Synergistic effects and mechanism of modified silica sol flame retardant

systems on silk fabric

Chun Liu, Tieling Xing*, Bingju Wei, Guoqiang Chen National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China

* Correspondence: xingtieling@suda.edu.cn; Tel.: 86-512-67061152

Figure S1. The Pyrolysis gas chromatography of the original silk and finished silk (Si-B, Si-N₁ and Si-N₂, Si-N₃, Si-P₁ and Si-P₂).

synergist agents.		
Name	Code	Chemical Structure
Tetraethyl orthosilicate	Si	
Boric acid	В.	он но ^В он
Urea	N1	H ₂ N NH ₂
Dicyandiamide	N2	N N H NH ₂
Melamine cyanurate	N3	H_2N N H_2 N H_2 N H_2 N H_2 N H_2 N H_2
1-hydroxyethane 1,1-diphosphonic acid	P1	

Table S1. Name, code and chemical structures of sol-gel precursor and

Samala	Add_{on} (wit $-\frac{9}{3}$)	Sampla	Add-on
Sample	Aud-on (wt /6)	Sample	(wt%)
Silk	-	Silk-P ₂	33.04 ± 0.22
Silk-Si	27.44 ± 0.24	Si-B	19.72 ± 0.18
Silk-B	13.03 ± 0.16	Si-N ₁	10.98 ± 0.11
Silk-N1	2.71 ± 0.09	Si-N ₂	22.09 ± 0.20
Silk-N ₂	7.70 ± 0.23	Si-N ₃	28.11 ± 0.15
Silk-N ₃	4.86 ± 0.12	Si-P ₁	26.62 ± 0.23
Silk-P ₁	23.01 ± 0.26	Si-P ₂	33.71 ± 0.19

Table S2. Total dry solids add-on of sols on silk samples.

NT	Time	Compound	Area	Ът	Time	Compound	Area
INO.	(min)	Name	(%)	10.	(min)	Name	(%)
1	1.634	CO ₂	26.70	12	10.715	$C_4H_4N_2O_2$	10.53
2	1.686	CHN	10.25	13	11.972	C7H13NO2	2.69
3	1.9	C2H3N	9.20	14	12.065	C8H7N	1.42
4	2.263	C ₃ H ₅ N	0.56	15	12.668	C9H13N3O4	5.35
5	2.589	C4H7N	0.27	16	13.043	$C_8H_{10}O_2$	2.26
6	3.868	C5H9N	0.17	17	14.446	C12H24O2	1.31
7	3.976	C5H9N	0.20	18	14.818	$C_5H_8N_2O_2$	5.53
8	4.614	C7H8	2.02	19	16.074	C14H28O2	1.10
9	6.07	C7H13N	0.43	20	16.978	C11H12FNO	0.81
10	8.248	C_6H_6O	5.18	21	17.575	C16H32O2	2.06
11	9.489	C7H8O	9.17	22	18.81	C18H34O2	2.79

Table S3. The pyrolysis gas chromatography of Silk.

NI-	Time	Compound	Area	NI -	Time	Compound	Area
NO.	(min)	Name	(%)	INO.	(min)	Name	(%)
1	1.645	CO ₂	33.31	16	10.415	C6H11ClO2	0.52
2	1.913	C ₂ H ₃ N	14.97	17	10.692	$C_4H_4N_2O_2$	3.37
3	2.27	C ₃ H ₅ N	0.39	18	11.266	C ₈ H ₈ O	0.80
4	2.603	C4H7N	0.24	19	11.968	C7H13NO2	1.15
5	3.88	C5H9N	0.15	20	12.054	C8H7N	1.06
6	3.982	C5H9N	0.13	21	12.728	C9H13N3O4	3.03
7	4.625	C7H8	1.62	22	13.046	$C_7H_{10}N_2O$	1.54
8	5.93	C ₅ H ₇ N	0.46	23	13.729	$C_{6}H_{10}N_{2}O_{2}$	0.81
9	6.062	C7H13N	0.78	24	14.446	C12H24O2	0.39
10	6.763	C_8H_8	0.23	25	14.892	$C_3H_6N_6$	19.61
11	7.32	C ₆ H ₉ N	0.35	26	16.983	C12H24BN	0.87
12	8.248	C ₆ H ₆ O	2.49	27	17.582	C16H32O2	1.52
13	8.531	$C_9H_{14}N_2$	0.09	28	18.816	C18H34O2	1.85
14	8.659	C7H11N	0.19	29	21.408	C18H33N	0.41
15	9.469	C7H8O	7.67				

Table S4. The pyrolysis gas chromatography of Si-B.

NT	Time	Compound	Area	NT	Time	Compound	A (0/)	
N o.	(min)	Name	(%)	No.	(min)	Name	Area (%)	
1	1.628	CO ₂	29.65	11	10.637	$C_4H_4N_2O_2$	4.93	
2	1.682	CHN	14.64	12	11.937	$C_6H_{11}NO_4$	1.45	
3	1.9	C2H3N	11.90	13	12.064	C8H7N	1.39	
4	2.13	C4H8O	0.37	14	12.661	C9H13N3O4	3.65	
5	2.262	C ₃ H ₅ N	0.73	15	13.026	$C_8H_{10}O_2$	1.79	
6	2.593	C4H7N	0.27	16	14.753	C5H8N2O2	7.29	
7	4.614	C7H8	2.40	17	16.967	$C_8H_{11}N_5O$	1.33	
8	6.017	C7H13N	0.61	18	17.566	$C_{16}H_{32}O_2$	0.56	
9	8.289	C ₆ H ₆ O	2.86	19	18.804	$C_{18}H_{34}O_2$	1.09	
10	9.478	C7H8O	13.09					

 Table S5. The pyrolysis gas chromatography of Si-N1.

N .T	Time	Compound	Area	N.	Time	Compound	Area
No.	(min)	Name	Name (%)		(min)	Name	(%)
1	1.641	CO ₂	35.28	19	10.434	C5H7NO2	1.00
2	1.908	C ₂ H ₃ N	3.67	20	10.782	$C_4H_4N_2O_2$	7.99
3	2.265	C ₃ H ₅ N	1.20	21	11.287	C ₈ H ₈ O	1.42
4	2.597	C4H7N	0.35	22	11.424	C8H20BN	0.60
5	3.877	C5H9N	0.16	23	12.008	$C_{11}H_{22}N_2$	1.77
6	3.979	C5H9N	0.21	24	12.05	C ₈ H ₇ N	1.37
7	4.47	C4H5N	0.27	25	12.772	$C_6H_{14}N_2$	3.89
8	4.622	C7H8	1.87	26	12.922	C12H10	0.47
9	5.924	C5H7N	0.82	27	13.003	C9H9N	0.51
10	6.058	C7H13N	1.09	28	13.073	C7H10N2O	1.29
11	6.765	C_8H_8	0.21	29	13.745	C8H17NO	1.52
12	7.315	C ₆ H ₉ N	0.99	30	13.998	C8H7NO	0.83
13	7.503	C ₆ H ₉ N	0.16	31	14.287	C12H10O	1.03
14	8.243	C ₆ H ₆ O	2.23	32	14.994	$C_5H_8N_2O_2$	8.44
15	8.527	C9H14N2	0.15	33	17.003	$C_8H_{11}N_5O$	1.39
16	8.657	C7H11N	0.26	34	17.464	C9H14O2	0.94
17	9.468	C7H8O	13.03	35	17.586	C16H32O2	1.56
18	10.041	$C_6H_8O_2$	0.74	36	18.816	C18H34O2	1.29

Table S6. The pyrolysis gas chromatography of Si- N_{2} .

No	Time	Compound	Area	No	Time	Compound	A rea (9/)
110.	(min)	Name	(%)	110.	(min)	Name	Alea (/0)
1	1.621	CO ₂	38.21	14	11.295	C ₈ H ₈ O	0.75
2	1.889	C_2H_3N	15.02	15	11.97	C7H13NO2	1.55
3	2.127	C ₄ H ₈ O	0.97	16	12.055	C ₈ H ₇ N	1.11
4	2.248	C ₃ H ₅ N	0.92	17	12.674	C9H13N3O4	4.84
5	4.61	C7H8	1.38	18	13.036	$C_8H_{10}O_2$	1.82
6	5.924	C5H7N	0.47	19	14.807	$C_5H_8N_2O_2$	5.52
7	6.054	$C_6H_8O_2$	0.74	20	17.581	C16H32O2	4.56
8	7.319	C ₆ H ₉ N	0.80	21	18.466	C19H38O2	0.37
9	8.233	C ₆ H ₆ O	3.33	22	18.815	C18H34O2	4.65
10	9.481	C7H8O	6.40	23	18.934	C18H36O2	0.46
11	10.006	$C_4H_8N_4$	0.74	24	19.116	C ₁₆ H ₃₃ NO	0.58
12	10.407	$C_7H_{10}N_2$	0.46	25	20.403	C18H35NO	0.45
13	10.672	$C_4H_4N_2O_2$	3.90				

Table S7. The pyrolysis gas chromatography of Si-N $_{\!\!3}$

N .T	Time	Compound	Area	No	Time	Compound	Area
No.	(min)	Name	(%)		(min)	Name	(%)
1	1.635	CO ₂	20.75	26	11.525	C ₆ H ₁₁ NO	0.75
2	1.687	CHN	12.64	27	11.979	$C_{11}H_{22}N_2$	0.63
3	1.902	C_2H_3N	9.94	28	12.049	C ₈ H ₇ N	1.22
4	2.138	C_4H_8O	0.56	29	12.18	C9H16O	0.25
5	2.259	C ₃ H ₅ N	1.55	30	12.25	C10H16O	0.34
6	2.538	$C_2H_4O_2$	0.21	31	12.437	C6H9N3O	0.43
7	2.593	C4H7N	0.20	32	13.06	$C_8H_{10}O_2$	2.02
8	3.006	$C_5H_{10}O$	0.14	33	15.241	$C_5H_8N_2O_2$	16.50
9	3.127	C4H7N	0.33	34	15.74	C16H29NO4	0.91
10	3.873	C5H9N	0.16	35	16.094	C14H28O2	0.32
11	3.974	C5H9N	0.22	36	17.015	$C_8H_{11}N_5O$	3.14
12	4.629	C7H8	2.33	37	17.17	C16H31N	0.45
13	5.563	C7H11NO	0.11	38	17.225	$C_8H_{13}N_7$	1.50
14	5.922	C ₅ H ₇ N	0.50	39	17.53	$C_8H_{13}N_7$	0.38
15	6.066	C7H13N	0.44	40	17.604	C16H32O2	4.11
16	7.316	C ₆ H ₉ N	0.68	41	17.711	C14H23NO	0.70
17	7.501	C ₆ H ₉ N	0.16	42	17.787	C18H36O2	0.15
18	8.221	C ₆ H ₆ O	3.23	43	18.47	C18H33N	0.41

 Table S8. The pyrolysis gas chromatography of Si-P1.

19	8.526	C7H11N	0.22	44	18.584	C17H37N	0.27
20	8.655	C7H11N	0.28	45	18.829	C18H34O2	4.53
21	9.482	C7H8O	2.84	46	18.945	C18H36O2	0.52
22	10.42	C5H7NO2	0.51	47	18.987	$C_{20}H_{38}O_2$	0.31
23	10.648	C4H7N3O	094	48	19.123	C16H33NO	0.26
24	11.293	C ₈ H ₈ O	0.44	49	21.407	C18H33N	0.29
25	11.423	C9H9N	0.23				

Tuble 05. The pyronybio gub enfollatography of of 12

No	Time	Compound	Area	No	Time	Compound	Area	
•	(min)	Name	(%)	110.	(min)	Name	(%)	

1	1.636	CO ₂	18.11	20	8.527	C9H14N2	0.17
2	1.703	C4H10	5.03	21	8.656	C7H11N	0.20
3	1.801	C_2H_6O	0.97	22	9.227	C7H8O	0.24
4	1.899	C ₂ H ₃ N	3.63	23	9.468	C7H8O	8.89
5	2.257	C ₃ H ₅ N	0.58	24	10.089	C7H12O2	0.75
6	2.59	C ₄ H ₇ N	0.28	25	10.862	$C_6H_{12}N_2$	8.77
7	3.127	C4H7N	0.11	26	11.28	C ₈ H ₈ O	1.54
8	3.871	C5H9N	0.15	27	12.056	C8H7N	3.62
9	3.975	C5H9N	0.15	28	12.266	$C_{13}H_{10}F_6N_2O_7$	0.72
10	4.461	C ₄ H ₅ N	0.23	29	12.926	$C_{12}H_{10}$	3.81
11	4.62	C7H8	1.71	30	13.112	$C_8H_{10}O_2$	2.84
12	5.919	C5H7N	0.76	31	14.289	C12H10O	12.72
13	6.057	C7H13N	0.76	32	14.909	C13H10	3.49
14	6.271	C8H10	0.09	33	15.074	$C_5H_8N_2O_2$	2.95
15	6.762	C_8H_8	0.22	34	17.028	$C_8H_{11}N_5O$	0.94
16	7.311	C ₆ H ₉ N	0.64	35	17.616	C16H32O2	3.03
17	7.362	C ₆ H ₉ N	0.21	36	18.84	C18H34O2	3.03
18	7.501	C ₆ H ₉ N	0.23	37	19.464	$C_{12}H_9O_2P$	1.09
19	8.218	C ₆ H ₆ O	3.83	38	19.75	$C_{12}H_9NO_3$	3.51

Figure 9	Main Peaks Description
All Samples	The telescopic vibration absorption peak near 2930 cm ⁻¹ was
	-OH contained in silk fabric.
	The Vibration absorption peak near 1640 cm ⁻¹ , 1500 cm ⁻¹ and
	1235 cm ⁻¹ were amide I, the amide II and amide III in the silk
	fabric.
	The 3500 cm ⁻¹ ~ 3000 cm ⁻¹ was a strong -NH- absorption peak in
	the silk fabric structure.
	The deformation and rocking vibration absorption peaks of
	Si-O-Si appeared at 430 cm ⁻¹ and 547 cm ⁻¹ , respectively.
	The asymmetric stretching vibration absorption peak of Si-O

Table S10. The main peaks description about FTIR spectra of all samples.

A appeared at 1077cm⁻¹.

This indicates that the silica sol has formed a Si-O-Si bonding structure on the surface of the fabric.

The deformation and rocking vibration absorption peaks of Si-O-Si appeared at 436 cm⁻¹ and 521 cm⁻¹, respectively.

B The telescopic vibration absorption peak of B-O appeared at 1443 cm⁻¹

The deformation and rocking vibration absorption peaks of Si-O-Si appeared at 432 cm⁻¹ and 547 cm⁻¹, respectively.

C The vibration absorption peak of C=N appeared at 2194 cm⁻¹ and 2149 cm⁻¹, respectively.

The deformation and rocking vibration absorption peaks of Si-O-Si appeared at 475 cm⁻¹ and 573 cm⁻¹, respectively.

D The telescopic vibration absorption peak of Si-NH₂ appeared at 3241 cm⁻¹ and 3384 cm⁻¹, respectively.

The deformation and rocking vibration absorption peaks of Si-O-Si appeared at 449 cm⁻¹ and 508 cm⁻¹, respectively.

The vibration absorption peak of P-O appeared at 734 cm⁻¹.

Е

The deformation and rocking vibration absorption peaks of Si-O-Si appeared at 462 cm⁻¹ and 509 cm⁻¹, respectively.

F The vibration absorption peak of P-O appeared at 762 cm⁻¹ and 852 cm⁻¹, respectively