Edaravone-loaded alginate-based nanocomposite hydrogel accelerated chronic wound healing in diabetic mice

Ying FAN¹, Wen WU¹*, Yu LEI³, Caroline GAUCHER², Shuchen PEI¹, Jinqiang ZHANG¹, Xuefeng XIA¹*

¹ Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; fanying@cqu.edu.cn (Y.F.); jzhang1983@cqu.edu.cn (J.Z.)
² School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; backer7_leiyu@163.com (Y.L.); peishuchen928@163.com (S.P.)
³ Faculté de pharmacé, Université de Lorraine, CITHEFOR F-54000 Nancy Cedex, France; caroline.gaucher@univ-lorraine.fr (C.G.)

* Correspondence: wuwen1988@cqu.edu.cn (W.W); xxia@cqu.edu.cn (X.X.)

Received: date; Accepted: date; Published: date

Figure S1. The standard curve of edaravone was established by High Performance Liquid Chromatography. (y = 69.332x + 5.3527, R² = 1).
Figure S2. Effects of edaravone on wound closure in diabetic mice and normal mice. (A) Representative images of wounds of four groups. (B) Healing progression for day 0–13. (C) Percentage wound closure on day 5, 10, 13 after wounding. (mean ± SD, n=4). (**P < 0.01, ***P < 0.005; ****P < 0.001).
Figure S3: In vitro release behavior of high and low dose of edaravone loaded nanocomposite hydrogel using dialysis bag method in phosphate buffer (pH 5) at 37°C. A: the percentage of edaravone released. B: the absolute amount of edaravone released. The edaravone concentrations were measured by high performance liquid chromatography (mean ± SD, n=3, ****p < 0.001).