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Abstract: As one of the critical raw materials, very pure gallium is important for the semiconductor
and photoelectric industry. Unfortunately, refining gallium to obtain a purity that exceeds 99.99999%
is very difficult. In this paper, a new, facile and efficient continuous partial recrystallization method
to prepare gallium of high purity is investigated. Impurity concentrations, segregation coefficients,
and the purification effect were measured. The results indicated that the contaminating elements
accumulated in the liquid phase along the crystal direction. The order of the removal ratio was
Cu > Mg > Pb > Cr > Zn > Fe. This corresponded to the order of the experimentally obtained
segregation coefficients for each impurity: Cu < Mg < Pb < Cr < Zn < Fe. The segregation
coefficient of the impurities depended strongly on the crystallization rate. All observed impurity
concentrations were substantially reduced, and the purity of the gallium obtained after our refinement
exceeded 99.99999%.
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1. Introduction

Gallium (Ga), one of the important raw materials used in contemporary semiconductor industry,
was discovered in 1875 [1], and has been significantly utilized in the industry since the 1940s. Ga and
its compounds are extensively used in advanced electronic devices [2–4], integrated circuits [5–7],
and thin-film solar cells [8,9] because these compounds can provide the benefits of low energy
consumption and high computation speeds.

Current industrial production of low-grade (4N, 99.99% pure) Ga has been perfected [10–12].
According to a report published by the U.S. Geological Survey (USGS) in 2015, the global demand for
Ga is ever-increasing and is expected to increase 20-fold by 2030 compared to the yield of 275 tons
in 2012 [13]. In another statistical data reported by USGS in 2018, the world low-grade primary
gallium production was estimated to be 315 tons in 2017—an increase of 15% from 274 tons in 2016.
Integrated circuits accounted for 70% of domestic gallium consumption, and optoelectronic devices
accounted for 30% [14]. However, even very small amounts of impurities, such as Cu, Pb, Fe, Mg, Zn,
and Cr, which are always present in current large-scale, commercial-quality gallium, can degrade or
limit the electrical properties [15]. Traditional refining methods, such as electrolysis and combined
processes, have been used in the past to remove these impurities to obtain high-purity gallium [16].
These conventional methods, however, are very energy-consuming, harmful to the environment,
and relatively slow. Hence, a superior purification method would be of great significance for the global
semiconductor and photovoltaic industry.

Crystallization method is considered as the most promising technique for large-scale industrial
production of high-purity Ga because of its simple equipment, ease of operation, and short
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production cycle. Based on the different solubility between the bulk and the contaminating elements
in the liquid phase, upward directional solidification has been used to refine materials such as
solar-grade silicon [17,18]. During upward directional solidification, most of the impurities with
a lower segregation coefficient accumulate near the top of the ingot. Unfortunately, the low crystal
growth rate usually causes visible back-diffusion in the solid phase, which reduces the purification
effect [19]. In addition, low efficiency, i.e., slow growth rate, is a major problem.

In this study, continuous partial recrystallization is proposed and used to refine 4N gallium to
an ultrapure level (7N, ≥99.99999% pure). The refining process was designed and optimized and the
purification effect, together with contributing factors like crystallization temperature, solidification
rate and ratio, were investigated. The crucial segregation coefficients of the contaminating elements in
gallium were also determined.

2. Methods

2.1. Refining Process

The refining process, a schematic of which is shown in Figure 1, was implemented in a custom-
made cylindrical polytetrafluoroethylene crystallizer with a jacket structure and an internal and
external cavity.
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Figure 1. Schematic of the refining process, where r is the distance from the solidification interface to
the center of the crystallizer, and d is the distance between the top and the bottom of liquid Ga.

Three kilograms of 4N Ga was molten at 338.15 K and washed with 150 mL, 3 mol/L HCl,
and HNO3 for 30 min successively. In the washing process, spongy gallium was dissolved,
and 2.9774 kg of liquid Ga was obtained; the percentage of gallium dissolved was 0.75%. Then,
the impurity concentrations C0 (wt.%) of the washed Ga were determined using glow discharge mass
spectrometry (GDMS) (Evans Materials Technology (Shanghai) Co., China). Subsequently, the liquid
Ga was transferred to the internal cavity. Cooling water was poured into the external cavity from the
water inlet, which was located at the bottom of the crystallizer, with a 40 L/h flow rate. The water was
removed through an outlet at the top. After cooling the melted Ga to 303 K, four types of crystal seeds,
0.5 cm in size, were symmetrically added along the inner wall of the inner cavity. Both temperature and
flow rate of the cooling water were kept constant to allow liquid Ga to crystallize uniformly along the
inner wall of the inner cavity and toward the center. When the crystallization ratio reached the preset
values, the remaining liquid Ga was expelled from the discharge gate, located at the bottom center of
the crystallizer, and collected as raw material for the next refining step. Subsequently, 360 K hot water
was added to the external cavity to remelt the solid Ga that crystallized. The above crystallization
process was repeated several times until the expected Ga purity was reached.
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All refining and testing were implemented in a Class 10,000 cleanroom. Acid washing was performed
using spectrally pure HCl and HNO3 and ultrapure water with better than 16 MΩ·cm resistivity.

2.2. Quality Test

The refined ultrapure Ga and remaining impurities were measured using GDMS (Evans Materials
Technology (Shanghai) Co., China). A well-characterized Tantalum (Ta) check sample was used
to ensure that the complete GDMS system meets the basic criteria for the required analysis.
An approximately 2 cm × 0.2 cm pin of gallium was formed with liquid nitrogen. The glow discharge
ion source was cooled to near liquid nitrogen temperature, and the sample was presputtered for 5 min
before data acquisition began. Both data acquisition and presputtering were carried out under the same
analytical conditions, and the efficiency of the ion-counting detector was checked during the analysis of
the Ta Quality Control sample. Data for the gallium sample were collected until the last 3 mass fraction
readings varied by no more than 20%. Elements were scanned individually, with an integration time of
80 ms. For accuracy, nine sampling points (the red dots in Figure 1) were defined to measure impurity
concentration changes, while the ingot grew during the refining process.

3. Results and Discussion

3.1. Flow Rate and Temperature of the Cooling Water Influence on the Refining Process

Strict control of the solidification process during the synthesis of single crystals or polycrystalline
grains with large sizes and with minimum impurities entrapped in the grain boundaries is extremely
important for high-purity Ga smelting. An ideal condition is when the liquid gallium is uniformly
crystallized along the inner wall of the crystallizer toward the center, and this process usually needs to
be carried out in a temperature field with uniform and stable temperature gradient. For this reason,
the influence of flow rate and temperature of the cooling water on the refining process was tested.

Figure 2 shows the shapes of the Ga solidification at different flow rates. It can be seen that at
a flow rate of 40 L/h, the growth of Ga solidification was uniform with a direction of crystallization
from the edge to the center. When the flow was changed to 60 L/h, the crystallization rate of liquid at
the bottom of the crystallizer was faster than the top, and the crystal interface was rough. According
to the metal crystallization theory, with the increase in cooling water flow, the overcooling degree at
the bottom is greater than that in other regions and the crystallization rate is too high, resulting in
excessive growth of crystals in the bottom area and uneven crystallization. In our study, at cooling
water flow of 40 L/h, the growth rate on the side far away from the water inlet was far lower than that
in other areas.
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The crystallization rate v (kg/h) was controlled by changing the temperature of the cooling water
between 283.15 and 297.15 K (see Figure 3). It can be seen that the crystallization rate decreased
gradually with increasing temperature T (K). The relationship between them fit well with the following
linear function:

v = −0.09T + 27 (1)

with the linearly dependent coefficient R2 = 0.997. The strong linear correlation helps to obtain
an accurate solidification ratio by controlling the crystallization time during refining.
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3.2. Impurity Redistribution

A good understanding of the regularity of the impurity redistribution during ingot growth helps
fine-tune the refining process. Unfortunately, it is difficult to obtain this important information by
analyzing the morphology and microstructure via SEM [17] or other direct observation methods
because of the low melting point (about 303 K) of Ga. Additionally, direct detection of the impurity
concentrations in the growth direction is difficult. A convenient alternative is to measure the impurity
concentrations in liquid Ga, Cl (wt.%), at different solidification ratios g (%) during the refining process.
Then, the impurity concentrations in solid Ga, Cs (wt.%), can be derived from the mass conservation
law using the following equation:

Cs = (C0 − Cl · (1 − g))/g (2)

The Cs profiles of the main impurities—Fe, Pb, Zn, Mg, Cu, and Cr—for a solidification ratio range
of 5–95% are shown in Figure 4a. The impurity concentrations increased exponentially with increasing
solidification ratios, and the trend lines were almost identical for the six elements. The results indicated
that, during the refining process, the freshly solidified layer, formed at the solid/liquid interface with
the Ga ingot that grows continuously from the internal wall to center of the crystallizer, transferred
the impurities to the adjacent liquid layer. This way, an enriched liquid layer with impurities was
created. In addition, these condensed impurities diffused towards the liquid bulk, which resulted in
a progressive increase of impurities in the liquid. The difference between the impurity concentrations in
solid and melt can be determined by the known equilibrium segregation coefficient, which is defined as

K = Cs/Cl (3)

for a given temperature [20]. Based on the radial exponential redistribution of each impurity in solid Ga,
the effect of the solidification ratio on the removal efficiency of these impurities is defined as follows:
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R% = ((C0 − Cs)/C0) · 100% (4)

When we investigated this ratio, as shown in Figure 4b, we found that R% for each element
decreased with increase in solidification ratio, and Fe and Zn changed faster than the other four
elements: Fe (86.5–25.1%), Zn (92.5–55.5%), Cr (96.9–76.2%), Pb (98.3–85%), Mg (99.2–91.1%), and Cu
(99.6–94.6%). The R% profiles also indicated that the order of the removal radii was Cu > Mg > Pb > Cr
> Zn > Fe. Based on the above results, the refining method used R% = 70% for the first two runs of the
recrystallization process and R% = 85% for the third.
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3.3. Experimental Segregation Coefficient

The effect of crystallization rate v on the removal ratio for the impurities was investigated for
a solidification ratio of 20% (see Figure 5). The removal ratio for each element increased as the
crystallization rate decreased to 0.39 kg/h. The removal ratio reached a maximum and remained
stable, which indicated that the parameter of v also played an important role in the refining process.
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The experimentally obtained segregation coefficients for each impurity were estimated as
described in Reference [21] using the formula

Kexp = Cs/Cl (5)

to study the reasons for this effect (see Figure 6a). As v decreased, the values for all six tested elements
decreased exponentially in a crystallization rate range of 0.3–1.5 kg/h. Moreover, the three elements Fe,
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Pb, Zn and other group of Cr, Mg, and Cu showed a similar trend, with Fe (0.27–0.13), Pb (0.17–0.06),
Zn (0.22–0.11), Cr (0.19–0.08), Mg (0.15–0.04), and Cu (0.15–0.03). Interestingly, the Kexp values for
different elements exhibited the same crystallization rates in the order Cu < Mg < Pb < Cr < Zn < Fe,
which corresponded to the order of the removal ratios (see Figure 6b). This correlation indicated
that the different removal efficiencies between different impurities were caused by the segregation
coefficients in liquid Ga. Furthermore, the smaller the Kexp, the better was the removal coefficient.
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3.4. Quality of Ultrapure Gallium

Based on the above results, 3 kg of raw Ga was refined with a crystallization rate of 0.39 kg/h.
The impurity concentration for each element and the purity of Ga before and after the refining process
is shown in Table 1. All six tested impurity concentrations could be reduced substantially. The highest
removal ratio of 93.79% was obtained for Cu, where the content decreased from 107 × 10−6 to
0.22 × 10−6 wt.%. The lowest removal ratio was 93.79% (for Fe), were the concentration decreased
from 15 × 10−6 to 0.93 × 10−6 wt.%. After the refining process, 1.264 kg Ga with a purity of 99.9999958%
was obtained, and all measured impurity concentration were reduced to very low levels. The remaining
1.735 kg Ga could be used as starting materials for the next refining process.

Table 1. Impurity concentration (×10−6, wt.%) and purity of Ga during and after refining.

Impurity Fe Pb Zn Mg Cu Cr Purity %

Before refining 15 56 24 76 107 40 99.9938
After refining 0.93 0.68 1.05 0.34 0.22 0.97 99.9999958

Removal ratio (%) 93.79 98.78 95.64 99.55 99.79 97.58 –

4. Conclusions

The optimized partial recrystallization route showed a strong purification effect: 99.99999% pure
Ga was produced using little energy and a relatively simple process with the solidification ratio of
70% for the first two runs and 85% for the third run at the crystallization rate of 0.39 kg/h. During the
refining process, the impurity concentrations increased exponentially with increasing solidification
ratio, and the order of the removal ratio was Cu > Mg > Pb > Cr > Zn > Fe. This order corresponded to
the order of the experimental values for segregation coefficient for each impurity: Cu < Mg < Pb < Cr <
Zn < Fe. All tested element concentrations were reduced to very low levels, which means this novel
refining method can open new doors to produce ultrapure gallium at a commercial scale.
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