Colossal Permittivity and Low Dielectric Loss of Thermal Oxidation Single-Crystalline Si Wafers

Yalong Sun, Di Wu *, Kai Liu and Fengang Zheng *

College of Physical Science and Technology, School of Optoelectronic Science and Engineering and Technology and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China; 20164208051@stu.suda.edu.cn (Y.S.); 20154208020@stu.suda.edu.cn (K.L.)

* Correspondence: wudi@suda.edu.cn (D.W.); zhfg@suda.edu.cn (F.Z.)

Supplementary Material

Figure S1. SEM image of a single-crystalline silicon plate (thickness 0.7 mm, resistivity 0.001 Ω·cm). (a) Raw single-crystalline silicon wafer and (b) after thermal oxidation for 3 min.

Figure S1 shows the SEM image of a single-crystalline silicon plate (thickness 0.7 mm, resistivity 0.001 Ω·cm). There is no grain or grain boundary on the surface of the Si plate even at a magnification of 90,000 times, which is consistent with the measured XRD results, indicating that the SiO₂ film generated by thermal oxidation was amorphous.

Figure S2. Schematic of colossal permittivity based on the thermal oxidation for 3 min single-crystalline silicon plates (thickness 0.7 mm, resistivity 0.001 Ω·cm) in O₂ atmosphere. (a) Insulator/semiconductor/insulator sandwich structure. (b) Sandwich structure applied by an external electrical field. (c) Dielectric constant and thickness of each part in the sandwich structure. ε₀ (ε₂) and d₁ (d₂) are dielectric constant and thickness of the insulator (semiconductor), respectively. The total thickness of the sandwich structure is labeled as d, which is the sum of d₁ and d₂ (d₂ ≫ d₁).

Figure S2 shows the schematic of colossal permittivity based on the thermal oxidation for 3 min single-crystalline silicon plates (thickness 0.7 mm, resistivity 0.001 Ω·cm) in O₂ atmosphere.
According to the theory of capacitor in series, the overall capacitor 'C' of the sandwich structure is expressed as:

\[
\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_1} = \frac{2}{C_1} + \frac{1}{C_2}
\]

(1)

where \(C_1\) and \(C_2\) are the capacitors of the insulator and the semiconductor layer, respectively. Both the insulator and the semiconductor layer are reckoned as a plate capacitor, and the total capacitor 'C' of the sandwich structure, the capacitor 'C1' of the insulator layer, and the capacitor 'C2' of the semiconductor are:

\[
C = \varepsilon_0 \varepsilon_r s/d; \quad C_1 = 2\varepsilon_0 \varepsilon_r s/d_1; \quad C_2 = \varepsilon_0 \varepsilon_r s/d_2
\]

(2)

respectively. Here, \(\varepsilon_0\) is the absolute dielectric constant and \(s\) is the surface area of the sandwich structure; \(\varepsilon_1\) \((\varepsilon_2)\) and \(d_1\) \((d_2)\) are dielectric constant and thickness of the insulator (semiconductor), respectively. The total thickness of the sandwich structure is labeled as \(d\), which is the sum of \(d_1\) and \(d_2\) \((d_2 \gg d_1, d \approx d_2)\). The dielectric constant \(\varepsilon_r\) of the sandwich structure is derived as

\[
\varepsilon_r = \frac{d_2 \varepsilon_{r1} \varepsilon_{r2}}{d_1 \varepsilon_{r2} + d_2 \varepsilon_{r1}} = \frac{\varepsilon_{r2}}{d_2 d_1 \varepsilon_{r1} + 1}
\]

(3)

Here, Equation (3) can be expressed as three sub-formulas:

\[
\varepsilon_r = \begin{cases}
\varepsilon_{r2}, & \frac{d_2 \varepsilon_{r1} \varepsilon_{r2}}{d_1 \varepsilon_{r2} + d_2 \varepsilon_{r1}} = 1 \\
\frac{\varepsilon_{r2}}{d_2 d_1 \varepsilon_{r1}} < 1, & \frac{d_1 \varepsilon_{r2}}{d_2 \varepsilon_{r1}} \ll 1 \\
\frac{d_2 d_1 \varepsilon_{r1}}{\varepsilon_{r2}} \gg 1, & \frac{d_2 \varepsilon_{r1} \varepsilon_{r2}}{d_2 d_1 \varepsilon_{r1}} = 1
\end{cases}
\]

(4)

The above three sub-formulas show that \(\varepsilon_r\) of the sandwich structure is dependent of \(\varepsilon_{r2}\) (dielectric constant of the semiconductor) and \(d_2/d_1\) (the ratio of the thickness between the semiconductor and the insulator). Only if both \(\varepsilon_{r2}\) and \(d_2/d_1\) are large enough, a relative great value of \(\varepsilon_r\) can be obtained.

![Figure S3](image)

Figure S3. Temperature dependence of the dielectric properties at difference frequency (500 Hz, 1 kHz, 10 kHz, 50 kHz and 100 kHz) were measured from 100 to 450 K. Dielectric permittivity (a) and dielectric loss (b) of the single-crystalline silicon plate (thickness 0.7 mm, resistivity 0.001 Ω·cm) after thermal oxidation for 3 min.

Figure S3 shows temperature dependence of the dielectric properties at difference frequency. The measured sample was the single-crystalline silicon plate (thickness 0.7 mm, resistivity 0.001 Ω·cm) after thermal oxidation for 3 min. The temperature range was from 100 to 450 K, which was limited
by our experiment condition. It is of significance that both colossal permittivity (CP) and low dielectric loss of the thermal oxidized single-crystalline silicon plate are almost independent of temperature over a wide temperature range, from 100 K up to 300 K. The relaxation peak at about 350 K may be due to the effect of carrier hopping at high temperature, which is similar to those of nano-TiO$_2$ bulks, Ti + Nb co-doped TiO$_2$ [2,3] and Ce$_{1-x}$ Gd$_x$O$_{2.8}$ ceramics [4].

References

4. Zhu, G.B.; Guo, Y.M. Dielectric behavior of Ce$_{1-x}$Gd$_x$O$_{2.8}$ (0 <= x <= 0.1) ceramics prepared by sol-gel method. *J. Alloy Compd.* **2019**, *785*, 590–597.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).