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Abstract: Technological progress has led to powerful computers and communication technologies
that penetrate nowadays all areas of science, industry and our private lives. As a consequence,
all these areas are generating digital traces of data amounting to big data resources. This opens
unprecedented opportunities but also challenges toward the analysis, management, interpretation
and responsible usage of such data. In this paper, we discuss these developments and the fields that
have been particularly effected by the digital revolution. Our discussion is AI-centered showing
domain-specific prospects but also intricacies for the method development in artificial intelligence.
For instance, we discuss recent breakthroughs in deep learning algorithms and artificial intelligence
as well as advances in text mining and natural language processing, e.g., word-embedding methods
that enable the processing of large amounts of text data from diverse sources such as governmental
reports, blog entries in social media or clinical health records of patients. Furthermore, we discuss the
necessity of further improving general artificial intelligence approaches and for utilizing advanced
learning paradigms. This leads to arguments for the establishment of statistical artificial intelligence.
Finally, we provide an outlook on important aspects of future challenges that are of crucial importance
for the development of all fields, including ethical AI and the influence of bias on AI systems. As
potential end-point of this development, we define digital society as the asymptotic limiting state of
digital economy that emerges from fully connected information and communication technologies
enabling the pervasiveness of AI. Overall, our discussion provides a perspective on the elaborate
relatedness of digital data and AI systems.

Keywords: artificial intelligence; machine learning; data science; social data; natural language
processing; industry 4.0; ethical AI

1. Introduction

In the last few decades, technological progress has changed nearly all areas of sci-
ence [1–3]. This comprises many fields, including biology, computer science, economy,
engineering, humanities, journalism, politics, public health, management, medicine, social
sciences, sports and even arts. While the generation of data have long been a privilege of
basic research, the computerization of society and the establishment of the Internet have
enabled the availability and the distribution of information and data on almost all aspects
of our daily lives. As a consequence, a quantitative analysis of such digital data can be
conducted by means of artificial intelligence (AI) and machine learning with results that
might have a profound effect on all levels of society [4–6].

A field that was among the first transitioning into a technology-driven area was bi-
ology [7,8]. Interestingly, the Human Genome Project [9] helped in enhancing molecular
high-throughput measurements, e.g, next-generation sequencing (NGS) technologies [10],
which allows the interrogation of all molecular levels, including mRNAs, proteins and
DNA sequences [11,12]. In recent years, this technology has also infiltrated the biomed-
ical and clinical sciences which allowed a quantification of those fields as well. Further
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areas that have been significantly transformed by the digital revolution are economy and
business. Importantly, most of the trading on the stock markets worldwide is nowadays
conducted electronically, i.e., orders can be placed online and are directly sent to a broker
circumventing traditional floor trading. Lastly, also the social sciences have been heavily
influenced by big data [5,13]. For instance, various kinds of social media platforms, e.g.,
facebook, twitter or linkedin, provide a sort of virtual laboratories for conducting social
and psychological experiments leading to novel insights of human behavior [14–17].

Considering the fact that technologies like the Internet, NGS or the iPhone have only
been available since 1991, 2004 and 2007, respectively, it seems clear that within the next
thirty years the pace of new inventions will likely further increase. Hence, novel technolo-
gies building upon existing once, e.g., 5G, will further transform science, industry and
our private lives in profound and potentially hard to foreseeable ways. In this paper, we
accept this challenge and take a look ahead by discussing some of the potential changes
for these fields, beneficially or detrimentally. Specifically, in this paper, we discuss fields
that have been particularly effected by the digital revolution, e.g., medicine and economy.
Our discussion is AI-centered showing domain-specific opportunities but also challenges
for the method development in artificial intelligence. For instance, we discuss recent
breakthroughs in deep learning algorithms and artificial intelligence as well as advances in
text mining and natural language processing, e.g., word-embedding methods that enable
the processing of large amounts of text data from diverse sources such as governmental
reports, blog entries in social media or clinical health records of patients. Thereafter we
discuss the necessity of further improving general artificial intelligence approaches and
for utilizing advanced learning paradigms. This leads to arguments for the establishment
of statistical artificial intelligence. Finally, we provide an outlook on important aspects
of future challenges that are of crucial importance for the development of all fields. Im-
portantly, we will define digital society as an asymptotic limiting state of digital economy
characterized by the pervasiveness of artificial intelligence. Overall, in this paper, we
provide a perspective on the elaborate relatedness of digital data and AI systems and on
potential future developments.

This paper is organized as follows. In the next sections, we discuss several fields
that have been significantly reshaped by the digital revolution. We discuss opportunities
for the method development in artificial intelligence and potential domain-specific chal-
lenges. Then we discuss general instances of artificial intelligence approaches and learning
paradigms that might be especially beneficial to all fields effected by the digitalization.
Thereafter, we discuss important aspects of future challenges that are of crucial impor-
tance for the development of the respective fields. For this discussion, and the previous
presentation, we assume an AI-centered perspective. Aside from mostly positive effects
of a digitalization, serious problems thereof are addressed, e.g., about data privacy and
fundamental issues of artificial intelligence governance. As a key problem, the asymptotic
state of digital economy, we call digital society, is discussed. The paper finishes with
concluding remarks.

2. Digital Medicine and Digital Health

As already mentioned, biology experienced a transition toward a technology-driven
area in the 1990s. This was accomplished by introducing the DNA microarray technology
allowing the measurement of genome-scale information of the concentration of messenger
ribonucleic acids (mRNAs). Further technologies that followed were SELDI (Surface-
enhanced laser desorption/ionization), protein-chips and various forms of NGS assays
(next-generation sequencing), e.g., DNA or RNA sequencing or DNA methylation [18–20].
Importantly, many of these technologies also propagated to medical, clinical and public
health studies which made also these fields essentially data-driven as a consequence of
such technologies.

There are many subfields of the above subjects that utilize modern information and
communication technologies in biology, medicine and public health. However, the terms



Mach. Learn. Knowl. Extr. 2021, 3 286

digital medicine or digital health are commonly used to indicate the general integration
of such digital technologies, e.g., with smartphone or sensor technologies, with advanced
analysis methods to enhance the subject related goals [21–27]. Interestingly, in [28] it
is noted that “Despite a flurry of recent discussion about the role and meaning of AI in
medicine, in 2017 nearly 100% of U.S. healthcare will be delivered with 0% AI involvement”.
This statement underlines the difficult road ahead for translating results from basic research
to the application in hospitals or healthcare systems but shows also the potential for
methods from AI.

Challenges and obstacles: A necessity for AI to make beneficial contributions to
medicine and health, but also to other fields discussed below, is the availability of (large
amounts of) data. However, present genomics technologies, clinical and pathological
imaging technologies, biosensors, and the internet of things (IoT) devices are essentially
capable of fueling AI methods with sufficient data. There is just the requirement to gather
patient-specific data over a longer period of time to establish data repositories similar to
the ImageNet database for images. Then personalized or patient-tailored methods can
be developed and benchmarked to enhance the current state-of-the-art in computational
diagnostics and evidence based medicine. An example for this could be the concept of a
digital twin [29,30].

Promising pilot studies exist that demonstrate the utility of AI methods, especially
deep learning, for digital health. For instance, such studies were conducted for diabetic
retinopathy [31], skin cancer [32] and medication adherence [33], to name just a few.
Interestingly, most of such studies are mainly based on image analysis. This is another
indicator of the early stage of digital medicine because medicine and health offer many
more data types, as mentioned above, beyond imaging data.

There are three major concerns frequently raised against AI in medicine and health.
The first is the fear that jobs will be lost due to the introduction of automatic analytics
systems, the second criticizes the potential disruption of the personal doctor-patient rela-
tionship for similar reasons and the third issue relates to the lack of explainability of general
AI methods [28,34]. The latter point means that usually AI models can be considered as
black-box prediction models that are capable of achieving high prediction performance
but lack intuitive explanations that describe, e.g., in standard medical terms, how the
performance was actually obtained.

It is important to highlight that all three concerns do not relate to methodological is-
sues of AI itself but to job safety, trust and communication. This means in order to pave the
way for AI in medicine and health there is also educational work of the public and control
bodies necessary to overcome negative and possibly ill-informed sentiments. Furthermore,
it is important to mention that digital health and digital medicine require a multidisci-
plinary approach for their successful deployment [23]. Given the experience of similar
but potentially smaller-scale endeavors from bioinformatics or systems biology there is
already demonstrated success one can build on in forming the cross- and interdisciplinary
teams needs.

Finally, for all the above approaches there are privacy and ethical issues that need to
be dealt with properly [35,36]. On one hand, this needs to ensure that a patient is in control
of its own data but also that sufficient data are collected and available for the development
of data-driven AI methods. This is certainly a noal balancing act to fulfill all needs. A
potential circumvention of this could be the anonymization of patient data in a way that the
data are modified in a manner that individuals are no longer identifiable yet the modified
data are not effecting prediction results from AI methods. For some promising pilot studies,
see [37,38].

3. Digital Economy and Business

The digitalization of our world is not limited to medicine and health but effects also
the way we conduct business and organize our entire economy. There have been many
attempts to define ‘digital economy’ and a nice review of a large number of such definitions
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can be found in [39]. Overall, the common agreement about the nature of digital economy is
succinctly summarized by “...an economy based on digital technologies (sometimes called
the internet economy)” provided by the Expert Group on Taxation of the Digital Economy
of the European Commission. We would like to note that sometimes digital economy is
all called web economy or new economy. A similar definition for digital business has
been provided by [40] as “organizational strategy formulated and executed by leveraging
digital resources to create differential value”. Both definitions are rather general but the
diversity of these fields requires such a wide characterization to encompass all relevant
aspects thereof.

Specific main sectors that are included in the above definitions are:

• e-Business;
• e-Commerce;
• Industry 4.0;
• Sharing economy;
• Crowdsourcing.

Here electronic business (e-business) “is any process that a business organization
conducts over computer-mediated networks” and electronic commerce (e-commerce) “is
the value of goods and services sold over computer-mediated networks” [41]. Industry
4.0 (or smart factory) stands for the fourth industrial revolution which is transforming
traditional manufacturing and industrial processes into a technology mediated field [42,43].
This includes machine-to-machine communication (M2M), Internet of Things (IoT) and
cyber-physical systems (CPS). According to Kagermann et al. [44], Industry 4.0 is “a new
level of value chain organization and management across the lifecycle of products”. That
means not only the production and manufacturing is effected but also decision making
across all relevant levels including the management. Furthermore, Industry 4.0 includes not
only customization but also a personalization of products [45] (see Table 1 for an overview).

Table 1. Key technologies for Industry 4.0. For a discussion of succinct differences and commonalities between these
technologies see [46,47].

Technology Definition Reference

Machine-to-machine communication (M2M) “Machine-to-Machine (M2M) paradigm enables ma-
chines (sensors, actuators, robots, and smart meter read-
ers) tocommunicate with each other with little or no hu-
man intervention.M2M is a key enabling technology for
the cyber-physical systems(CPSs)”.

[48]

Wireless sensor networks (WSN) “WSN is designed particularly for delivering sensor-
related data”.

[49]

Internet of Things (IoT) “An open and comprehensive network of intelligent ob-
jects that have the capacity to auto-organize, share infor-
mation, data and resources, reacting and acting in face of
situations and changes in the environment”.

[50]

Cyber-physical systems (CPS) “CPS are systems of collaborating computational entities
which are in intensive connection with the surrounding
physical world and its on-going processes, providing
and using, at the same time, data-accessing and data-
processing services available on the internet”.

[51]

Another important part of digital economy is sharing economy (SE). Sometimes SE is
also called access economy, peer-to-peer (P2P) economy or collaborative economy [52,53].
Furthermore, SE is a wide term that has been defined as: “the sharing economy is an IT-
facilitated peer-to-peer model for commercial or non-commercial sharing of underutilized
goods and service capacity through an intermediary without a transfer of ownership” [54].
Hence, its underlying idea is to directly connect individual consumers and individual
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providers of goods or services facilitated by a community-based on-line platform. Examples
of such business models are:

• Freelancing platforms (labor market consisting of short-term contracts);
• Coworking platforms (individuals working independently or collaboratively in shared

office space);
• P2P lending platforms;
• Fashion platforms.

Finally, crowdsourcing (CS) shares some similarity to sharing economy and it is
defined as: “Crowdsourcing is the IT-mediated engagement of crowds for the purposes
of problem-solving, task completion, idea generation and production” [55]. Important
examples of CS are information sharing systems, e.g., Wikipedia or del.icio.us, voting
systems, e.g., Amazon’s Mechanical Turk (MTurk) and gamification, e.g., reCAPTCHA
(image recognition) or Foldit (protein folding).

Overall, we would like to note that these developments can effect any industry sec-
tor. In Table 2, we show some examples for such sectors according to the taxonomy of
the Global Industry Classification Standard (GICS) [56]. Currently, the GICS categorizes
industry into 11 Sectors, 24 Industry groups, 69 Industries and 158 sub-industries resulting
in conceptual branches. There are alternative industry taxonomies, e.g., Standard Industry
Classification (SIC), Bloomberg Industry Classification Standard (BICS), Statistical Classifi-
cation of Economic Activities in the European Community (NACE) or North American
Industry Classification System (NAICS) but essentially any of these is sufficient to get a
high-level summary of our economy.

Table 2. Major sectors according to the taxonomy of the Global Industry Classification Standard (GICS) that categorizes the
industry into 11 Sectors, 24 Industry groups, 69 Industries and 158 sub-industries; see [56].

Sector Industry Sub-Industry

Energy Oil, Gas and Consumable Fuels Coal and Consumable Fuels
Materials Chemicals Fertilizers and Agricultural Chemicals
Industrials Machinery and Agricultural Farm Machinery
Consumer Discretionary Hotels, Restaurants and Leisure Restaurants
Consumer Staples Food, Beverage and Tobacco Tobacco
Health Care Pharmaceuticals, Biotechnology and Life Sci-

ences
Biotechnology

Financials Banks Regional Banks
Information Technology Software and Services Internet Services and Infrastructure
Communication Services Media and Entertainment Publishing
Utilities Utilities Independent Power and Renewable Elec-

tricity Producers
Real Estate Real Estate Real Estate Development

In order to show the economic importance of the above fields on economy itself
several studies have been conducted. For instance, sharing economy is in 2020 valued at
US$15 billion globally with a potential to raise its global market value to US$335 billion
by 2025 [57]. Measuring the value of digital economy by a study of the United Nations
estimated that digital economy contributes 4.5% to 15.5% of the world GDP [58]. These
numbers show the enormous impact of digital economy and its comprising subfields on
our world economy and its potential to further increase.

Challenges and obstacles: For AI systems there is a large number of directions open
for contribution. In general, artificial intelligence should be central for any data-driven
approach in digital economy including Industry 4.0. For instance, AI can make valuable
contributions to predictive maintenance (PdM) [59,60]. PdM is dealing with maintenance
issues of production devices or general machines and helps in reducing down times or
operational costs. By utilizing sensor information of either production or operation lines,
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AI-based prediction models can be trained and used for optimizing maintenance schedules.
Furthermore, AI should be helpful for any kind of IoT or CPS application because such
technologies were designed for the gathering of data but not for their analysis. Finally, AI
can help to further improve robotics and automation for manufacturing, production or
service applications. Currently, deep reinforcement learning is showing promising results
for such a novel AI approach in this context [61,62].

On a more fundamental point, it is important to note that the application of AI
requires also an adjustment regarding general data analysis principles. An early standard
of this has been called CRISP-DM (cross-industry standard process for data mining) [63]
emphasizing the feedback between consecutive analysis steps. Recently, this has been
extended considering also industry-specific needs and domain-specific knowledge [64].

There are three major concerns frequently raised against AI methods in business
and economy. The first is the fear that some jobs will be lost due to the introduction of
automatic analytics systems [65], the second issue relates to the lack of explainability of
general AI methods and the third is concerned with the increasing gap between developed
and developing countries and the general change of wealth distribution [66]. Interestingly,
the first two points are essentially the same as for digital medicine and health systems;
discussed above. The latter issue is addressed by artificial intelligence governance which
needs to be developed accordingly.

4. Pervasiveness of Artificial Intelligence

All of the above problems can only be studied by using methods to learn from data [67].
It is important to realize that the methods for studying such problems are not always
the same but they need to be adopted or even newly developed to fit a given data set
optimally. Hence, there is a constant need to further enhance and extend the existing pool
of machine learning and artificial intelligence methods because the technology underlying
the problems which enables the generation of data is constantly changing.

For reasons of clarity, we would like to emphasize that there are many scientific areas
dealing with the development of novel methods for the analysis of data. For instance, ma-
chine learning, statistics, pattern recognition or artificial intelligence are all different fields
with their own history and preferences for methodological approaches and conceptual
frameworks [68–70]. However, in this paper, we simplify the discussion by summarizing
these fields by the term artificial intelligence because, especially, in industry this term has
become the commonly accepted standard when speaking about data analysis methods
and approaches. Nevertheless, one should be aware that on the academic side this is
seen differently.

Due to the diversity of fields generating general data, one can expect that the methods
for their analysis are similarly diverse. Currently, methods for image and audio process-
ing [71,72] seem to be much more developed than methods for other types of data, e.g.,
text data, genomics data or sensor data. Hence, such data types offer a great potential
for improvements. For instance, for text data a fundamental problem is a conversion of
textual information into numbers in a way that conventional AI methods can process such
data. Recently, word-embedding methods made great progress, above all word2vec or
BERT [73–75]. However, there is still room for improvement especially for mapping onto
larger units, e.g., paragraphs or documents [76].

Another area of great potential is information fusion [77]. The general idea is to
combine data from multi-sensors, multi-sources or multi-processes in a way that the
resulting data set contains more information than its separate, individual sources. This
problem becomes apparently more difficult the more different the individual data sources
or sensors are, especially, if these correspond to different data types, e.g., image data and
text data.

Furthermore, transfer learning [78] should be mentioned as a field of great potential.
Transfer learning means that one starts training a model for one task (called a source
task) and then switches the data for another one (called target task). For instance, in
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image processing a model that has been trained for classifying non-medical images could
be transferred to learning to discriminate tumors in medical images [79]. This example
demonstrates also that transfer learning is particularly useful when one has only a very
limited amount of data for a certain task (for instance from medical images) but a much
larger data set for a similar task (for non-medical images). Other learning paradigms that
are severely underutilized are semi-supervised learning or multi-task learning [80,81].

Finally, a field that should be established is statistical artificial intelligence (SAI).
SAI would extend the ideas of statistics to artificial intelligence, e.g., by investigating the
influence of the sample size on the resulting prediction performance. This is important
because a method in isolation is neither good nor bad but only in combination with data
of certain characteristics a method can be evaluated. For instance, in [82] a deep learning
classifier (a Long Short-Term Memory (LSTM) model) has been studied for classifying
handwritten digital characters provided by the EMNIST (Extended MNIST) data [83]. As
a result, it has been found that by using over 200,000 training samples the classification
error is far below 5%, while for 5000 training samples the error increases to over 30%.
Considering that the underlying deep learning classifier was the same for both approaches,
this demonstrates the importance of quantifying the influence of the sample size on the
resulting performance. Formally, such a characterization of a model is obtained by so called
learning curves [84]. In general, AI methods in digital business and digital health appear
to be studied in a less stringent way as compared to, e.g., methods from biostatistics. This
is understandable given the fact that the latter methods find regular application in medical
and clinical patient data. Nevertheless, also in those fields a steady control is required for
ensuring quality standards [85] because there are examples that violating such standards
can jeopardize the lives of patients [86].

5. Discussion

The above presentation discussed the individual fields separately and focused mainly
on their core components. Despite this, one could already recognize that there are many
commonalities among the different fields and approaches. For this reason, in the following,
we focus on common aspects shared by these fields presented in an AI-centric way.

5.1. Smart Cities and Smart Government

One may wonder if there are other fields or areas beyond medicine, health, business
and economy that could benefit from a digitalization and utilization of AI in a similar way
as, e.g., digital economy? In fact, there are already some developments in this direction. For
instance, smart city and smart government are attempts to improve the organization of cities
or governments, respectively. In order to accomplish this, smart cities utilize many sensors
throughout the city, e.g., via IoT technologies, to improve traffic management, road safety
or energy efficiency [87–89]. Similarly, smart government utilizes mainly automation for
administrative tasks (e-government) and for data-driven decision making [90]. However,
the developmental state of these areas is considerably behind other fields, e.g., digital health.
One reason for this may be the fact that, traditionally, neither cities nor governments are
based on electronic communication technologies. Hence, there is, first, a need to introduce
information processing and computing technologies for generating and gathering data and
then AI-based systems can be designed for the solution of particular tasks.

For the near future, for smart cities it is expected that more sensors are needed
throughout the cities for gathering information about traffic, environmental conditions
and human behavior. In contrast, for smart government, text mining based AI approaches
seem very promising because, essentially, all administrative tasks involve text data. Similar
to digital economy, also smart cities and smart government will gradually develop toward
higher states of digital cities and digital government. However, for the latter it remains to
be seen how much involvement of AI is desirable or acceptable because, ultimately, even
political decisions could be made based on such automated methods.
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It is certainly intriguing to think about such possibilities even if only applied retro-
spectively. An example demonstrating the problems with such an approach for automatic
decision making is the Brexit. Assuming we would have an AI system that would allow us
to answer the following political question:

• Question: Should the UK leave the European Union?

Phrased like this it is a binary classification task which could be solved by a supervised
learning method because the answer is either to leave or to stay in the European Union. A
problem is that contrary to general artificial intelligence or machine learning approaches,
there are no samples of similar ’events’ available one could use for the training of this
supervised learning task. Leaving technical difficulties aside, assuming we would have
access to an AI system that could provide a faithful answer to this question (for instance
based on PU-learning), what would this entail? Would this answer be convincing to the
people who’s opinion was the opposite? Given the fact that a general classification result
does not come with an explanation, such an answer could be misunderstood or even
bewildering to the public in large.

This example demonstrates potential limitations even of error-free AI systems capable
of making the correct political decisions. Hence, in a such a context, AI by itself could
not provide the final solution but needs to be complemented with additional features not
unlike to what is currently discussed for explainable AI (XAI) [34,91–93]. Overall, this
example shows that AI-driven decision making on higher levels, e.g., on a management or
governmental stage, possess new challenges that need to be addressed.

5.2. Human–Machine Interaction

A related topic, but coming from a different perspective, is human–machine interaction
(HMI) [94]. In HMI, also called human–computer interaction (HCI) [95], one assumes that
a machine or computer is not capable of performing the complete task by its own. Instead,
some form of human-involvement is needed for a succesful implementation and execution
of the task. That means there is an interface between people and machines or computers.

Prominent application examples are doctor-in-the-loop for supporting medical deci-
sion making by health practitioners [96] or augmented reality [97] for merging physical
and virtual perception of a user. The former finds application in digital health whereas the
latter is used in digital business, e.g., for virtual viewings of properties. From an abstract
point of view, also data science falls within the category of human–computer interaction
because a complex data analysis process involves many individual steps which may not
be automatically connectable but requires human intervention, e.g., via an explanatory
analysis [98].

A general question, also related to the example from the previous section about
political decision making, is if one needs always a form of a human-computer interface for
solving AI tasks in higher organizational or societal layers, as represented by health-related
problems, the economy or cities, or if this is only needed in special cases? Classically, the
ideal case seems to be an human-free AI system because this eliminates a potential bias of
the subjectivity of humans. However, as the example about political decision making or
the doctor-in-the-loop shows this is not clear for such problems.

5.3. Data Privacy, Cybersecurity and Bias in AI

Another aspect that is also shared by the fields discussed in this paper is data privacy
(information privacy) and cybersecurity. For instance, due to the increasing usage of
connected technologies, e.g., IoT or CPS, Industry 4.0 systems are vulnerable to cyber
attacks [99]. Similarly, patient data from hospitals or retirement homes contain sensitive
personal information that needs to be protected from third party usage. These problems
are also well known for social media data, e.g., for using facebook or twitter [100,101].

A practical example where the usage of personal data by a third party may lead
to unwanted consequences is the insurance or financial industry. For instance, private
data could be used for the evaluation of an insurance premium or its coverage. Similarly,
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banks may base their decision to provide credits on similar data about an individual. This
problem is certain to become more severe the more the single layers of our society are
interconnected with each other, see Figure 1, in a way that the corresponding data from
those layers become simultaneously available.

Hierarchical organization of society

medicine

health

business

economy

society

digitalization

generation of data

application of arti�cial intelligence

information and 
communication technology
mediated connection

Figure 1. A simplified view of the hierarchical organization of society. The digitalization of the shown
fields progresses from the inside toward the outside. This leads eventually to a full penetration of
society with artificial intelligence.

A related issue to data privacy is artificial intelligence governance [102]. AI governance
is concerned with ethical standards, safety, transparency and public fear. This addresses
the needs of individual users but also regulation bodies. Again there are cross links to our
political decision making example above, especially relating the last point. For companies,
on the other hand, there is the concern that AI governance might be too strict and rigid
preventing the implementation of viable business ideas. Overall, this will be a balancing
act to find the right regulations satisfying the needs of all parties.

Finally, we would like to mention another issue of great importance which is the bias
in AI systems [103]. Sources for bias in AI can be either due to biased data aggregation or
algorithmic unfairness. For automatic decision making systems, this could for instance lead
to gender-bias or racial-bias both of which demonstrate the severity of this problem. For
this reason it is important to avoid any form of bias in an AI system. However, this requires
the understand of bias, mitigating bias and accounting for bias [104], which is usually
noal. In our opinion, so far this topic has not found widespread appreciation and appears
underrepresented. Only very recently this seems to change [105–107]. A possible reason
for this delayed interest in this topic could be the fact that AI is still mostly concerned
with low-level decision making, e.g., via classification or regression, whereas high-level
decision making, e.g., for management, administration or legal problems, is still in its
infancy. However, the more AI tends toward the latter areas the more the problems with
bias in AI systems will become apparent.

5.4. From Big Data and Cloud Computing toward Advanced Analytics

It is important to realize that despite the fact that data are the driving force (or fuel)
of general AI methods, they are not sufficient but necessary. This insight triggered the
big data era where essentially all fields started to store all sorts of sector-specific data and
cloud storage became popular. The next step that built upon big data was cloud computing
because one does not only need data but also the capabilities to process these efficiently.
Unfortunately, neither of these two steps generates value by itself but they provide only
the potential for deriving value thereof. In large, this can only be accomplished by the
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application of AI and machine learning methods. Hence, we need to move away from
data storage and data processing as a main focus toward advanced analytics [108,109].
This includes visualization and dimension reduction methods for an explanatory data
analysis [110,111] as well as unsupervised (clustering or hypothesis testing [112,113]) and
supervised learning (classification or regression [69,114,115]) methods. Furthermore, there
are some modern learning paradigms that deserve more attention especially in combination
with deep learning architectures [116–119]:

• Semi-supervised learning;
• Reinforcement learning;
• Transfer learning;
• Adversarial learning.

In addition, technology-mediated forms of AI are needed for optimizing the underly-
ing technologies for digital health and digital economy, e.g., IoT, CPS or M2M.

On a statistical note, we would like to remark that, in general, the characteristics of a
data set has a strong influence on the performance of any model. For this reason, also meth-
ods for investigating the statistical robustness of methods are of importance. This includes
also resampling methods like cross validation (CV). In our discussion above, we called the
field that provides a systematic analysis of such issues statistical artificial intelligence.

5.5. From Digital Economy to Digital Society

We want to finish our discussion with an outlook on the potential end-point of all
these developments. What does this mean? Given the above explored information and
communication technologies that find already application ranging from digital health to
digital economy, a natural question arising is, if it is possible to foresee where all this might
lead us?

In our discussion about digital economy, we saw that digital economy is characterized
by different sectors, of which Industry 4.0 is one of them. We think that this is a good
way to indicate the continuous transformation or evolution of fields and would also
suggest to utilize such an enumeration for digital economy itself, e.g., in the form of digital
economy 4.0 [120]. Thinking ahead, one may wonder what is the potential end-point of
such a developmental process. Let us call this end-point digital economy X whereas ‘X’
corresponds to an unknown number. We do not know what the value of ‘X’ might be
but it seems natural to assume that the limiting state or end-point of digital economy will
provide a connected network of the individual layers manifesting society mediated by
information and communication technologies (see Figure 1). Hence, the resulting state has
no borders between economy, business and society. That means every part of our home,
work, education and recreation will be fully penetrated by AI and the society will be also
part of a business sector (see Figure 1 for a simplified visualization of a hierarchical society).
We call this end-point resulting from this development digital society.

In a society that is fully connected by information and communication
technologies enabling the pervasiveness of AI the asymptotic limiting state
of digital economy X is called digital society.

From this scenario it seems clear that such a development would be undesirable
because it would eradicate any kind of privacy. Hence, from an ethical point of view the
question emerges what is the largest number ‘X’ we would be willing to tolerate?

It is interesting to note that there are similarities of our argument to Granovetter’s
theory of the embeddedness of economic actions in society via social networks, which
he called new economic sociology [121]. This, in retrospective very plausible argument,
however, penetrates also businesses and firms alike and in a fully connected world by
information and communication technologies leads to a digital society.

In general, detailed predictions about the future developments involving AI in our
society are difficult [122]. Or to say it with the words of Stephan Hawking: “The rise of
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powerful AI will be either the best or the worst thing ever to happen to humanity. We do
not yet know which”. From reading this, it may not be surprising to find advocates along
this broad spectrum of possible scenarios [123,124]. For instance, Kurzweil represents an
optimistic view that AI, along with nanotechnology and genetics, will improve our lives for
the better, whereas Joy assumes a pessimistic role who even sees humanity threatened by
such technologies to the extend of being extinct [125]. We do not want to miss mentioning
that there are also less extremal views on the future of AI. Such advocates may be seen
as pragmatists because they belief in a beneficial application of AI, by at the same time
maintaining control over all crucial aspects of safety and security [123]. The only thing that
seems to be clear at this moment is that most results achieved so far are largely overhyped
and we are still (far) away from full pervasiveness of artificial intelligence [126].

The best, and possibly most pragmatic, way to go forward seems to conduct more
interdisciplinary research and education to enlighten our way ahead and to hopefully
avoid devastating end-points [127,128].

6. Conclusions

We hope that our perspective on the development of digital medicine and digital
economy toward a digital society, leading to a pervasiveness of artificial intelligence in
all layers of society, demonstrates the need for a concerted effort in this area. A final
point we would like to mention that seems to be underdiscussed in the current literature
is ‘responsibility’. Specifically, should AI scientists be responsible for their inventions
and consequences these possibly have on society [129]? This can effect ’optimists’ and
’pessimists’ alike because from both negative consequences can arise in either over- or
underutilizing opportunities.

In summary, artificial intelligence in combination with digitalization offers a multitude
of avenues to go forward that could change our lives in many profound ways. Interest-
ingly, all of these ways seem to be inclusive with respect to different scientific fields and
application domains because AI raises question in technology, mathematics, business and
ethics alike. Hence, whatever the future will look like it will be multidisciplinary.
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