Supplementary Materials

Penigrisacids A–D, Four New Sesquiterpenes from the Deep-Sea-Derived Penicillium griseofulvum

Cui-Ping Xing 1, Chun-Lan Xie 1, Jin-Mei Xia 1, Qing-Mei Liu 2, Wei-Xiang Lin 1, De-Zan Ye 1,
Guang-Ming Liu 2, and Xian-Wen Yang 1,*

1 Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource
Exploitation and Utilization Collaborative Innovation Center, Third Institute of
Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China;
xingcuiping123@126.com (C.-P. X.); xiechunlanxx@163.com (C.-L. X.);
xiajinmei@tio.org.cn (J.-M. X.); 15989178371@163.com (W.-X. L.); yedezan@tio.org.cn (D.-Z. Y.)

2 College of Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen
361021, China; liuqingmei1229@163.com (Q.-M. L.); gmliu@jmu.edu.cn (G.-M. L.)

* Correspondence: yangxianwen@tio.org.cn; Tel.: +86-592-2195319
Content

Table S2. Calculated ECD data for 2S,3R,6S,7R-1 (1a) and (6S,7R,10S,11S)-2 (2a)
Figure S1. B3LYP-SCRF (PCM, ACN)/6-31G(d) optimized lowest energy conformers for 2S,3R,6S,7R-1 (1a), (6S,7R,10S,11S)-2, and (2R,3R,6S,7S,10R)-3.
Figure S2. The CD spectra of compounds 3–5 in ACN.
Figure S3. 1H NMR spectrum of 1 in CD3OD.
Figure S4. 13C NMR spectrum of 1 in CD3OD.
Figure S5. HSQC spectrum of 1 in CD3OD.
Figure S6. COSY NMR spectrum of 1 in CD3OD.
Figure S7. HMBC NMR spectrum of 1 in CD3OD.
Figure S8. NOESY NMR spectrum of 1 in CD3OD.
Figure S9. The HR-ESI-MS spectrum of 1.
Figure S10. 1H NMR spectrum of 2 in CD3OD.
Figure S11. 13C NMR spectrum of 2 in CD3OD.
Figure S12. HSQC spectrum of 2 in CD3OD.
Figure S13. COSY NMR spectrum of 2 in CD3OD.
Figure S14. HMBC NMR spectrum of 2 in CD3OD.
Figure S15. NOESY NMR spectrum of 2 in CD3OD.
Figure S16. The HR-ESI-MS spectrum of 2.
Figure S17. 1H NMR spectrum of 3 in DMSO-d6.
Figure S18. 13C NMR spectrum of 3 in DMSO-d6.
Figure S19. HSQC spectrum of 3 in DMSO-d6.
Figure S20. COSY NMR spectrum of 3 in DMSO-d6.
Figure S21. HMBC NMR spectrum of 3 in DMSO-d6.
Figure S22. NOESY NMR spectrum of 3 in DMSO-d6.
Figure S23. The HR-ESI-MS spectrum of 3.
Figure S24. 1H NMR spectrum of 4 in CD3OD.
Figure S25. 13C NMR spectrum of 4 in CD3OD.
Figure S26. HSQC spectrum of 4 in CD3OD.
Figure S27. COSY NMR spectrum of 4 in CD3OD.
Figure S28. HMBC NMR spectrum of 4 in CD3OD.
Figure S29. NOESY NMR spectrum of 4 in CD3OD.
Figure S30. The HR-ESI-MS spectrum of 4.

2

<table>
<thead>
<tr>
<th>Compounds</th>
<th>conformers</th>
<th>Gibbs free energy (298.15 K)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (Hartree)</td>
<td>ΔE (kcal/mol)</td>
<td>Population (%)</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>-885.814127</td>
<td>0</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>-887.0162631</td>
<td>0</td>
<td></td>
<td>59.96</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>-887.0152285</td>
<td>0.001035</td>
<td></td>
<td>20.02</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-887.0152282</td>
<td>0.001035</td>
<td></td>
<td>20.02</td>
</tr>
<tr>
<td>3</td>
<td>C1</td>
<td>-962.2614876</td>
<td>0</td>
<td></td>
<td>52.37</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>-962.2613983</td>
<td>0.00008937</td>
<td></td>
<td>47.63</td>
</tr>
</tbody>
</table>
Table S2. Calculated ECD data for 2S,3R,6S,7R-1 (1a) and (6S,7R,10S,11S)-2 (2a)

<table>
<thead>
<tr>
<th>State</th>
<th>Excitation energies (ev)</th>
<th>Rotatory strength a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-C1</td>
<td>2-C1</td>
</tr>
<tr>
<td>1</td>
<td>5.3386</td>
<td>4.8494</td>
</tr>
<tr>
<td>2</td>
<td>5.6098</td>
<td>5.0891</td>
</tr>
<tr>
<td>3</td>
<td>5.6571</td>
<td>5.4380</td>
</tr>
<tr>
<td>4</td>
<td>5.9040</td>
<td>5.7025</td>
</tr>
<tr>
<td>5</td>
<td>6.0490</td>
<td>5.8931</td>
</tr>
<tr>
<td>8</td>
<td>6.2694</td>
<td>6.2215</td>
</tr>
<tr>
<td>11</td>
<td>6.5400</td>
<td>6.5040</td>
</tr>
<tr>
<td>15</td>
<td>6.7899</td>
<td>6.7369</td>
</tr>
<tr>
<td>16</td>
<td>6.8946</td>
<td>6.7896</td>
</tr>
<tr>
<td>21</td>
<td>7.1016</td>
<td>7.0294</td>
</tr>
<tr>
<td>22</td>
<td>7.1203</td>
<td>7.1363</td>
</tr>
<tr>
<td>23</td>
<td>7.1817</td>
<td>7.1959</td>
</tr>
<tr>
<td>24</td>
<td>7.2850</td>
<td>7.2038</td>
</tr>
<tr>
<td>26</td>
<td>7.3168</td>
<td>7.2373</td>
</tr>
<tr>
<td>27</td>
<td>7.3593</td>
<td>7.3057</td>
</tr>
</tbody>
</table>

a R(velocity) 10**-40 erg-esu-cm
Figure S1. B3LYP-SCRF (PCM, ACN)/6-31G(d) optimized lowest energy conformers for $2S,3R,6S,7R\text{-}1$ (1a), $(6S,7R,10S,11S)$-2, and $(2R,3R,6S,7S,10R)$-3.
Figure S2. The CD spectra of compounds 3–5 in ACN.
Figure S3. 1H NMR spectrum of 1 in CD$_3$OD.
Figure S4. 13C NMR spectrum of 1 in CD$_3$OD.
Figure S5. HSQC spectrum of 1 in CD$_3$OD.
Figure S6. COSY NMR spectrum of 1 in CD₃OD.
Figure S7. HMBC NMR spectrum of 1 in CD$_3$OD.
Figure S8. NOESY NMR spectrum of 1 in CD$_3$OD.
Figure S9. The HR-ESI-MS spectrum of 1.
Figure S10. 1H NMR spectrum of 2 in CD$_3$OD.
Figure S11. 13C NMR spectrum of 2 in CD$_3$OD.
Figure S12. HSQC spectrum of 2 in CD$_3$OD.
Figure S13. COSY NMR spectrum of 2 in CD$_3$OD.
Figure S14. HMBC NMR spectrum of 2 in CD$_3$OD.
Figure S15. NOESY NMR spectrum of 2 in CD$_3$OD.
Figure S16. The HR-ESI-MS spectrum of 2.
Figure S17. 1H NMR spectrum of 3 in DMSO-d_6.
Figure S18. 13C NMR spectrum of 3 in DMSO-d_6.
Figure S19. HSQC spectrum of 3 in DMSO-\textit{d}_6.
Figure S20. COSY NMR spectrum of 3 in DMSO-d_6.
Figure S21. HMBC NMR spectrum of 3 in DMSO-d_6.
Figure S22. NOESY NMR spectrum of 3 in DMSO-d_6.

Current Data Parameters

NAME xin3-132
ESPRIO 7
PROCNO 1

F1 - Acquisition Parameters
Date- 20181002
Time- 4:32
INSTRUM- spert
FROEPS- 5 mm DARR-88-
FILP/FOG- noexygeppp
TR 12000
SOLVENT- DMSO
NS 14
DS 32
DWM 4800.000 Hz
FIDRES 1.951125 Hz
AQ 0.13566000 sec
BG 114
DW 125.000000 sec
DE 6.70 sec
TE 295.9 K
DG 0.000107300 sec
G1 1.00000000 sec
DM 0.10000000 sec
DII 0.03000000 sec
DB 0.00002000 sec
DM 0.00025000 sec

-------- CHANNEL F1 --------
SPO1 400.1518410 MHz
STDC1 1H
F1 13.80 sec
F2 21.80 sec
F17 8500.00 sec
FG3W 32.14299955 w
PLH3G 3.47099999 w

-------- GRADIENT CHANNEL --------
GR[GRAD[1]] SPECQ1.100
GRP3 140.00 &
F16 10000.00 sec

F1 - Acquisition parameters
T2 126
SPO1 400.1281 MHz
FIDRES 16.949152 Hz
D1 8.927 ppm

F1 - Processing parameters
SI 1024
SF 400.100015 MHz
WOM 2000
SSE 2
LB 0 Hz
GB 0
FC 1.00

F1 - Processing parameters
SI 1024
MC2 States-TAPI
SF 400.100015 MHz
WOM 2000
SSE 2
LB 0 Hz
GB 0
Figure S23. The HR-ESI-MS spectrum of 3.
Figure S24. 1H NMR spectrum of 4 in CD$_3$OD.
Figure S25. 13C NMR spectrum of 4 in CD$_3$OD.
Figure S26. HSQC spectrum of 4 in CD$_3$OD.
Figure S27. COSY NMR spectrum of 4 in CD$_3$OD.
Figure S28. HMBC NMR spectrum of 4 in CD$_3$OD.
Figure S29. NOESY NMR spectrum of 4 in CD$_3$OD.
Figure S30. The HR-ESI-MS spectrum of 4.