Supplementary Files

Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived Fungus Chaetomium sp. NA-S01-R1

Weiyi Wang 1,*, Yanyan Liao 2, Ruixuan Chen 1, Yanping Hou 1, Wenqian Ke 1, Beibei Zhang 1, Maolin Gao 1, Zongze Shao 1, Jianming Chen 3,* and Fang Li 1,*

Content

Figure S1. 1H NMR spectrum of compound 1
Figure S2. 13C NMR spectrum of compound 1
Figure S3. HSQC spectrum of compound 1
Figure S4. HMBC spectrum of compound 1
Figure S5. HRESIMS spectrum of compound 1
Figure S6. 13C/DEPT spectrum of compound 1
Figure S7. 1H-1H COSY spectrum of compound 1
Figure S8. Selected NOESY spectrum of compound 1
Figure S9. Selected NOESY spectrum of compound 1
Figure S10. 1H NMR spectrum of compound 2
Figure S11. 13C NMR spectrum of compound 2
Figure S12. HSQC spectrum of compound 2
Figure S13. HMBC spectrum of compound 2
Figure S14. HRESIMS spectrum of compound 2
Figure S15. 13C/DEPT spectrum of compound 2
Figure S16. 1H-1H COSY spectrum of compound 2
Figure S17. NOESY spectrum of compound 2
Figure S18. 1H NMR spectrum of compound 3
Figure S19. 13C NMR spectrum of compound 3
Figure S20. HSQC spectrum of compound 3
Figure S21. HMBC spectrum of compound 3
Figure S22. HRESIMS spectrum of compound 3
Figure S23. 13C/DEPT spectrum of compound 3
Figure S24. 1H-1H COSY spectrum of compound 3
Figure S25. 1H NMR spectrum of compound 4
Figure S26. 13C NMR spectrum of compound 4
Figure S27. HSQC spectrum of compound 4
Figure S28. HMBC spectrum of compound 4
Figure S29. HRESIMS spectrum of compound 4
Figure S30. 13C/DEPT spectrum of compound 4
Figure S31. 1H-1H COSY spectrum of compound 4
Table S1; Table S2; Text S1
Figure S1. 1H NMR spectrum of compound 1

Figure S2. 13C NMR spectrum of compound 1

Figure S3. HSQC spectrum of compound 1
Figure S4. HMBC spectrum of compound 1

Figure S5. HRESIMS spectrum of compound 1

Figure S6. 13C/DEPT spectrum of compound 1
Figure S7. ¹H-¹H COSY spectrum of compound 1

Figure S8. Selected NOESY spectrum of compound 1
Figure S9. Selected NOESY spectrum of compound 1

Figure S10. 1H NMR spectrum of compound 2

Figure S11. 13C NMR spectrum of compound 2
Figure S12. HSQC spectrum of compound 2

Figure S13. HMBC spectrum of compound 2

Figure S14. HRESIMS spectrum of compound 2
Figure S15. 13C/DEPT spectrum of compound 2

Figure S16. 1H-1H COSY spectrum of compound 2

Figure S17. NOESY spectrum of compound 2
Figure S18. 1H NMR spectrum of compound 3

Figure S19. 13C NMR spectrum of compound 3

Figure S20. HSQC spectrum of compound 3
Figure S21. HMBC spectrum of compound 3

Figure S22. HRESIMS spectrum of compound 3

Figure S23. 13C/DEPT spectrum of compound 3
Figure S24. 1H-1H COSY spectrum of compound 3

Figure S25. 1H NMR spectrum of compound 4

Figure S26. 13C NMR spectrum of compound 4
Figure S27. HSQC spectrum of compound 4

Figure S28. HMBC spectrum of compound 4

Figure S29. HRESIMS spectrum of compound 4
Figure S30. 13C/DEPT spectrum of compound 4

Figure S31. 1H-1H COSY spectrum of compound 4

Table S1. Energies of the dominative conformers at MMFF94 force field of compound 1

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Conformer</th>
<th>Energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1R, 7R, 8S, 8aR, 11S, 4’R, 5’S)-1</td>
<td>1</td>
<td>131.80</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>133.62</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>133.64</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>133.71</td>
</tr>
<tr>
<td>(1S, 7S, 8R, 8aS, 11S, 4’S, 5’R)-1</td>
<td>1</td>
<td>134.38</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>135.20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>135.64</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>135.94</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>135.95</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>136.04</td>
</tr>
</tbody>
</table>
Table S2. Energies of the conformers at B3LYP/6-311G** of compound 1 in methanol.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Conformer</th>
<th>Structure</th>
<th>E (Hartree)</th>
<th>E (kcal/mol)</th>
<th>Population (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1R, 7R, 8S, 8aR, 11S, 4’R, 5’S)-I</td>
<td>3</td>
<td></td>
<td>-1879.82988243-1179611.05</td>
<td>100.00</td>
<td></td>
</tr>
<tr>
<td>(1S, 7S, 8R, 8aS, 11S, 4’S, 5’S)-I</td>
<td>1</td>
<td></td>
<td>-1879.82899701-1179610.50</td>
<td>26.34</td>
<td></td>
</tr>
<tr>
<td>(1S, 7S, 8R, 8aS, 11S, 4’S, 5’S)-I</td>
<td>2</td>
<td></td>
<td>-1879.82633158-1179608.82</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>(1S, 7S, 8R, 8aS, 11S, 4’S, 5’S)-I</td>
<td>4</td>
<td></td>
<td>-1879.82994775-1179611.09</td>
<td>72.10</td>
<td></td>
</tr>
</tbody>
</table>

Text S1: ITS1-5.8S-ITS2 rDNA sequence (MG786198) of strain Chaetomium sp. NA-S01-R1

<table>
<thead>
<tr>
<th>LOCUS</th>
<th>Seq</th>
<th>568 bp</th>
<th>DNA</th>
<th>linear</th>
<th>PLN 11-JAN-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINITION</td>
<td>1 Chaetomium sp. NA-S01-R1 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCESSION</td>
<td>Seq</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VERSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEYWORDS</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOURCE</td>
<td>Chaetomium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORGANISM</td>
<td>Chaetomium sp. Eukaryota; Fungi; Dikarya; Ascomycota; Pezizomycotina; Sordariomycetes; Sordariomycetidae; Sordariales; Chaetomiaceae; Chaetomium.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFERENCE</td>
<td>1 (bases 1 to 568)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTHORS</td>
<td>Wang, W.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>Chlorinated azaphilone pigments with antimicrobial and cytotoxic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
activities isolated from the deep sea derived Fungus Chaetomium sp.

NA-S01-R1

JOURNAL Unpublished

REFERENCE 2 (bases 1 to 568)

AUTHORS Wang, W.

TITLE Direct Submission

JOURNAL Submitted (11-JAN-2018) Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 178 Daxue Road, Xiamen, Fujian 361005, China

COMMENT Bankit Comment: ALT EMAIL:wywang_cas@163.com.

Bankit Comment: TOTAL # OF SEQS:1.

#Assembly-Data-START#

Sequencing Technology :: Sanger dideoxy sequencing

#Assembly-Data-END#

FEATURES Location/Qualifiers

source 1..568

/organism="Chaetomium sp."
/mol_type="genomic DNA"
/isolate="NA-S01-R1"
/isolation_source="seawater"
/bio_material="Chaetomium sp."
/db_xref="taxon:1769349"
/collection_date="July 2017"
/collected_by="Yanping Hou"
/identified_by="Weiyi Wang"

misc_RNA 1..568

/ note="contains 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence"

BASE COUNT 125 a 150 c 163 g 130 t

ORIGIN

1 ctggcggtct ctaaattccc gaggctacct ttgggttaaa ggtggtttaa cggccggaac
61 ccgcggcgcg accagagcga gatgtatgct actacgctcg gtgcgacagc gagccgcca
121 ctgcttttca gggcctgcgg cagccgcagg tccccaacac aagcccgggg gcttgatggt
181 tgaaatgacg ctcgaatagg catgcccgcc agaatgctgg cgggcgcaat gtgcgttcaa
241 agattcgatg attcactgaa ttaagcaatt cacattactt atcgcatttc gctgcgttct
301 tcatcgatgc cagaaccaag agatccgttg ttgaaagttt tgacttattc agtacagaag
361 actcagagag gccagaaatt atcaagagtt tggtagcgcg cggcgggggc cggccgcaac
421 gccagggggc gcggcggagg taaaacggc ggccgcggcc ccgaagctacg gtataggtaa
481 cggtcacaat ggtttaggga gttttgcaac tctactactt acgacatgtg gctgcgttct
541 cgagagaccc gtagggtcga ttacgtgcttc

//