure
and thus to reduce the development times of a monolithic code. The use of numerical algorithms that
have been validated and used to solve many problems makes it possible to benefit from the robustness
of the two parts. Here, we used a partioned approach.
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5. Parametric Studies

Data

The geometrical and elastic characteristics as well as the operating conditions of the air bearing
are shown in Tables 1 and 2. The different calculations were performed using the finite element mesh
data Table 3.

Table 1. Geometrical and material characteristics.

Parameter Symbol Value Unit (SI)

Radius R 50 × 10−3 m

Lenght L 110 × 10−3 m

Radial clearance C 30 × 10−6 m

Bump foil thickness tb 0.1016 × 10−3 m

Bump pitch s 4.572 × 10−3 m

Bump length l 3.556 × 10−3 m

Young modulus E ∞ (rigid)
207 GPa

Poisson ratio ν 0:30

Table 2. Running conditions.

Parameter Symbol Value Unit (SI)

Rotor mass assigned to bearing m 10.5 Kg

Rotational speed N 12,300 rpm

Atmospheric pressure Pa 1.013 × 105 Pa

Unbalance eccentricity eb 0 M

Rotor stiffness assigned to bearing Kr
2.03 × 105

2.03 × 106 N/m

Rotor damping assigned to bearing Cr 10103 N·s/m

Table 3. Mesh information.

Parameter Value

Element of approximation Quadrilateral bilinear C◦ 4 nodes

Number of elements in circumferential and
axial directions (half bearing) Nθ = 30 , Nz = 10

6. Results and Discussion

All the units when not specified are in microns. Figure 8a–c show the trajectories of the center
of the rotor calculated for two values of rotational speed N = 12,300 rpm and N = 30,000 rpm in the
case of a rigid air bearing and a bearing with compliant foils. The rotor is supposed to be perfectly
balanced (eb = 0) and we start the calculation from the same initial position. In the rigid case, the center
of the rotor moves rapidly to its operating position (equilibrium position) after a certain number of
revolutions of the rotor. On the other hand, when the elasticity of the foils is taken into account,
the center of the rotor describes an orbit. The pressure generated in the film in the rigid case is higher
and contributes to a faster movement towards the equilibrium position. Note that the result obtained
in the rigid case is in good agreement with that published in the literature [4].
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Figure 8. (a–c): Shaft center trajectories for a compliant and rigid foil bearing 𝑁 =12,300 rpm and 𝑒 = 0. 
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Figure 8. (a–c): Shaft center trajectories for a compliant and rigid foil bearing N = 12, 300 rpm and eb= 0.

In Figure 9 when the speed increases (N ≥ 30, 000 rpm), the bearing becomes unstable and the
center of the shaft then reaches extremely high eccentricities that can exceed the value of the initial
radial clearance especially in the case of the compliant bearing. It is concluded that the theory of
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aerodynamic lubrication that neglects the elastic deformations does not correctly predict the dynamic
behavior of the bearing in terms of response and stability. On the other hand, we note that the orbit
computed for a compliant bearing does not have a quite elliptical form like that predicted by the
linear theory.
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Figure 9. Shaft center trajectories N = 30, 000 rpm and eb = 0.0.

We were also interested in studying the influence of the unbalance eccentricity on the dynamic
response of the air bearing. For this, we performed three simulations in the case of an unbalanced
rotor by using unbalance eccentricities eb = 1 µm, eb = 6 µm and eb = 8 µm Figure 10. It is clearly
observed that the size of the orbit described by the center of the shaft increases with the eccentricity of
unbalance both in the rigid case and in the compliant case. It should be emphasized that the results
obtained in the rigid case and compliant are totally different.
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Figures 11 and 12 show the trajectories and the evolutions of the center of the shaft displacement
in the X direction as a function of time for different values of mass rotor, for a rotational speed
N = 12, 300 rpm and an unbalance eccentricity eb = 1 µm. Calculations were made for a rigid bearing
and a compliant bearing. The results obtained in the rigid case show that the size of the orbit decreases
with the mass of the rotor while keeping the same shape. On the other hand, taking into account
the elasticity of the foils significantly influences the shape of the orbits. One can observe significant
attenuation of the amplitude of the trajectory during the increase of the mass ([1]). Concerning the
consequences on the temporal and frequency behavior, there is a disappearance of the whirl during
the increase of the mass of the rotor. The sub synchronous frequencies are of less amplitude and
less numerous. Increasing the mass moves the operating point towards the stable region, a known
phenomenon in linear analysis. At 5 kg, we observe the appearance of the whirl which disappears
at 7 kg and 10.5 kg. Indeed, by increasing the weight, the air film becoming stiffer no longer excites
the rotor at this speed. However, at 5 kg a whirl phenomenon corresponds to the excitation of the
cylindrical mode by the structure.
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Figure 12. Cartesian representation of shaft center trajectories N = 12, 300 rpm, and eb = 1 µm and
3 values of rotor mass.

Effects of Rotor Flexibility

Figure 13 shows the centerline trajectories of the shaft calculated in the case of a rigid rotor of
mass 2M and a flexible rotor characterized by a mass 2M, a stiffness 2Kr and a damping 2Cr supported
by two rigid aerodynamic bearings. Taking into consideration the flexibility of the rotor gives an orbit
of smaller size than that calculated for a rigid rotor.

This parametric study highlights the significant effects of the elasticity of the foils and the flexibility
of balanced and unbalanced rotors on the non-linear dynamic response of an aerodynamic bearing.
Through these simulations, we can make the following remarks:

• The compliance of the sheets plays a negative role in the stability of the rotor-bearing system,
especially for the high rotational speeds of the rotor.

• The size of the orbit increases with the unbalance eccentricity.
• Increasing the rotor mass reduces the size of the orbit.
• The flexibility of the rotor attenuates the vibration amplitudes.
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7. Conclusions 

In this paper, a transient non-linear analysis was developed and presented with details to 
investigate the non-linear dynamic response of an unbalanced Jeffcott flexible rotor mounted in 
flexible foil bearing lubricated with compressible fluid. The objective was to present some results of 
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7. Conclusions

In this paper, a transient non-linear analysis was developed and presented with details to
investigate the non-linear dynamic response of an unbalanced Jeffcott flexible rotor mounted in flexible
foil bearing lubricated with compressible fluid. The objective was to present some results of non-linear
response using a finite element method. We use a partitioned approach which treats fluid and structure
as two computation domains solved separately, with their own discretization and numerical algorithm.
A reason for using this approach is to reduce the development times of a monolithic code. In addition,
a monolithic approach is neither easy to implement, nor to implement and evolve and difficult to
manage when the geometries or the physical properties of the problem to be treated become complex.
This type of method is no longer possible since each medium requires a specific approach of numerical
computation procedures that the monolithic approach does not exploit. For this purpose, as a first
investigation we chose to develop a simple modeling of the flexible structure. The trajectories of the
shaft center were obtained numerically by solving the rotodynamic equations with Euler’s scheme.
Indeed, the mathematical models do not consider the irreversible phenomena due to friction and
buckling but, when comparing the rigid with compliant case, we obtain the following results:

- Higher radial clearance;
- Different equilibrium position;
- Non-linear rotor trajectories;
- Higher orbital magnitude.

In conclusion, we show the strong influence of the flexible structure on shaft trajectories. Of course,
additional phenomena such as friction and 3D representation of the bump-foil structure must complete
the study to give more detail [1] about the behaviors observed, but this is a first representation of the
non-linear response of a flexible rotor mounted in a foil bearing.

Author Contributions: Conceptualization, B.B.-S.; Methodology, B.B.-S.; Software, M.L.; Validation, M.L., B.B.-S.;
Formal Analysis, B.B.-S.; Investigation, M.L.; Resources, M.L.; Data Curation, B.B.; Writing-Original Draft
Preparation, B.B.-S.; Writing-Review & Editing, A.M., B.B.; Visualization, B.B.-S.; Supervision, B.B.-S.; Project
Administration, M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Lubricants 2020, 8, 14 18 of 19

Acknowledgments: The authors wish to thank University of Guelma (Algeria) and INSA de Lyon (France)
for allowing them to use the numerical resources available in these two institutes and to continue to promote
cooperation between LaMCoS and LMS.

Conflicts of Interest: The authors declare no conflict of interest.

Notation

eb Unbalance eccentricity, m
h Film thickness, m
h̃ Dimensionless film thickness, h̃ = h/C
Kb Bump stiffness, Nm3

L Bearing lenght, m
m Rotor mass assigned to the bearing, kg
M Rotor mass, M =

(
mCω2

)
/(pa RL)

p Aerodynamic pressure, Pa
p̃ Dimensionless aerodynamic pressure, p̃ = p/pa

pa Atmospheric pressure, Pa
R Bearing radius, m
< Perfect gas constant, J/kgK
tb Bump thickness, m
W0 Static load, N
X, Y Shaft center coordinates, m
X′, Y′ Shaft center speed components
z Bearing axial coordinate, m
z̃ Dimensionless bearing axial coordinate, z̃ = z/L
Greek symbols:
α Compliance coefficient
γ Excitation frequency, γ = ν⁄ω
Λ Dimensionless compressibility number, Λ = (6µω)
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ε Eccentricity ratio, ε = e/C
θ Bearing angular coordinate, rad
ν Bump Poisson coefficient
µ Dynamic viscosity, Pa.s
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