Supporting Information

Penicamide A, a Unique N,N'-Ketal Quinazolinone Alkaloids from Ascidian-derived Fungus Penicillium sp. 4829

Senhua Chen1,2, Minghua Jiang1, Bin Chen1, Jintana Salaenoi 2, Shah-Iram Niaz 1,4,*, Jianguo He 1, and Lan Liu 1,2,*

1 School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510004, China;
2 Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China;
3 Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand.
4 Institute of chemical sciences, Gomal University, Dera Ismail Khan, Pakistan;

Correspondence

To whom correspondence should be addressed.

Tel/Fax: +86-20-84725459. E-mail: shah_iram2000@yahoo.com; cesllan@mail.sysu.edu.cn
Table S1. Energy Analysis for the Conformers of (R)-1.

Figure S17 B3LYP/6-31G(d) optimized low-energy conformers of (R)-1.

NMR data of known compounds
Figure S1. The HRESIMS spectrum of compound 1.

Figure S2. The 1H NMR (400MHz) spectrum of compound 1 in DMSO-d_6.
Figure S3. The 13C NMR (100MHz) spectrum of compound 1 in DMSO-d_6.

Figure S4. The HSQC spectrum of compound 1 in DMSO-d_6.
Figure S5. The 1H-1H COSY spectrum of compound 1 in DMSO- d_6.

Figure S6. The HMBC spectrum of compound 1 in DMSO- d_6.
Figure S7. The NOESY spectrum of compound 1 in DMSO-d_6.

Figure S8. The IR spectrum of compound 1
Figure S9. The HRESIMS spectrum of compound 2.

Figure S10. The HR-ESI-MS/MS spectrum of compound 2.
Figure S11. The 1H NMR (400MHz) spectrum of compound 2 in DMSO-d_6.

Figure S12. The 13C NMR (100MHz) spectrum of compound 2 in DMSO-d_6.
Figure S13. The HSQC spectrum of compound 2 in DMSO-d_6.

Figure S14. The 1H-1H COSY spectrum of compound 2 in DMSO-d_6.
Figure S15. The HMBC spectrum of compound 2 in DMSO-d_6.

Figure S16. IR spectrum of compound 2.
Figure S17. The 1H NMR (400MHz) spectrum of compound 3 in acetone-d_6.

Figure S18. The 13C NMR (100MHz) spectrum of compound 3 in acetone-d_6.
Figure S19. The 1H NMR (400MHz) spectrum of compound 4 in MeOH-d_4.

Figure S20. The 13C NMR (100MHz) spectrum of compound 4 in MeOH-d_4.
Figure S21. The 1H NMR (400MHz) spectrum of compound 5 in CDCl$_3$.

Figure S22. The 13C NMR (100MHz) spectrum of compound 5 in CDCl$_3$.

13 / 19
Figure S23. The 1H NMR (400MHz) spectrum of compound 6 in MeOH-d_4.

Figure S24. The 13C NMR (100MHz) spectrum of compound 6 in MeOH-d_4.
Figure S25. The 1H NMR (400MHz) spectrum of compound 7 in DMSO-d_6.

Figure S26. The 13C NMR (100MHz) spectrum of compound 7 in DMSO-d_6.
Figure S27. The 1H NMR (400MHz) spectrum of compound 8 in acetone-d_6.

Figure S28. The 13C NMR (100MHz) spectrum of compound 8 in acetone-d_6.
Experimental Section

Calculation of ECD Spectra

Molecular Merck force field (MMFF) and DFT/TD-DFT calculations were carried out with Spartan’ 14 software (Wavefunction Inc., Irvine, CA, USA) and Gaussian 09 program, respectively\(^1\). Conformers within 10 kcal/mol energy window were generated and optimized using DFT calculations at B3LYP/6-31G(d) level. Conformers with Boltzmann distribution over 1% were chosen for ECD calculations in methanol at B3LYP/6-311+g(2d,p) level. The IEF-PCM solvent model for MeOH was used. ECD spectra were generated using the program SpecDis 3.0 (University of Würzburg, Würzburg, Germany) and OriginPro 8.5 (OriginLab, Ltd., Northampton, MA, USA) from dipole-length rotational strengths by applying Gaussian band shapes with sigma = 0.30 ev. All calculations were performed by Tianhe-2 in National Super Computer Center in Guangzhou.

Table S1. Energy Analysis for the Conformers of (R)-1.

<table>
<thead>
<tr>
<th>compound</th>
<th>Conformation</th>
<th>G (Hartree)</th>
<th>G (Kcal/mol)</th>
<th>ΔG (Kcal/mol)</th>
<th>Boltzmann Dist (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-1</td>
<td>1-1</td>
<td>−1032.2439</td>
<td>−647742.8303</td>
<td>0</td>
<td>60.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R)-1</td>
<td>1-2</td>
<td>−1032.2435</td>
<td>−647742.5851</td>
<td>0.245262076</td>
<td>39.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2309</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S17. B3LYP/6-31G(d) optimized low-energy conformers of (R)-1.
NMR data of known compounds 3-8.

Compound 3: 1H NMR (acetone-d_6) δ_{H} 8.73 (1H, d, J = 8.4 Hz), 7.89 (1H, d, J = 7.9 Hz), 7.56 (1H, m), 7.20 (1H, d, J = 7.6 Hz), 2.47 (3H, q, J = 6.9 Hz); 13C NMR (acetone-d_6) δ_{C} 197.2, 171.4, 159.9, 139.7, 133.3, 129.3, 124.3, 121.6, 121.3, 24.2.

Compound 4: 1H NMR (MeOH-d_4) δ_{H} 8.53 (1H, d, J = 8.5 Hz), 7.73 (1H, d, J = 7.8 Hz), 7.50 (1H, m), 7.16 (1H, d, J = 7.6 Hz), 4.23 (1H, q, J = 6.9 Hz), 1.43 (3H, q, J = 6.9 Hz); 13C NMR (MeOH-d_4) δ_{C} 175.2, 138.2, 131.9, 128.1, 123.1, 121.4, 120.7, 68.4, 19.7.

Compound 5: 1H NMR (CDCl$_3$) 8.51 (1H, s), 8.30 (2H, d, J = 8.4 Hz), 7.63 (2H, d, J = 10.6 Hz), 7.47 (2H, d, J = 7.8 Hz), 5.56 (1H, dt, J = 7.3, 10.5 Hz), 5.56 (1H, dt, J = 7.3, 10.5 Hz), 5.26 (1H, m), 4.74 (1H, dd, J = 4.3, 8.7 Hz), 4.68 (1H, d, J = 9.7 Hz), 4.58 (1H, d, J = 4.5 Hz), 3.44 (3H, s), 2.10 (3H, m), 1.66 (3H, s), 0.97 (3H, t, J = 7.5 Hz); 13C NMR (CDCl$_3$) 196.6, 195.5, 186.2, 166.9, 136.8, 134.9, 132.5, 130.9, 128.6, 126.6, 113.4, 92.9, 90.7, 73.2, 71.0, 70.8, 51.9, 21.5, 14.2, 6.2.

Compound 6: 1H NMR (MeOH-d_4) 9.03 (1H, s, H-3), 8.69 (1H, d, J = 4.3 Hz, H-3), 8.29 (1H, d, J = 8.0 Hz, H-6), 7.55 (1H, d, J = 7.9, 5.0 Hz, H-3); 13C NMR (MeOH-d_4) 169.8, 152.8, 149.4, 137.3, 131.4, 125.1.

Compound 7: 1H NMR (DMSO-d_6) δ_{H} 5.55 (1H, s), 4.49 (1H, d, J = 3.2 Hz), 4.51 (1H, s), 3.56 (3H, s), 2.32 (2H, m), 2.00 (3H, s), 1.77 (4H, m), 1.58 (3H, s), 1.22 (3H, s), 1.16 (3H, s), 0.90 (3H, s), 0.80 (3H, s); 13C NMR (DMSO-d_6) δ_{C} 178.5, 170.2, 169.6, 121.8, 114.8, 76.9, 75.2, 54.3, 51.8, 51.1, 43.0, 33.9, 30.7, 25.8, 21.7, 21.5, 20.7, 20.6, 17.1, 6.5.

Compound 8: 1H NMR (acetone-d_6) δ_{C} 5.63 (1H, s), 4.98 (1H, dd, J = 3.6, 1.6 Hz), 4.61 (1H, dd, J = 3.7, 1.5 Hz), 3.67 (3H, s), 2.78 (1H, br d, J =14.4 Hz), 2.40 (1H, dd, J =14.4, 3.8 Hz), 2.15 (1H, s), 1.98 (2H, m), 1.99 (3H, s), 1.78 (2H, m), 1.65 (3H, s), 1.36 (3H, s), 1.32 (3H, s), 1.21 (3H, s), 1.01 (3H, s), 0.95 (3H, s); 13C NMR (acetone-d_6) δ_{C} 204.6 (C-15), 201.4 (C-17), 178.1 (C-23), 170.2 (C$_3$-OAc), 168.5 (C-19), 147.2 (C-9), 124.7 (C-11), 77.6 (C-6), 76.9 (C-12), 76.2 (C-3), 76.0 (C-16), 72.6 (C-14), 54.1 (C-13), 52.5 (C$_{19}$-OMe), 50.9 (C-5), 48.5 (C-10), 39.0 (C-8), 38.7 (C-7), 35.6 (C-4), 31.9 (C-22), 26.7 (C-24), 23.8 (C-21), 23.0 (C-25), 22.7 (C-2), 20.8 (C$_3$-OAc), 20.2 (C-1), 11.2 (C-20), 7.8 (C-18).
References.
